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Abstract: We introduce here Cartesian splines or, for short, C-splines. C-splines are piecewise polynomials which are 

defined on adjacent Cartesian coordinate systems and are Cr
 continuous throughout. The Cr

 continuity is enforced by 

constraining the coefficients of the polynomial to lie in the null-space of some smoothness matrix H . The matrix-product 

of the null-space of the smoothness matrix H  and the original polynomial base results in a new base, the so-called C-

spline base, which automatically enforces Cr
 continuity throughout. In this article we give a derivation of this C-spline 

base as well as an algorithm to construct C-spline models. 
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1. INTRODUCTION 

 We introduce here Cartesian splines or, for short, C-

splines. C-splines are piecewise polynomials which are 

defined on adjacent Cartesian coordinate systems and are Cr
 

continuous throughout. The Cr
 continuity is enforced by 

constraining the coefficients of the polynomial to lie in the 

null-space of some smoothness matrix H . The matrix-

product of the null-space of the smoothness matrix H  and 

the original polynomial base results in a new base, the so-

called C-spline base, which automatically enforces Cr
 

continuity throughout. The idea of using the null-space of 

some smoothness matrix H  has been taken from the B-

spline literature, where piecewise polynomials are defined on 

adjacent triangular Barycentric coordinate systems [1-3]. It 

turns out that C-spline bases have a particular simple form. 

This makes it possible to give an explicit formulation of 

general C-spline bases. In this article we will give a general 

outline how to enforce continuity constraints by way of the 

smoothness matrix H . We then show how these constraints 

lead us to the C-spline base. Then we will give the explicit 

algorithm for constructing a bivariate C-spline base and 

show how to use this base to construct a C-spline model. 

2. PIECEWISE POLYNOMIALS 

 We start with the bivariate Cartesian x , y -coordinate 

system. We partition this initial coordinate system with 

origin O = 0, 0( )  in two adjacent coordinate systems, each 

with its own origin, O = 0, 0( )  and 
 
O = 0, 0( ) . The geometry 

in terms of x  and y  may be depicted as: 
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Fig. (1). Geometry of the domain of two piecewise polynomials in 

terms of x  and y.. 

where x  and y  are some constants. Likewise, the 

geometry in terms of  x  and y  may be depicted as: 

 

Fig. (2). Geometry of the domain of two piecewise polynomials in 

terms of  x  and y.  

where x  and y  are the same constants as used in Fig. (1). 

 Now, we may define on both coordinate systems a 

polynomial of order d : 

Pd x, y( ) =
0 p+q d

cpqx
pyq  (1) 

 We start with the most simple case, that is, we set d =1 . 

The polynomial equations for both coordinate systems then 

become: 
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z1 x, y( ) = c11 + c12x + c13y, 0 x x, 0 y y

z2 x, y( ) = c21 + c22x + c23y, 0 x x, 0 y y
 (2) 

 If we look at Fig. (2), we see that 

 x = x x  (3) 

 Combining (2) and (3) we get: 

z1 x, y( ) = c11 + c12x + c13y, 0 x x, 0 y y

z2 x, y( ) = c21 + c22 x x( ) + c23y, x x 2 x, 0 y y
 (4) 

 Let 

z = z1 x, y( ) z2 x, y( )( )
T

 

be the outcome vector. Then (4) may be rewritten as the 

matrix-vector product of the polynomial base 

B =
1 x y 0 0 0

0 0 0 1 x x y
 (5) 

and the coefficient vector 

c = c11 c12 c13 c21 c22 c23( )
T

 (6) 

that is, 

z = Bc  

 Note that the x, y( ) -values that fall in the first quadrant 

of Fig. (1) are assigned to the first row of the polynomial 

base B , while x, y( ) -values in the second quadrant are 

assigned to the second row. 

3. ENFORCING ZEROTH ORDER CONTINUITY 

 In order for the two polynomials (4) to connect at the 

boundary, that is, in order to have C 0
 continuity, we must 

have that 

z1 x, y( ) = z2 x, y( )  (7) 

for any y . Substituting (4) in (7), we find 

c11 + c12 x + c13y = c21 + c23y  

or, equivalently, 

c11 + c12 x + c13y c21 c23y = 0  (8) 

 We have that (8) is a constraint on the c  coefficients. 

The coefficients c  must all lie in the null-space of the 

smoothness ``matrix'' H , where 

H = 1 x y 1 0 1( )  (9) 

 The null-space [4], of H  is 

H 0 =

y 0 1 y x

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 (10) 

and it may be checked that 

HH 0 = 0  

where 0  is the 1 5  zero vector. It follows that the matrix 

product of H  with any linear combination of the columns in 

H 0  must give a zero value, that is, 

HH 0c0 = 0  

where c0  is an arbitrary 5 1  vector. Stated differently, any 

linear combination of the columns of H 0  gives us an 6 1  

vector that satisfies the constraint (7) or, equivalently, 

constraint (8). 

 Now, if we take the matrix product of our original 

polynomial base, B , and the null-space of our smoothness 

matrix, H 0 , we get the null-base B0 : 

B0 = BH 0  

=
y 0 1 0 x x

y x x 1 0 0
 (11) 

 If we drop the zero column in (11) and rearrange the 

columns somewhat, we get the C-spline base, BC : 

BC =
1 y x x 0

1 y 0 x x
 (12) 

 Let 

b = b1 b2 b3 b4( )
T

 

be an arbitrary coefficient vector. Then 

z = BCb  

corresponds with the polynomial equations 

z1 x, y( ) = b1 + b2y + b3 x x( ), 0 x x, 0 y y

z2 x, y( ) = b1 + b2y + b4 x x( ), x x 2 x, 0 y y
 (13) 

 Now, if we substitute x = x  in (13) we have that for 

any choice of b  constraint (7) is satisfied: 

z1 x, y( ) = z2 x, y( ) = b1 + b2y  (14) 

 It follows that BC , (12), is the base that enforces zeroth 

order continuity. 

 We summarize, C 0
 continuity between two piecewise 

polynomials results in a smoothness matrix H , (9). The 

coefficients c , (6), defined on the original polynomial base 

B , (5), are constrained to lie within the null-space of this 

smoothness matrix. Stated differently, the coefficients c  are 

constrained to be a linear combination of the columns of 

H 0 , (10), which span the null space of H . By directly 

multiplying the null-space matrix H 0  with the the original 

polynomial base B  we get the null-base B0  [4], which 

contains redundant columns consisting of zero vectors. 

Dropping these zero vectors we obtain the C-spline base BC , 
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(12), which has the C 0
 constraint (7) build into its structure, 

as may be checked, (14). 

4. ENFORCING FIRST ORDER CONTINUITY 

 In order for the partial derivatives of the two polynomials 

(4) to connect at the boundary, that is, in order to have C1
 

continuity, we must have that the partial derivatives z1 / x  

and z2 / x  are C 0
 at their boundaries, that is 

z1 x, y( )
x

x= x

=
z2 x, y( )

x
x= x

 (15) 

 Substituting (4) in (15), we find 

c12 = c22  

or, equivalently, 

c12 c22 = 0  (16) 

 Adding constraint (16) to (9), the new smoothness matrix 

H  and the corresponding null space H 0  become, 

respectively, 

H =
1 x y 1 0 1

0 1 0 0 1 0
 

and [4], 

H 0 =

y x 1 y

0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (17) 

 Multiplying (17) with the original polynomial base (5) 

we get 

B0 = BH 0  

=
y x x 1 0

y x x 1 0
 

 Dropping the redundant zero column and rearranging the 

columns somewhat, we get the C-spline base: 

BC =
1 y x x

1 y x x
 (18) 

which, since x  is a constant, is equivalent to the base 

BC =
1 y x

1 y x
 (19) 

 From C-spline-base (19) it can be seen that the first order 

piecewise polynomials which have first order partial 

derivatives everywhere collapse to a global polynomial of  

 

order d =1  and C1
, which is just the base of a linear 

regression model having an intercept and predictors x  and 

y . 

 Here the given framework for deriving C-spline bases 

may be generalized to d th order piecewise polynomials with 

r th order continuity, 0 r d , on arbitrary geometries. If 

one does this then it is found that the C-spline base, BC , has 

a relatively simple structure. This simple structure allows us 

to directly construct BC  without first having to compute the 

null matrix H 0  and then taking its matrix product with the 

original base B . This makes C-spline modeling, as given in 

the next section, computationally efficient. It will be seen 

that the computational burden of constructing a C-spline is 

equivalent to that of performing an ordinary regression 

analysis. 

5. AN ALGORITHM TO CONSTRUCT C-SPLINES 

 We give here the algorithm for the construction of C-

splines for bivariate geometries, partitioned into I J  

adjacent Cartesian domains on which d th order piecewise 

polynomials with r th order continuity everywhere are 

defined. 

5.1. The Geometry 

 First we define a partitioning of the Cartesian x, y( )  

plane. Then we number the resulting partitionings. In the 

region of interest the x  values take on values from ax  to bx  

and the y  values take on values from ay  to by . If we 

partition the x -axis in I  adjacent axes with equal lengths 

x  and the y -axis in J  adjacent axes with equal lengths 

y . Then this results in K = IJ  partitionings. 

 Now, we may number each partitioning in the following 

manner. For i =1  we number the partitionings of the y -axis 

from k =1,…, J , for i = 2  we number the partitionings of 

the y -axis from k = J +1,…, 2J , etc… We then have that 

the i, j( ) th partitioning is numbered as 

k = i 1( ) J + j, 1 i I , 1 j J  (20) 

where 
 
k =1,…,K  and K = IJ . 

 In the next paragraph we will construct our C-spline 

base. The geometry, as given in (20), is non-trivial in that the 

Cartesian coordinate system having coordinates i, j( )  

corresponds with the k th row of this C-spline base. 

5.2. Constructing the C-Spline Base 

 First we construct the building blocks of our base. Let 

 

ui =
x ax( ) i x, i =1,…, I 1

x ax( ) i 1( ) x, i = I
 (21) 

 Then the x -columns of the building blocks are: 
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uki =
ui , k =1,…, iJ, i =1,…, I{
0, else

 (22) 

where 
 
k =1,…,K  and K = IJ . Likewise, let 

 

vj =
y ay( ) j y, j =1,…, J 1

y ay( ) j 1( ) y, j = J
 (23) 

 Then the y -columns of the building blocks are: 

 

vkj =
vj , k =1,…, j + i 1( ) J,

j =1,…, J

i =1,…, I

0, else

 (24) 

where 
 
k =1,…,K  and K = IJ . 

 Using the building blocks (22) and (24), we may now 

construct the C-spline base BC . Our polynomial is of order 

d , that is, let p  and q  be the powers of x  and y , 

respectively, then 0 p + q d . Let 

 

Up =
ukI
p , p r

uk1
p ,…,ukI

p{ }, p > r
 (25) 

 

Vq =
vkJ
q , q r

vk1
q ,…, vkJ

q{ }, q > r
 (26) 

 Then we take the outer product of Up  and Vq  to get 

Bp,q , the C-spline equivalent of the polynomial term x pyq : 

Bp,q =Up Vq =

ukI
p vkJ

q , p r,q r

ukI
p vk1

q ,ukI
p vk2

q ,…,ukI
p vkJ

q{ }, p r,q > r

uk1
p vkJ

q ,uk2
p vkJ

q ,…,ukI
p vkJ

q{ }, p > r,q r

uk1
p vk1

q ,uk1
p vk2

q ,…,ukI
p vkJ

q{ }, p > r,q > r

 (27) 

 Just as the collection of terms x pyq{ }
0 p+q d

 span the 

polynomial Pd , (1), So the collection of column vectors 

BC x, y( ) = Bp,q{ }
0 p+q d

 (28) 

span the piecewise polynomials that make up the C-spline. 

 Note that for the geometry I = 2 , J =1 , polynomial 

order d =1  and continuity order r = 0 , the C-spline base 

(28) will differ from (12) by one column permutation. Both 

bases may be considered equivalent though in that they both 

enforce constraint (7). 

 

5.3. Assigning Data Points to the C-Spline Base 

 We have N  observed data points in the Cartesian x, y( ) -

plane that are related to some observed point on the z -axis 

through the unknown function f , that is 

 
f xn , yn( ) = zn , n =1,…,N .  (29) 

by using base (28), we approximate the unknown function f  

with a collection of piecewise polynomials of degree d  that 

are Cr
 continuous everywhere. To do this we first have to 

assign each data point xn , yn( )  to its corresponding 

partitioning. The x - and y -axes of each partitioning have, 

see paragraph 5.1, lengths of x =
bx ax
I

, y =
by ay
J

 

we then have that for the data point xn , yn( )  which lies in the 

partitioning having coordinates i, j( ) : 

ax + i 1( ) x xn ax + i x,

ay + j 1( ) y yn ay + j y
or, equivalently, 

i 1( )
xn ax

x
i, j 1( )

yn ay
y

j  it follows that 

the coordinates of the partitioning in which the data point 

xn , yn( )  lies may be found as 

i = ceil
xn ax

x
, j = ceil

yn ay
y

 (30) 

where ceil x( )  is the function that gives the smallest integer 

that is greater than or equal to x . Substituting these 

coordinates in (20), we may assign the data point xn , yn( )  to 

its corresponding piecewise polynomial, or, equivalently, to 

its corresponding row k  in the base (28). 

Example 

 Say, we use the C-spline base as given in (12) 

BC x, y( ) =
1 y x x 0

1 y 0 x x
 

where the first and second row of BC  correspond, 

respectively, with the first and second partitioning of Fig. 

(1). Now, say we have a small dataset of N = 5  observations 

xn , yn( )  having values of 

x1, y1( ) = 1.1 x, 0.3 y( )

x2 , y2( ) = 1.2 x, 0.7 y( )

x3, y3( ) = 0.1 x, 0.3 y( )

x4 , y4( ) = 0.5 x, 0.1 y( )

x5 , y5( ) = 1.7 x, 0.8 y( )

 

where x  and y  are some constants. Then, using (20) and 

(30), the points x3, y3( )  and x4 , y4( )  are assigned to the first 
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partitioning, or, equivalently, to the first row of BC . 

Likewise, x1, y1( ) , x2 , y2( )  and x5 , y5( )  are assigned to the 

second partitioning, or, equivalently, to the second row of 

BC : 

 

BC =

BC
2( ) x1, y1( )

BC
2( ) x2 , y2( )

BC
1( ) x3, y3( )

BC
1( ) x4 , y4( )

BC
2( ) x5 , y5( )

=

1 0.3 y 0 0.1 x

1 0.7 y 0 0.2 x

1 0.3 y 0.9 x 0

1 0.1 y 0.5 x 0

1 0.8 y 0 0.7 x

 (31) 

 Note that use a tilde to signify a base BC  to which data 

points have been assigned. 

5.4. Constructing a C-Spline 

 Let m  be the number of columns of the C-spline base 

BC , (28). Then, after we have assigned all N  data points to 

the base BC , we get the N m  matrix 
 
BC , see (31). The 

unknown b  coefficients of the C-spline, see (13), are found 

through least-squares estimation [5]: 

b = BC
T BC( )

1
BC
T z  (32) 

where z = z1 zN( )  is the vector with output values, 

(29). 

 Now, say we wish to get the C-spline estimate ẑN+1  of 

the data point xN+1, yN+1( ) . Then, using (20) and (30), we 

first determine the row k  of the base BC , (28), that 

corresponds with this data point and then plug in its value. 

This results in the 1 m  row-vector 

 
BC

N+1( ) = BC
k( ) xN+1, yN+1( )  (33) 

 The estimate ẑN+1  is then found by simply taking the 

inner product of (33) and (32): 

 
z = BC

N+1( ) b  

 We see that constructing a C-spline is equivalent to 

performing a regression analysis. 

6. DISCUSSION 

 We have introduced here Cartesian splines, or C-splines, 

for short. C-splines are piecewise polynomials which are 

defined on adjacent Cartesian coordinate systems and are Cr
 

continuous throughout. We have given here an algorithm 

that allows one to construct C-spline bases without first 

having to find the null-space of the corresponding 

smoothness matrix H. This makes the construction of a given 

C-spline base computationally trivial since no null-space of 

H  has to be evaluated. This means that for C-splines the 

computational burden lies solely, just as in any ordinary 

regression analysis, in the evaluation of the inverse of 

 
BC
T BC , where 

 
BC  is the matrix with the independent 

variables. Note that the algorithm, equations (20) through 

(28), may be generalized relatively easy to construct C-

splines for multivariate domains. 

ACKNOWLEDGMENTS 

 This research was partly funded by the Delft Cluster 

project (no. CT04.33.11), which is kindly acknowledged by 

the authors. 

REFERENCES 

[1] de Boor C. B-form basics. Geometric modeling: algorithms and 

new trends, In: Farin G, Ed. SIAM Publication 1987; pp. 131-48. 
[2] Lai MJ, Schumaker LL. Scattered data interpolation using 

piecewise polynomials of degree six. SIAM Numer Anal 1997; 34: 
905-21. 

[3] Awanou G, Lai MJ, Wenston P. Multivariate splines for scattered 
data fitting and numerical solutions of partial differential equations. 

Wavelets and Splines. In: Chen G, Lai MJ, Eds. Athens 2005; pp. 
24-75. 

[4] Lay DC. Linear algebra and its applications. Reading, 
Massachusetts: Addison Wesley 2005. 

[5] Zellner A. An introduction to Bayesian inference in econometrics. 
New York: J. Wiley & Sons 1971. 

 

 

Received: April 9, 2011 Revised: July 15, 2011 Accepted: July 31, 2011 

 

© van Erp et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/ 

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


