
26 The Open Numerical Methods Journal, 2011, 3, 26-30

 1876-3898/11 2011 Bentham Open

Open Access

Constructing Cartesian Splines

H.R.N. van Erp
*,1

, R.O. Linger
2
 and P.H.A.J.M. van Gelder

1

1
TU Delft Structural Hydraulic and Probabilistic Design, TU Delft, Delft, The Netherlands

2
Medical Sciences, RuG, Groningen, The Netherlands

Abstract: We introduce here Cartesian splines or, for short, C-splines. C-splines are piecewise polynomials which are

defined on adjacent Cartesian coordinate systems and are Cr
 continuous throughout. The Cr

 continuity is enforced by

constraining the coefficients of the polynomial to lie in the null-space of some smoothness matrix H . The matrix-product

of the null-space of the smoothness matrix H and the original polynomial base results in a new base, the so-called C-

spline base, which automatically enforces Cr
 continuity throughout. In this article we give a derivation of this C-spline

base as well as an algorithm to construct C-spline models.

Keywords: Splines, cartesian, regression analysis, explicit base.

1. INTRODUCTION

 We introduce here Cartesian splines or, for short, C-

splines. C-splines are piecewise polynomials which are

defined on adjacent Cartesian coordinate systems and are Cr

continuous throughout. The Cr
 continuity is enforced by

constraining the coefficients of the polynomial to lie in the

null-space of some smoothness matrix H . The matrix-

product of the null-space of the smoothness matrix H and

the original polynomial base results in a new base, the so-

called C-spline base, which automatically enforces Cr

continuity throughout. The idea of using the null-space of

some smoothness matrix H has been taken from the B-

spline literature, where piecewise polynomials are defined on

adjacent triangular Barycentric coordinate systems [1-3]. It

turns out that C-spline bases have a particular simple form.

This makes it possible to give an explicit formulation of

general C-spline bases. In this article we will give a general

outline how to enforce continuity constraints by way of the

smoothness matrix H . We then show how these constraints

lead us to the C-spline base. Then we will give the explicit

algorithm for constructing a bivariate C-spline base and

show how to use this base to construct a C-spline model.

2. PIECEWISE POLYNOMIALS

 We start with the bivariate Cartesian x , y -coordinate

system. We partition this initial coordinate system with

origin O = 0, 0() in two adjacent coordinate systems, each

with its own origin, O = 0, 0() and

O = 0, 0() . The geometry

in terms of x and y may be depicted as:

*Address correspondence to this author at the Structural Hydraulic and

Probabilistic Design, TU Delft, Delft, The Netherlands; Tel: 06-30883099;

E-mail: H.R.N.vanErp@tudelft.nl

Fig. (1). Geometry of the domain of two piecewise polynomials in

terms of x and y..

where x and y are some constants. Likewise, the

geometry in terms of x and y may be depicted as:

Fig. (2). Geometry of the domain of two piecewise polynomials in

terms of x and y.

where x and y are the same constants as used in Fig. (1).

 Now, we may define on both coordinate systems a

polynomial of order d :

Pd x, y() =
0 p+q d

cpqx
pyq (1)

 We start with the most simple case, that is, we set d =1 .

The polynomial equations for both coordinate systems then

become:

Constructing Cartesian Splines The Open Numerical Methods Journal, 2011, Volume 3 27

z1 x, y() = c11 + c12x + c13y, 0 x x, 0 y y

z2 x, y() = c21 + c22x + c23y, 0 x x, 0 y y
 (2)

 If we look at Fig. (2), we see that

 x = x x (3)

 Combining (2) and (3) we get:

z1 x, y() = c11 + c12x + c13y, 0 x x, 0 y y

z2 x, y() = c21 + c22 x x() + c23y, x x 2 x, 0 y y
 (4)

 Let

z = z1 x, y() z2 x, y()()
T

be the outcome vector. Then (4) may be rewritten as the

matrix-vector product of the polynomial base

B =
1 x y 0 0 0

0 0 0 1 x x y
 (5)

and the coefficient vector

c = c11 c12 c13 c21 c22 c23()
T

 (6)

that is,

z = Bc

 Note that the x, y() -values that fall in the first quadrant

of Fig. (1) are assigned to the first row of the polynomial

base B , while x, y() -values in the second quadrant are

assigned to the second row.

3. ENFORCING ZEROTH ORDER CONTINUITY

 In order for the two polynomials (4) to connect at the

boundary, that is, in order to have C 0
 continuity, we must

have that

z1 x, y() = z2 x, y() (7)

for any y . Substituting (4) in (7), we find

c11 + c12 x + c13y = c21 + c23y

or, equivalently,

c11 + c12 x + c13y c21 c23y = 0 (8)

 We have that (8) is a constraint on the c coefficients.

The coefficients c must all lie in the null-space of the

smoothness ``matrix'' H , where

H = 1 x y 1 0 1() (9)

 The null-space [4], of H is

H 0 =

y 0 1 y x

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 (10)

and it may be checked that

HH 0 = 0

where 0 is the 1 5 zero vector. It follows that the matrix

product of H with any linear combination of the columns in

H 0 must give a zero value, that is,

HH 0c0 = 0

where c0 is an arbitrary 5 1 vector. Stated differently, any

linear combination of the columns of H 0 gives us an 6 1

vector that satisfies the constraint (7) or, equivalently,

constraint (8).

 Now, if we take the matrix product of our original

polynomial base, B , and the null-space of our smoothness

matrix, H 0 , we get the null-base B0 :

B0 = BH 0

=
y 0 1 0 x x

y x x 1 0 0
 (11)

 If we drop the zero column in (11) and rearrange the

columns somewhat, we get the C-spline base, BC :

BC =
1 y x x 0

1 y 0 x x
 (12)

 Let

b = b1 b2 b3 b4()
T

be an arbitrary coefficient vector. Then

z = BCb

corresponds with the polynomial equations

z1 x, y() = b1 + b2y + b3 x x(), 0 x x, 0 y y

z2 x, y() = b1 + b2y + b4 x x(), x x 2 x, 0 y y
 (13)

 Now, if we substitute x = x in (13) we have that for

any choice of b constraint (7) is satisfied:

z1 x, y() = z2 x, y() = b1 + b2y (14)

 It follows that BC , (12), is the base that enforces zeroth

order continuity.

 We summarize, C 0
 continuity between two piecewise

polynomials results in a smoothness matrix H , (9). The

coefficients c , (6), defined on the original polynomial base

B , (5), are constrained to lie within the null-space of this

smoothness matrix. Stated differently, the coefficients c are

constrained to be a linear combination of the columns of

H 0 , (10), which span the null space of H . By directly

multiplying the null-space matrix H 0 with the the original

polynomial base B we get the null-base B0 [4], which

contains redundant columns consisting of zero vectors.

Dropping these zero vectors we obtain the C-spline base BC ,

28 The Open Numerical Methods Journal, 2011, Volume 3 van Erp et al.

(12), which has the C 0
 constraint (7) build into its structure,

as may be checked, (14).

4. ENFORCING FIRST ORDER CONTINUITY

 In order for the partial derivatives of the two polynomials

(4) to connect at the boundary, that is, in order to have C1

continuity, we must have that the partial derivatives z1 / x

and z2 / x are C 0
 at their boundaries, that is

z1 x, y()
x

x= x

=
z2 x, y()

x
x= x

 (15)

 Substituting (4) in (15), we find

c12 = c22

or, equivalently,

c12 c22 = 0 (16)

 Adding constraint (16) to (9), the new smoothness matrix

H and the corresponding null space H 0 become,

respectively,

H =
1 x y 1 0 1

0 1 0 0 1 0

and [4],

H 0 =

y x 1 y

0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (17)

 Multiplying (17) with the original polynomial base (5)

we get

B0 = BH 0

=
y x x 1 0

y x x 1 0

 Dropping the redundant zero column and rearranging the

columns somewhat, we get the C-spline base:

BC =
1 y x x

1 y x x
 (18)

which, since x is a constant, is equivalent to the base

BC =
1 y x

1 y x
 (19)

 From C-spline-base (19) it can be seen that the first order

piecewise polynomials which have first order partial

derivatives everywhere collapse to a global polynomial of

order d =1 and C1
, which is just the base of a linear

regression model having an intercept and predictors x and

y .

 Here the given framework for deriving C-spline bases

may be generalized to d th order piecewise polynomials with

r th order continuity, 0 r d , on arbitrary geometries. If

one does this then it is found that the C-spline base, BC , has

a relatively simple structure. This simple structure allows us

to directly construct BC without first having to compute the

null matrix H 0 and then taking its matrix product with the

original base B . This makes C-spline modeling, as given in

the next section, computationally efficient. It will be seen

that the computational burden of constructing a C-spline is

equivalent to that of performing an ordinary regression

analysis.

5. AN ALGORITHM TO CONSTRUCT C-SPLINES

 We give here the algorithm for the construction of C-

splines for bivariate geometries, partitioned into I J

adjacent Cartesian domains on which d th order piecewise

polynomials with r th order continuity everywhere are

defined.

5.1. The Geometry

 First we define a partitioning of the Cartesian x, y()

plane. Then we number the resulting partitionings. In the

region of interest the x values take on values from ax to bx

and the y values take on values from ay to by . If we

partition the x -axis in I adjacent axes with equal lengths

x and the y -axis in J adjacent axes with equal lengths

y . Then this results in K = IJ partitionings.

 Now, we may number each partitioning in the following

manner. For i =1 we number the partitionings of the y -axis

from k =1,…, J , for i = 2 we number the partitionings of

the y -axis from k = J +1,…, 2J , etc… We then have that

the i, j() th partitioning is numbered as

k = i 1() J + j, 1 i I , 1 j J (20)

where

k =1,…,K and K = IJ .

 In the next paragraph we will construct our C-spline

base. The geometry, as given in (20), is non-trivial in that the

Cartesian coordinate system having coordinates i, j()

corresponds with the k th row of this C-spline base.

5.2. Constructing the C-Spline Base

 First we construct the building blocks of our base. Let

ui =
x ax() i x, i =1,…, I 1

x ax() i 1() x, i = I
 (21)

 Then the x -columns of the building blocks are:

Constructing Cartesian Splines The Open Numerical Methods Journal, 2011, Volume 3 29

uki =
ui , k =1,…, iJ, i =1,…, I{
0, else

 (22)

where

k =1,…,K and K = IJ . Likewise, let

vj =
y ay() j y, j =1,…, J 1

y ay() j 1() y, j = J
 (23)

 Then the y -columns of the building blocks are:

vkj =
vj , k =1,…, j + i 1() J,

j =1,…, J

i =1,…, I

0, else

 (24)

where

k =1,…,K and K = IJ .

 Using the building blocks (22) and (24), we may now

construct the C-spline base BC . Our polynomial is of order

d , that is, let p and q be the powers of x and y ,

respectively, then 0 p + q d . Let

Up =
ukI
p , p r

uk1
p ,…,ukI

p{ }, p > r
 (25)

Vq =
vkJ
q , q r

vk1
q ,…, vkJ

q{ }, q > r
 (26)

 Then we take the outer product of Up and Vq to get

Bp,q , the C-spline equivalent of the polynomial term x pyq :

Bp,q =Up Vq =

ukI
p vkJ

q , p r,q r

ukI
p vk1

q ,ukI
p vk2

q ,…,ukI
p vkJ

q{ }, p r,q > r

uk1
p vkJ

q ,uk2
p vkJ

q ,…,ukI
p vkJ

q{ }, p > r,q r

uk1
p vk1

q ,uk1
p vk2

q ,…,ukI
p vkJ

q{ }, p > r,q > r

 (27)

 Just as the collection of terms x pyq{ }
0 p+q d

 span the

polynomial Pd , (1), So the collection of column vectors

BC x, y() = Bp,q{ }
0 p+q d

 (28)

span the piecewise polynomials that make up the C-spline.

 Note that for the geometry I = 2 , J =1 , polynomial

order d =1 and continuity order r = 0 , the C-spline base

(28) will differ from (12) by one column permutation. Both

bases may be considered equivalent though in that they both

enforce constraint (7).

5.3. Assigning Data Points to the C-Spline Base

 We have N observed data points in the Cartesian x, y() -

plane that are related to some observed point on the z -axis

through the unknown function f , that is

f xn , yn() = zn , n =1,…,N . (29)

by using base (28), we approximate the unknown function f

with a collection of piecewise polynomials of degree d that

are Cr
 continuous everywhere. To do this we first have to

assign each data point xn , yn() to its corresponding

partitioning. The x - and y -axes of each partitioning have,

see paragraph 5.1, lengths of x =
bx ax
I

, y =
by ay
J

we then have that for the data point xn , yn() which lies in the

partitioning having coordinates i, j() :

ax + i 1() x xn ax + i x,

ay + j 1() y yn ay + j y
or, equivalently,

i 1()
xn ax

x
i, j 1()

yn ay
y

j it follows that

the coordinates of the partitioning in which the data point

xn , yn() lies may be found as

i = ceil
xn ax

x
, j = ceil

yn ay
y

 (30)

where ceil x() is the function that gives the smallest integer

that is greater than or equal to x . Substituting these

coordinates in (20), we may assign the data point xn , yn() to

its corresponding piecewise polynomial, or, equivalently, to

its corresponding row k in the base (28).

Example

 Say, we use the C-spline base as given in (12)

BC x, y() =
1 y x x 0

1 y 0 x x

where the first and second row of BC correspond,

respectively, with the first and second partitioning of Fig.

(1). Now, say we have a small dataset of N = 5 observations

xn , yn() having values of

x1, y1() = 1.1 x, 0.3 y()

x2 , y2() = 1.2 x, 0.7 y()

x3, y3() = 0.1 x, 0.3 y()

x4 , y4() = 0.5 x, 0.1 y()

x5 , y5() = 1.7 x, 0.8 y()

where x and y are some constants. Then, using (20) and

(30), the points x3, y3() and x4 , y4() are assigned to the first

30 The Open Numerical Methods Journal, 2011, Volume 3 van Erp et al.

partitioning, or, equivalently, to the first row of BC .

Likewise, x1, y1() , x2 , y2() and x5 , y5() are assigned to the

second partitioning, or, equivalently, to the second row of

BC :

BC =

BC
2() x1, y1()

BC
2() x2 , y2()

BC
1() x3, y3()

BC
1() x4 , y4()

BC
2() x5 , y5()

=

1 0.3 y 0 0.1 x

1 0.7 y 0 0.2 x

1 0.3 y 0.9 x 0

1 0.1 y 0.5 x 0

1 0.8 y 0 0.7 x

 (31)

 Note that use a tilde to signify a base BC to which data

points have been assigned.

5.4. Constructing a C-Spline

 Let m be the number of columns of the C-spline base

BC , (28). Then, after we have assigned all N data points to

the base BC , we get the N m matrix

BC , see (31). The

unknown b coefficients of the C-spline, see (13), are found

through least-squares estimation [5]:

b = BC
T BC()

1
BC
T z (32)

where z = z1 zN() is the vector with output values,

(29).

 Now, say we wish to get the C-spline estimate ẑN+1 of

the data point xN+1, yN+1() . Then, using (20) and (30), we

first determine the row k of the base BC , (28), that

corresponds with this data point and then plug in its value.

This results in the 1 m row-vector

BC

N+1() = BC
k() xN+1, yN+1() (33)

 The estimate ẑN+1 is then found by simply taking the

inner product of (33) and (32):

z = BC

N+1() b

 We see that constructing a C-spline is equivalent to

performing a regression analysis.

6. DISCUSSION

 We have introduced here Cartesian splines, or C-splines,

for short. C-splines are piecewise polynomials which are

defined on adjacent Cartesian coordinate systems and are Cr

continuous throughout. We have given here an algorithm

that allows one to construct C-spline bases without first

having to find the null-space of the corresponding

smoothness matrix H. This makes the construction of a given

C-spline base computationally trivial since no null-space of

H has to be evaluated. This means that for C-splines the

computational burden lies solely, just as in any ordinary

regression analysis, in the evaluation of the inverse of

BC
T BC , where

BC is the matrix with the independent

variables. Note that the algorithm, equations (20) through

(28), may be generalized relatively easy to construct C-

splines for multivariate domains.

ACKNOWLEDGMENTS

 This research was partly funded by the Delft Cluster

project (no. CT04.33.11), which is kindly acknowledged by

the authors.

REFERENCES

[1] de Boor C. B-form basics. Geometric modeling: algorithms and

new trends, In: Farin G, Ed. SIAM Publication 1987; pp. 131-48.
[2] Lai MJ, Schumaker LL. Scattered data interpolation using

piecewise polynomials of degree six. SIAM Numer Anal 1997; 34:
905-21.

[3] Awanou G, Lai MJ, Wenston P. Multivariate splines for scattered
data fitting and numerical solutions of partial differential equations.

Wavelets and Splines. In: Chen G, Lai MJ, Eds. Athens 2005; pp.
24-75.

[4] Lay DC. Linear algebra and its applications. Reading,
Massachusetts: Addison Wesley 2005.

[5] Zellner A. An introduction to Bayesian inference in econometrics.
New York: J. Wiley & Sons 1971.

Received: April 9, 2011 Revised: July 15, 2011 Accepted: July 31, 2011

© van Erp et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

