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Abstract: Franz Halberg revolutionalized the field of nutrition by his demonstration that “when” we eat can make the 
difference between life and death in the experimental laboratory, and between weight gain or weight loss in everyday life. 
His critical contributions have far-reaching implications, whether for feeding the under-nourished in populations stricken 
by starvation, or for managing one of today’s great scourges in the more opulent countries, namely obesity. The use of a 
calorie consumed in the morning differs from that of one ingested in the evening, contributing, as he also showed, to 
different hormonal relations prevailing when a single daily meal is taken as breakfast-only or dinner-only. Important 
mechanisms underlying metabolism as they relate to health and longevity uncovered by Franz in the innumerable studies 
he designed and conducted on several continents remain beyond the frontier of current scientific investigations, attesting 
to his visionary leadership, his ability to look at the facts without any preconceived ideas, and his truly amazing humility 
and eagerness to serve. 
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Dedicated to Franz Halberg, a mentor and a father, on the occasion of his 92nd birthday. 

HISTORICAL CONTEXT 

 Already by 5000BC, it was known that we are what  
we eat [1]. The familiar aphorism “Dis-moi ce que tu 
manges, je te dirai qui tu es” (“Tell me what you eat, I  
will tell you who you are”) or its popular paraphrase “You 
are what you eat” is number four in a list at the beginning  
of volume 1 of Brillat-Savarin’s Physiologie du Goût [2]. 
But Brillat-Savarin’s third aphorism bears attention as well: 
“La destinée des nations dépend de la manière dont elles  
se nourissent” (“The destiny of nations depends on how  
they are nourished”). In other words, “You are how you  
eat”. According to Franz Halberg’s interpretation, this 
should first and foremost include “You are when you eat” 
[cf. 3]1.  

FAILURE OF THE EPINEPHRINE TEST, FOOD 

RESTRICTION STUDIES, AND THE BIRTH OF 

CHRONOBIOLOGY 

 Chronobiology came about from Franz Halberg’s studies 
on blood eosinophil cells as a gauge of adrenocortical 
function. At Harvard, he was the only one in his setting who  
 
 

*Address correspondence to this author at the 420 Delaware Street  
SE (MMC 8609), Minneapolis, MN 55455; Tel: 612-624-6976;  
Fax: 612-624-9989; E-mail: corne001@umn.edu 
Web. www.msi.umn.edu/~halberg/ 

                                                
1Virey also had thoughts about a “different temperament” as a function of whether one 
eats a single daily meal in the morning or in the evening [3]. A single numerical 
summary pertains to chronobiology, but not to nutrition. It is a table of overall 
mortality statistics recorded monthly at the Val-de-Grace military hospital as a function 
of clock hour for 13 months. From these limited data allowing detection by cosinor of 
neither a circadian nor a circannual component, Virey extrapolated that “the prudent 
physician has to consider any aggravating circumstances for each disease (which is not 
indicated in his table). 

debunked the basis of a then-widely-used epinephrine test2 
published for clinical use in an era before direct hormonal 
assays were developed [4]. Theoretically, epinephrine was 
believed to stimulate the hypothalamus, which secreted a 
substance stimulating pituitary ACTH secretion, which in 
turn resulted in corticosteroid secretion. An epinephrine 

                                                
2Franz Halberg had, and continues to have a series of disagreements with opinions 
prevailing in textbooks and with concepts currently generally used, such as 
homeostasis, i.e., the constancy of the internal environment. The current, nearly 
exclusive reliance on vital signs and on laboratory values above or below a target (as in 
the case of blood pressure) or outside versus inside a normal range (as for endocrine 
determinations), justifies the current reliance of most if not all medicine on single-
sample spotchecks, asking whether a given value is too high or too low and discussing 
up- or down-regulation, while ignoring rhythm characteristics such as the period, 
amplitude and phase that can also be altered, sometimes in the absence of a change in 
the mean value. In the case of blood pressure and heart rate, alterations of their 
variability patterns are invaluable harbingers of cardiovascular disease risk. Starting 
with the eosinophil count-based epinephrine test, and thereafter for cell division and 
eventually for nucleic acid formation and for the effect of radiation and of numerous 
drugs, it became repeatedly apparent to Franz in empirical terms that the superficially 
useful generalization of relative constancy by the older Claude Bernard, which led to 
the “hunting” of Walter Bradford Cannon’s homeostasis, is a wasteful fundamental 
error, as is ignoring rhythms as a first approximation, or the occasional comparison of 
rhythmic and (imaginary) homeostatic mechanisms. By 1949-50 in Minnesota, Franz 
realized that he could do better by using variability as an asset rather than trying to 
eliminate it, as he had at first done at Harvard in 1948-49. There, for assaying 
cortisone-like activity in the mouse, he needed 2.8 mg of cortisone to eliminate the 24-
hour rhythm for 24 hours [186]. Soon thereafter, he could increase the sensitivity to 
cortisone to a very few μgs (not mgs) by working in the physiologic range, carrying the 
tests in the ascending stage of the about-daily rhythm (that he had called circadian), 
once the variability in eosinophil counts became clear to him [187]. At his farewell 
from Harvard in 1949, Franz’s department head, George W Thorn, the late Hersey 
Professor of the Theory and Practice of Physics, told him that he admired Halberg’s 
sticking to his guns (to his unpublished work in Boston about an eosinophil count 
decrease in adrenalectomized mice), yet it could not be that Halberg was right while 
“everyone else” (including perhaps a dozen or more distinguished senior colleagues in 
the same department and some others elsewhere) was wrong. Halberg’s results in the 
mouse were soon amply extended to humans by William R Best [7] and the 
epinephrine test went into oblivion. The dictum prevailing with some outspoken 
colleagues at the Peter Bent Brigham hospital, if not also at Harvard, was to “publish, 
and if you are right, you are a success, but if you are wrong, everybody will forget it”. 
The dozen or so colleagues were wrong, but, of course, today, everybody forgot it, as 
the late Thorn did himself, without so much as an apology on subsequent returns by 
Franz to Harvard for lectures or an NIH study section. 
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injection was anticipated to fail to depress the count of 
eosinophils (circulating white blood cells staining with the 
acid dye eosin) if the adrenal cortex was absent or deficient 
[5]. Although the test had worked for a number of his 
colleagues at Harvard, it failed in Halberg’s adrenalectomized 
mice, since epinephrine considerably depressed the blood 
eosinophil count even after removal of the adrenal glands 
and adrenal cortex-like (ectopic) tissue elsewhere in the 
body. By the time the epinephrine test was reconsidered and 
eliminated within a year [6-8], Franz had joined the University 
of Minnesota. There, on separate but comparable groups of 
inbred mice of different strains, he documented the circadian 
rhythm in blood eosinophils, dropping from high counts in 
the morning to low counts in the evening, the circadian 
variation depending upon their genetic make-up [9, 10]. 

 The importance of the feeding schedule on the circadian 
rhythm of eosinophil counts came to the fore by trying to 
answer the question whether an adrenocortical activation 
could be used to treat breast cancer and prolong life. As seen 
in Fig. (1), eosinophil counts were indeed lowered by fasting 
(or “stress”), achieved by a 50% reduction in dietary 
carbohydrates and fats in C3H mice with a high incidence of 
breast cancer. But larger groups of animals were needed to 
verify whether steroids that depress eosinophil cell counts 
and perhaps mitoses could be a mechanism through which 
caloric restriction and ovariectomy act in reducing cancer 
incidence. Handling larger numbers of animals required 
starting the experiment at an earlier clock hour. Halberg had 
the foresight of interpreting the resulting lack of a difference 
(Fig. 2) as stemming from a phase difference between the 
caloric-restricted and the fully-fed groups. His postulate was 
confirmed when another experiment starting even earlier on 
larger groups of animals yielded opposite results, Fig. (3). 
He had thus illustrated the dangers of ignoring a phase 

difference in the circadian rhythm of the two groups being 
compared due to the competing synchronization of the 
lighting and feeding schedules [11]. 

 These experiments also revealed that food restriction in 
mice lowers circulating eosinophil counts and amplifies their 
circadian rhythm [12], as illustrated in Fig. (4). When both 
the phase and the amplitude of the circadian rhythm are 
changed by a given intervention, these changes possibly 
overshadowing any difference in mean value, there is no 
choice but to assess the rhythm by around-the-clock 
sampling, complemented by the derivation of point and 
interval estimates of rhythm parameters. Failure to do so is 
bound to mislead. Rhythms (circadians and many other 
periodic changes) are the indispensable control. 

LIFE OR DEATH STUDIES AND THE CRITICAL 
IMPORTANCE OF CHRONOBIOLOGY 

 Extensive studies by Halberg with collaborators 
worldwide accumulated a body of evidence documenting the 

 

Fig. (1). Eosinophil counts lowered by “fasting” and/or “stress”. 
Effect of a 50% reduction in dietary carbohydrates and fats (with 
proteins, vitamins and minerals as in control group) in C3H mice 
with a high breast cancer incidence, which is greatly lowered by a 
diet reduced in calories. Is an adrenocortical activation, then 
assessed by eosinophil depression, an answer for treating breast 
cancer and for prolonging life? This exciting finding of a difference 
in eosinophil count between two groups of mice had to be 
replicated on a larger group of animals because of its importance to 
the etiology of cancer. Steroids that depress eosinophil cell counts 
and perhaps mitoses could be a mechanism through which caloric 
restriction and ovariectomy act in greatly reducing cancer 
incidence. © Halberg (with permission). 

 

Fig. (2). The large inter-group difference in eosinophil count was not 
replicated when more animals were used with an earlier start. 
Confusing results were obtained a week after Figure 1’s study in a 
follow-up investigation using more animals. Sampling started at an 
earlier clock hour. Instead of the large anticipated difference, results 
indicated "no difference". A phase difference between the two groups 
could account for the discrepancy. © Halberg (with permission). 

 

Fig. (3). Results from another follow-up with even more animals, 
sampling starting at an even earlier clock hour. Opposite outcome 
led to the question whether "stress" had become "allergy". 
Erroneous conclusions derived from ignoring a phase difference in 
circadian rhythm due to competing synchronization. © Halberg 

(with permission). 
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EFFECT OF FOOD RESTRICTION ON CIRCULATING EOSINOPHILS IN MICE  
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*  After log10 -transformation of data expressed as percentage of mean.  

** To reveal the difficulty to resolve differences by the naked eye alone, and the even greater difficulty of qua ntifying the patterns 
of each group and any inter -group differences.   

(A) 

FOOD RESTRICTION AMPLIFIES CIRCADIAN RHYTHM OF 

CIRCULATING EOSINOPHILS IN MICE*  
 

Control Group

0.0

0.5

1.0

1.5

2.0

2.5

3.0

00:00 04:00 08:00 12:00 16:00 20:00 00:00

Time (clock hours)

E
o

s
in

o
p

h
il

s
 (

%
 o

f 
m

e
a

n
)*

*

Mean ± SD

 

Underfed Group

0.0

0.5

1.0

1.5

2.0

2.5

3.0

00:00 04:00 08:00 12:00 16:00 20:00 00:00

Time (clock hours)

E
o

s
in

o
p

h
il

s
 (

%
 o

f 
m

e
a

n
)*

*

 

 

*  P<0.001 from test of equality of amplitudes  
** After log 10 -transformation of data expressed as percentage of mean.   

(B) 

Fig. (4). (A). There is a need to cover the 24-hour time scale to look for intergroup differences in the face of a large variability. An analysis of 
variance shows statistically significant time and group effects and interaction. © Halberg (with permission). (B). Parameter estimations and 
comparisons can be derived by the fit of a 24-hour cosine curve (shown with original timepoint means ± 1 standard error). Circulating 
eosinophil counts of the underfed group are lower (P<0.001) than those of the control group. The circadian pattern of the underfed group has 
a larger amplitude (P<0.001) and an earlier acrophase (P=0.003) as compared to that of the control group. © Halberg (with permission). 
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ubiquity and critical importance of circadian (and other) 
rhythms. Not only were most variables in most organisms 
circadian rhythmic, the response of these organisms to a 
given intervention also changed predictably in a circadian-
rhythmic fashion, whether it was noise, X-irradiation, a 
variety of drugs, or surgery [13-17]. It came as no surprise 
then that the response to a single daily “meal” made the 
difference between life and death in a mammalian model of 
potentially fatal interactions between hunger, cold and 
rhythms, namely the singly-housed mouse abruptly restricted 
to a single daily “meal”3. The short-term survival of the 

                                                
3A plan for a study of the difference between life and death to explore the importance 
of timing food consumption under conditions of a restricted availability of calories 
originated on one of Franz’s many visits to India with his wife Erna and, in alternation, 
with one or the other of his two daughters. On one of these trips, Erna, Franz and their 
younger daughter Julia flew first to Shimla, where they were guests of the governor of 
Himachal Pradesh. The weather was cold in the Himalayas that winter. They came for 
dinner unannounced and encountered their hosts and other guests gathered around a 
fire, slightly shivering. From Shimla, they flew to Varanasi (Banaras), where they were 
greeted by palm trees. They were housed in a former British governor’s brick mansion. 
It was cool but not cold. A newspaper arrived with the morning tea, reporting many 
deaths, perhaps related to a combination of poor clothing, little food and only cool (not 
cold) weather. It was tempting to see whether the equivalent could be reproduced 
objectively in the laboratory, in mice with little fat reserves, prevented from cuddling 
by single housing, kept in cool but not cold temperatures. Indeed, the difference 
between life and death, depending on when the same amount of food was made 
available, could be objectively demonstrated (see Fig. 5) [110]. Franz had also checked 
and found a different use of calories at breakfast-only versus dinner-only, in the light of 
the particular hormonal environment that he eventually found to differ on these two 
dietary schedules. When he reported his results on the different metabolic use of a 
calorie by timing in relation to the internal environment, his friend Vulimiri 
Ramalingaswami, who headed the All-India Institute for Medical Research in New 
Delhi, smiled and indicated that he confronted as the major problem the loss to rats of 
about 20% of each grain shipment from the USA. The rodents were thus the first 
unintended beneficiaries of President Eisenhower’s Food for Peace (PL-480) program. 
Friends in high places notwithstanding, to Franz’s knowledge, timing the ingestion of 
food was never tested under conditions of famine. The number of projects Franz started 
in India included a Golden Fleece Award (for waste of taxpayer money by federal 
government agencies, created by William Proxmire, then the Democratic senator from 
Wisconsin) for a misunderstanding of Franz’s project on about-yearly rhythms in the 
Jamuna River catfish, described as a study of the “love life” of that organism since 
ovary size was an endpoint. The major result of Franz’s many projects in India, 
however, sadly unutilized as yet, is the doubling of the 2-year disease-free survival rate 
of patients with oral cancers by personalized timing of radiotherapy according to tumor 
temperature used as a marker rhythm, a project implemented by Dr Akhil Deka, guided 
by Dr BD Gupta, the then young and always enthusiastic head of radiotherapy at the 
Postgraduate Institute for Medical Education and Research in Chandigarh. On that trip, 
Franz, Erna and their older daughter Francine, now a clinical radiotherapist, introduced 
rhythmometry by around-the-clock oral tumor temperature measurements. Turning 

mouse depends on the timing of the “meal” in relation to a 
regimen of light and darkness alternating at 12-hour 
intervals. Most animals survive when they have access to 
food for 4 hours during the first part of the dark (active) span 
each day, but if food is only available during 4 hours in the 
early part of the light (rest) span, most of the mice die [18, 
19], Fig. (5). Body heat loss plays a critical role since 
housing the mice in groups or raising the room temperature 
prevents deaths on these regimens [18], Fig. (5) (right). 

 In humans as well, Halberg found that the timing of a 
single daily meal makes the difference between weight loss 
and weight gain. Whether fixed to 2000 calories or free-
choice, single daily meals consumed as breakfast-only versus 
dinner-only were associated with a relative weight loss at 
breakfast [20, 21], Fig. (6). These studies clearly showed that 
the use of a calorie consumed at one time of day is different 
from that of the same calorie consumed at another time of 
day, and that the internal time relations among ubiquitous 
rhythms characterizing the entire metabolic, notably 
endocrine, system contribute to this difference, Figs. (7 and 
8). These figures visualize that the timing of cortisol moved 
least by the change from a single daily meal as breakfast 
versus dinner, by contrast to other hormones. Thus, timing a 
meal greatly alters the internal endocrine and thus the 
metabolic milieu. Evidence presented in the following 
sections illustrates the critical importance of rhythms in 
understanding how food intake relates to longevity and 
health. This knowledge could serve as a founding block for 
fighting today’s major civilization diseases. 

                                                                                
from nutrition and cancer to cardiology, the interest in the prevention of cardiovascular 
disease of Professor RB Singh, the editor-in-chief of this journal and Franz’s newest 
and most welcome Indian friend, is leading to new collaborative work, notably on the 
screening for newly discovered Vascular Variability Disorders (VVDs) and on the 
circadian susceptibility-resistance rhythms to a number of drugs and other agents. The 
higher vulnerability of the human heart in the morning hours [188] prompted Dr RB 
Singh to point out in a recent discussion with a small circle of friends in the author’s 
home that a big morning meal may enhance the risk of a heart attack in people at a high 
risk of coronary heart disease. This circumstance cannot necessarily be extended to 
healthy people who indeed, as folklore has long recognized, may preferably eat like a 
king in the morning and like a pauper in the evening. 

 

Fig. (5). Left: Survival of singly-housed mice is determined by timing of single daily meal. Right: Survival of mice depends on housing 
conditions and on timing of single daily meal. © Halberg (with permission). 
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PERSISTENCE OF CIRCADIAN RHYTHMS DURING 

STARVATION 

 To demonstrate that circadian rhythms are more than  
a mere response to environmental synchronizers, it is 
customary to show their persistence under constant conditions. 
Usually, only light intensity, temperature and humidity are 

kept constant. The fact that they can be detected even during 
starvation is one more piece of evidence attesting to their 
critical importance. 

 A periodicity in mammalian liver glycogen was 
discovered in histologic sections by Forsgren [22, 23]. The  
 

 

Fig. (6). Change in body weight as a function of time for 3 subjects while they ate a single daily meal either as breakfast (left) or dinner 
(right). Whereas similar 2000 calories were consumed in each meal, body weight decreased on breakfast only, while it increased on dinner 
only. © Halberg (with permission). 

 

Fig. (7). Circadian acrophase map of hormonal variables related to carbohydrate metabolism. Acrophases differ as a function of the timing of 
a single daily meal. © Halberg (with permission). 
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large circadian changes in glycogen content of rodent liver 
were chemically confirmed a few years later by Ågren et al. 
[24]. In their publication, a figure reveals that circadian 
changes persisted in animals deprived of all food, leading the 
authors to conclude that the changes could not be “feeding 
phenomena”. Little, if any, alteration occurs in the dynamic 
rhythm characteristics, as compared to usual ad lib 
conditions, once the data are expressed as a percentage of the 
overall series mean [24, 25]. The circadian rhythm in liver 
glycogen also persists in data from Ågren [26] on 
adrenalectomized rats, documented by Sollberger [27], who 
comments on the surprising similarity of the rhythms in liver 
glycogen of starved and adrenalectomized rats.  

 The demonstration by Ågren et al., [24] extended to a 
mammalian glycogen depot an avian finding by Chossat who 
reported in 1843 a day-night difference in the cloacal 
temperature of pigeons [28]. The difference persisted in the 
absence of food and water for well over a week, until death 
from starvation and dehydration, Fig. (9). Starvation was 
apparently associated with an increase rather than a decrease 
in variability, Fig. (9). 

 Liver glycogen in the presence and absence of food was 
further studied in 1933 by Mayo scientists who confirmed 
the circadian rhythm in intact animals [29]. The glycogen 
content being much lower in the starving than in the freely-
feeding rodents, the authors concluded that the circadian 
variation stemmed from a feeding phenomenon rather than 

being built-in4. But once the data are expressed as a 
percentage of the mean, the relative changes in starving 
animals became comparable to those of the fed animals, as 
reported by Haus and Halberg [30, 31]. This finding was 
dramatic under standardized conditions5. Figs. (10 and 11) 
illustrate the persistence of the liver glycogen rhythm during 
deprivation of food and water. The results suggest the 
continuation of a cycle in energy stores, presumably in 
response to fluctuating endogenous as well as exogenous 
needs [32]. 

 A within-day variation in caloric requirements is not 
completely accounted for by the 24-hour rest-activity cycle, 
as demonstrated in a series of experiments by Halberg as 
well as by others. Circadian rhythms in basal metabolism 
have been described for man [33-35] as well as for 
laboratory animals [36]. A study on rats [37] indicates that 

                                                
4Around 1950, simply by removing the food tray each night (at the start of the daily 
dark span) and replacing a diet restricted in calories each morning (at the start of the 
daily light span in the animal room), and waiting for the effect, Franz learned that 
eventually the timing of the daily rhythm in counts of blood eosinophil cells could be 
reversed: instead of the daily high count at noon and low count at night, the count was 
higher by night than by day. Only many decades later did the community of scholars 
realize this fact and utilized it by manipulating the timing of a diet restricted in calories. 
5The prestige of the Mayo scientists was so great, and the glycogen content during 
starvation was so low when expressed as such, that any rhythmicity was disregarded 
when Franz entered the field. With his standardization of conditions of observation, 
and in particular after his transformation of displays into a percentage of the mean, the 
extreme variability of the younger Claude Bernard could be undeniably demonstrated, 
even in the absence of food intake (see Fig. 11). 

 

Fig. (8). A large difference in the timing of the circadian insulin rhythm is seen on breakfast-only vs. dinner-only, whether the diet involves 
items of some limited choice or a fixed diet of 2,000 calories/day. In the same human circulation, there is a much lesser difference in the 
timing of the circadian rhythm of cortisol. © Halberg (with permission). 
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hunger is not solely a function of the time elapsed since the 
last meal but varies according to a circadian rhythm. The 
circadian rhythm in susceptibility of mice to ethanol also 
persisted after deprivation of either food or water for up  
to 48 hours [38]. Circadian rhythms in pituitary adreno- 
corticotropic activity, pinnal mitosis and rectal temperature, 
as well as in the corticosterone content of serum and adrenal 
persisted in inbred Bagg albino (C) mice deprived of food 

and water [39]. Persistence of the circadian cycle in blood 
eosinophil counts in C mice kept without food and water for 
36 hours was demonstrated as early as 1963 [40]. 

 Circadian rhythms in human subjects have also been 
shown to persist when isocaloric meals are presented at 
equal intervals along the 24-hour scale. A circadian rhythm 
in circulating cortisol was documented with statistical 
significance in 3-hourly blood samples for 24 hours in three 

 

Fig. (9). Demonstration by Charles Chossat (1843) that the circadian rhythm (gauged by measurements at noon and midnight) of cloacal 
temperature of pigeons deprived of all food and water persists until the day of death from starvation and dehydration. Top: Records from 3 
pigeons. Bottom: Changes in daily averages (row 1) and noon-midnight differences (row 2) as a function of time. Second-order polynomials 
fitted to these data indicate that while the average temperature decreases the prominence of the circadian variation increases. © Halberg 

(with permission). 
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groups of 6-7 apparently healthy subjects, fed 3 meals a day 
(at 07:00, 12:45 and 16:45), fed isocaloric portions every 3 
hours, or fasting. The overall variability accounted for by the 
circadian rhythm compared favorably in the starving and 
equidistantly isocalorically fed groups, the circadian 
acrophase of cortisol being about the same in all three groups 
[41]. These results in Halberg’s laboratory were corroborated 
in Paris, where circadian rhythms were shown to persist [42, 
43; cf. 44] for obese human subjects on a hypocaloric diet. 
Thus, circadian rhythms persist in the presence or absence of 
food and whether food is taken iscocalorically or not, with 
little change in the circadian acrophase of cortisol. 

CIRCADIAN STAGE-DEPENDENT RESPONSE TO 
NUTRIENTS 

 Halberg extensively documented and quantified the 
circadian stage-dependent response of an organism to toxins 
and drugs [15-17, 45, 46], a feature that also applies to the 

organism’s response to nutrients. This is indicated by the 
circadian rhythms in glucose tolerance, the rate of amino 
acid metabolism [46, 47-49] and the respiratory quotient, 
demonstrated for normally-fed and calorie-restricted women 
[34]. For instance, fats were reportedly utilized preferentially 
in the evening in resting subjects [49]. The highest 
respiratory quotient around noon suggests a greater 
combustion of carbohydrate around that time. Within-day 
variation in oral glucose tolerance [50] also points to a 
rhythm in the disposition of ingested carbohydrate, possibly 
related to changes in absorption, distribution and excretion, 
as well as in metabolism, as a result of hormonal rhythms 
[51, 52]. Metabolism of the amino acid tryptophan was 
reportedly highest during the morning in humans [53]. A 
circadian rhythm in the metabolism of tyrosine has also been 
reported in mice [54], as was a circadian variation in hepatic 
enzyme activity resulting from changes in dietary protein 
content in rats [55]. 

 

Fig. (10). Liver glycogen concentration in female C mice at about 4.5 months of age (15 mice per timepoint; otherwise noted in parentheses). 
© Halberg (with permission). 
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 Despite the great variability in hepatic glycogen data 
collected by Franz Halberg and illustrated in Fig. (12), a 
reproducible circadian rhythm can be demonstrated, Fig. (13) 
[46]. Fig. (14) provides a map of time relations among 
murine circadian rhythms in carbohydrate metabolism, 
insulin blood concentration being in antiphase with the 
response to insulin of muscle glycogen [46], as originally 
documented by Gagliardino and Pessaq [56]. Fig. (15) shows 
differences in circadian acrophases of three different 
functional systems of mouse pancreas (cell division in the 
glucagon-producing  cells, insulin-producing  cells and 
acinar cells), compared with acrophases of rectal temperature 
and liver glycogen, whereas Fig. (16) compares the timing of 
the circadian rhythm in liver glycogen with that of DNA and 
RNA synthesis, mitoses and phospholipids in mouse liver 
[46]. Figs. (17 and 18) stress the importance of accounting 
for the circadian system when assessing the effect of meal 
timing. There is an almost complete reversal of the circadian 
variation in both liver glycogen and in plasma free fatty 
acids between rats fed ad libitum and rats fed a single daily 
meal (from 08:00 to 12:00) [46]. Thus, the timing of daily 
meals affects the timing of circadian hormonal and other 
rhythms. 

CHRONOBIOLOGY AND THE DIGESTIVE TRACT  

 Halberg deserves great credit for demonstrating in 
inferential statistical terms that the gut is built in time as well 
as in space. The fact that the isolated intestine can exhibit 
24-hour rhythmicity was also shown by Bünning [57]. 

Scheving [58, cf. 59] noted that cellular proliferation in the 
adult male and female rodent is neither asynchronized nor 
random but rhythmic. Most of the murine alimentary tract 
shows a large-amplitude circadian rhythm, except for the 
duodenum, as evidenced by the incorporation of tritiated 
thymidine into DNA of different tissues. A circadian map 
shows that proliferation peaks in the second half of the dark 
span for tongue, with more or less progressively later 
acrophases for oesophagus, stomach, epididymis, testis, 
liver, colon, rectum, jejunum, duodenum, ileum, bladder, 
thymus, bone marrow, and spleen. Several tissues related to 
the digestive tract of the rodents peaked during the daily 
light span or during the second half of the daily dark span. 
Mitosis in the pancreas, however, qualifies the foregoing 
insofar as there are large differences in circadian acrophase 
between exocrine and endocrine tissues as well as a 
difference between  and  cells [46], as noted earlier. 
Already in 1940, Hamar [60] concluded that the daily 
variations in glucose re-absorption from the small intestine 
of rats may result either from the periodic hormone secretion 
of the adrenal cortex or from periodicity in the sensitivity of 
the intestinal epithelium to cortical hormones. 

 In September 1981, Franz Halberg with Kirt J Vener, 
then Program Director for oesophageal, gastric and colonic 
diseases at the U.S. National Institutes of Health (NIH), 
organized a meeting on “Chronobiology and the digestive 
system” [61]. Under the sponsorship of the Division of 
Digestive Diseases and Nutrition of the National Institute of 
Arthritis, Diabetes, and Digestive and Kidney Diseases, 

 

Fig. (11). Liver glycogen concentration in female C mice at about 4.5 months of age (15 mice per timepoint; otherwise noted in parentheses). 
© Halberg (with permission). 
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Fig. (12). Great variability is seen in data such as eosinophil counts and hepatic glycogen, from moment to moment, and as a function of 
circadian stage. In dealing with a statistical phenomenon, use of statistical analyses needs to complement the visual inspection of data. © 

Halberg (with permission). 

 

Fig. (13). Reproducibility of the circadian rhythm in liver glycogen is readily seen in time plots of mean values. © Halberg (with permission). 
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Fig. (14). Statistical significance of the circadian rhythm in liver glycogen is validated by cosinor analysis. Note antiphase between insulin 
and the reactivity of muscle glycogen to insulin, shown in this map of time relations among murine circadian rhythms in carbohydrate 
metabolism. © Halberg (with permission). 
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Fig. 15. contd….. 

 

Fig. (15). Circadian acrophases of mitoses in three different functional systems of mouse pancreas, as well as of rectal temperature and liver glycogen. 
Rhythms with widely differing timing are found for the same variable — cell division — in the pancreas (in glucagon-producing -cells, insulin-
producing -cells and acinar cells of the same organ) by curve-fitting procedures (b) as well as by time plots (a). © Halberg (with permission). 

 

Fig. (16). Mouse liver as circadian sub-system. © Halberg (with permission). 
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Fig. (17). Liver glycogen in rats fed ad libitum (filled circles) and in rats fed a single daily meal (08:00 – 12:00) (filled triangles). © Halberg 

(with permission). 

 

Fig. (18). Free fatty acids in rats fed ad libitum (filled triangles) and in rats fed a single daily meal (08:00 – 12:00) (filled circles). © Halberg 

(with permission). 

proceedings of this meeting and of a workshop in March 
1983 at the NIH were published. The proceedings included 
articles on feeding and intestinal digestive and absorptive 
time-macroscopic rhythmicity, on rhythmicity in maltase, 

isomaltase, sucrase, protein, and 3-0- -methaglucoside 
uptake among many other variables investigated [61]. The 
volume also included results from flow cytometry used for 
monitoring cell kinetics of the gastrointestinal tract. Time-
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dependent hypersensitivity and its possible impact on 
bacterial digestive tract diseases, a perspective on chrono- 
immunology, and a gastroenterologist’s perspective on 
chronobiological applications were some of the other topics 
covered [61]. 

 Later, chronobiological work related to the digestive tract 
[62] documented and mapped chronomes of human gastric 
acidity [63-68]. The demonstration of a circadian rhythm 
characterizing four digestive enzymes and the inferential 
estimation of important differences in the timing of these 
rhythms required much dedication as histochemical 
determinations had to be done on biopsy specimens from the 
lower duodenum of 11 healthy men every 8 hours for 2.5 
consecutive days [64]. Studies by Tarquini found differences 
in the circadian mitotic rhythms of the stomachs of patients 
with and without peptic ulcers [69, 70]. Tarquini also 
monitored intestinal pH, revealing its ultradian structure 
[71]. A circannual rhythm in human ulcerogenesis was 
demonstrated by Gibinski et al. [72]. Also of clinical interest 
is the altered circadian rhythm in melatonin secretion in 
patients with duodenal ulcers [73]. Rhythm disturbances 
were reported both in the exacerbation and remission stages 
of the disease. A direct correlation between the degree  
of disturbance in melatonin production and the severity  
of the patients’ clinical course was interpreted as implicating 
melatonin in the pathogenesis of duodenal ulceration [73]. 

 In pigs kept in LD12:12 (lights on from 08:00 to 20:00) 
and fed a standard diet at 08:00, 15:00 and 22:00, pancreatic 
secretion in the first phase (post-prandial) exhibited a distinct 
meal-related pattern characterized by large amounts of 
protein and enzymes (trypsin and chymotrypsin). Secretions 
in the second phase had less protein and enzymes. During 
the dark span, the first phase was practically absent. The 
response of pancreatic secretion to the 22:00 meal was not 
very pronounced. Apart from the anticipated circadian 
rhythm, prominent 8-hour and 3.4-hour components were 
present, indicating that the pancreatic response to a standard 
meal is also circadian-stage dependent [74]. A meal given 
during the light span was more effective, relative to 
pancreatic enzyme secretion, than a meal given during the 
dark span [74]. Periodic fluctuations in pancreatic secretion 
have been related to duodenal motility in neonatal calves  
by Zabielski et al., [75]. Zabielski et al., [76] further noted 
that plasma secretin fluctuates in phase with pancreatic 
secretion. 

 In the data from Bubenik et al., [77], circadian and 
circaoctohoran (about 8-hour) patterns in circulating 
melatonin were found in the hepatic portal vein, cranial  
vena cava and lower aorta of 10 juvenile pigs [78]. The 
results indicate the relative importance of an ultradian 
component possibly contributed by melatonin from the 
intestine [78]. 

 In the laboratory, research had led to the demonstration 
of a circadian stage-dependence of gastric ulcerogenesis  
[79, 80]. The net result of exposure to cold, starvation  
and immobilization was shown to be circadian rhythmic in 
terms of the incidence of gastric erosions [81]. The 
observation that gastric emptying is also circadian rhythmic 
[82] is another example of the ubiquity of cycles in the 
digestive tract. 

FEEDING SCHEDULE AS SYNCHRONIZER OF 

CIRCADIAN RHYTHMS 

 The fact that the feeding schedule may override the 
synchronizing effect of the lighting schedule laid the 
foundation of chronobiology as a discipline in its own right, 
as noted earlier. Much work remained to be done, however, 
to quantitatively determine the relative importance of both 
synchronizers on major organ systems, notably by mapping 
circadian rhythm characteristics, especially the acrophase (a 
measure of the timing of overall high values recurring in 
each cycle). 

 The importance of the digestive tract for timing in the 
organism as a whole is apparent from studies on a restricted 
diet. Food intake can become a dominant synchronizer of 
about 24-hour rhythms, e.g., by manipulating a diet with a 
50% reduction in calories from carbohydrate and fat yet with 
the full availability of protein, vitamins and minerals, all 
comparable to amounts in a control diet. The time-restricted 
feeding can override the otherwise dominant lighting 
schedule. This was shown indirectly with respect to the 
adrenocortical cycle in Halberg’s studies of blood eosinophil 
cells [11, 12], as well as with corticosterone determination. 
The finding that under conditions of relative starvation, the 
gut can override the hypothalamus has later been extended to 
circadian aspects of the liver, lung and pancreas [83, 84]. By 
contrast, in humans, changing the timing of a single daily 
meal shifted the circadian acrophase of cortisol only slightly, 
whereas it shifted certain, but not all, other variables much 
more. 

 In mice, the acrophase of certain circadian rhythms can 
be changed by manipulating the time when access to food is 
available. This was demonstrated in mice as early as 1953 by 
Halberg et al., [11, 85] and later confirmed by Pauly et al. 
[86] in the case of blood eosinophil counts. Food restriction 
was also shown to be associated with an amplification of the 
circadian eosinophil rhythm, whereas the estrus cycle was 
abolished. The timing of access to food can be manipulated 
to change the timing of rhythms, even in constituents of the 
circadian cell cycle, such as RNA and DNA synthesis and 
mitosis, a result pertinent to cancer treatment [87, 88]. A 
manipulation of meal timing can serve a variety of purposes, 
such as the desiderata of a medical differential diagnosis, 
chronotherapy, and optimization of food utilization for 
performance or survival [89]. 

 Circadian rhythms in murine core temperature, liver 
glycogen, serum corticosterone and corneal mitoses show a 
different timing and a different extent of change when daily 
feeding is available only in early dark or in early light [19]. 
In the case of the mitotic index of corneal epithelium, the 
circadian rhythm was shown in 360 CDF1 mice to be 
synchronized by the lighting regimen, with only small 
changes in acrophase as a function of the circadian stage 
when mice had restricted access to food for only 4 hours 
[90]. Larger effects of restricted feeding schedules have been 
reported for other variables, notably liver enzymes [91-94], 
murine body temperature [95], murine corticosteroid and 
liver glycogen [96, 97], eosinophil counts [98, 99], and CO2 
emission in rats [100]. Timing availability of food also  
alters functional circadian differences within intracellular 
morphology of rat enterocytes [101].  
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 In non-human primates, the circadian rhythm in plasma 
triglycerides is shifted by about 7 hours when a single meal 
is offered either in early light or 9.5 hours later, while the 
shift in the circadian acrophase of skin temperature was less 
than 4 hours [102-105]. 

 In humans, some circadian rhythms, such as those in 
insulin, glucagon and growth hormone, undergo a large shift 
in their timing in response to a change from breakfast-only to 
dinner-only, whereas other rhythms, such as that in cortisol, 
change only slightly [106]. In the case of plasma insulin, for 
instance, the circadian acrophase ranged from 13:12 to 16:12 
(in different studies by different investigators). This is seen 
in obese women on a spontaneous diet or on four isocaloric 
meals, obese children with abnormal morning glucose 
tolerance, and patients with adult-onset diabetes taking 
glibornuride once or twice daily. A later acrophase around 
19:30 was reported for patients with adult-onset diabetes 
before and after 30 days of glipzide therapy [46]. In 7 
healthy adults consuming a single daily 2000-calorie meal, 
the circadian insulin rhythm peaked around 10:24 when the 
meal was consumed at breakfast but the acrophase was 
shifted to around 19:56 when the meal was consumed at 
dinner (Fig. 19). A similar difference was observed for 
glucagon (Fig. 20). As illustrated in Figs. (21-23), different 
variables are differently affected by meal timing [46].  

 A change in circadian amplitude and/or waveform is 
observed in other variables, such as cyclic AMP in urine [91, 
107; cf. 108]. Relations among circadian rhythms in serum 
iron, glucagon and insulin and urinary cyclic AMP excretion 
differ drastically when human volunteers consume all daily food for one week as breakfast only and for another week as 

dinner only [109]. 

RESTRICTED FEEDING AND LIFESPAN 

 In preparation for longevity studies, it was determined 
that the survival of mice that were abruptly restricted to a 4-
hour span of daily food accessibility depended on housing 
density as well as on the timing of the “meal” in relation to 
the lighting regimen. One experiment involved 93 singly-
housed female inbred Bagg albino (BALB/c) mice kept in 3 
staggered LD12:12 regimens (with lights on either from 
08:00 to 20:00, 20:00 to 08:00, or 12:00 to 24:00) and 
assigned to one of 4 groups with access to food restricted to 
either the early part of the daily light span, the early or late 
parts of the daily dark span, or available ad libitum. A 
second study involved 92 male mice divided into 5 
subgroups, 3 of which were singly-housed and the other two 
were housed 4 per cage. Food was freely available to one 
subgroup of singly-housed animals, or restricted to either the 
early daily light or dark span for one singly-housed and one 
multiply-housed subgroup. Whereas all mice fed ad libitum 
survived, survival time was shortened in singly-housed food-
restricted mice, more so when food accessibility was during 
the daily light (rest) span than when it was during the  
daily dark (active) span. All multiply-housed mice survived, 
even though their food availability was similarly restricted 
[110]. 

 A lifespan study of meal timing and circadian rhythms 
[111] in CD2F1 mice investigated the possibility that 
alteration in circadian rhythm characteristics contributes to 
the life-prolonging effect of food restriction. Mice kept on a 

 

Fig. (19). Influence of meal timing on insulin (data from 7 subjects 
eating a single daily 2000-calorie meal as breakfast or dinner. © 

Halberg (with permission). 

 

Fig. (20). Influence of meal timing on glucagon (data from 7 
subjects eating a single daily 2000-calorie meal as breakfast or 
dinner. © Halberg (with permission). 
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Fig. (21). Meal schedules modify internal relations of human circadian rhythms. © Halberg (with permission). 

 

Fig. (22). Meal scheduling modifies internal circadian timing in human blood. © Halberg (with permission). 
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Fig. (23). Different effects of meal scheduling on human circadian rhythms. © Halberg (with permission). 

 

lighting regimen of 12 hours of light alternating with 12 
hours of darkness were either fed ad libitum or were 
subjected to a lifelong restriction of about 75% of ad libitum 
intake, starting at 6 weeks of age, using a special apparatus 
for automatically timing access to food [112]. The daily 
schedule of food accessibility consisted of a single meal 
during the early dark (active) span, a single meal during the 
early light (rest) span, or six smaller meals at about 2-hour 
intervals during the dark span. Food restriction prolonged 
life, as documented in earlier studies [12]. Mammary tumors 
appeared sooner and were more prevalent in the group fed ad 
libitum than in the restricted groups. No difference was 
found, however, among the three feeding-restricted groups in 
terms of lifespan, 10th-decile lifespan, or tumor incidence. 
Factors possibly contributing to the prolonged lifespan 
suggested by this study were a lower body temperature, a 
reduced overall metabolic rate, and an increased circadian 
amplitude, revealed in all three restricted groups by 
telemetry of body temperature [113]. 

 In order to separate the possible role of rhythm alteration 
from that of food restriction per se underlying the reduction 
in cancer incidence and the prolongation of lifespan 
associated with caloric intake, female CD2F1 mice kept in 
light and darkness alternating at 12-hour intervals were 
randomly assigned to three different feeding schedules: ad 
libitum, meal feeding in early dark, and pattern-feeding. In 

the latter group, food was accessible for several shorter 
spans, mostly during the dark span, adjusted to maintain 
food intake at about 75% of the ad lib intake without 
increasing the circadian amplitude in body temperature 
beyond that of ad lib mice [114, 115]. Whereas food 
restriction prolonged lifespan, no difference in average 
lifespan or 10th-decile lifespan was found among the 
differently restricted groups [116]. There are marked 
differences in the circadian pattern of telemetered body 
temperature as a function of meal(s) scheduling. This 
suggests that the effect of food restriction on lifespan is 
probably not due to altered relations among circadian 
rhythms. Possible contributing factors suggested by this 
study were again a lower body temperature, a reduced 
overall metabolic rate and an increased circadian amplitude 
[111, 116]. 

 Weekly 12-hour shifts of the daily light-dark schedule for 
a lifetime did not affect mean survival time of mice fed ad 
libitum. Shifts of the lighting regimen of meal-fed mice were 
implemented alone (fixed meal-time) or in combination with 
a corresponding shift of feeding time (to always occur during 
the dark, active span). Telemetered core temperature data 
indicated marked differences in response to the different 
shift conditions and suggested, in the case of meal-fed 
animals, involvement of a food-anticipatory rhythm [117]. 
Shifting of the lighting regimen had no statistically 
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significant effect on mean survival time of mice feeding ad 
libitum, regardless of the age when shifts were initiated 
[117]. Whereas meal feeding was associated with prolonged 
lifespan, the added imposition of schedule shifts did not 
statistically significantly alter mean survival time [117]. 
When the availability of food as a single meal alternated 
between the light and dark spans, there was a statistically 
significant increase in the 10th-decile survival time [117] and 
a statistically significant decrease in mammary tumor 
incidence [118]. 

RESTRICTED FEEDING AND CANCER 

 Halberg’s lifespan studies of food restriction in mice 
gave him an opportunity to revisit the role of nutrition in 
cancer. Early on, he showed that in ovariectomized and 
calorie-restricted mice, the circadian rhythm in blood 
eosinophil counts, a marker of adrenal cortical function 
before the advent of steroid assays, increased in amplitude, 
being accompanied by a marked reduction in breast cancer 
incidence [119]. In addition to the reduction of estrogens that 
promote breast cancer, there is a shift of steroid synthesis to 
mitosis-inhibiting corticosteroids associated with caloric 
restriction. Halberg postulated that this may underlie a 
further reduction in breast cancer incidence, adrenal cortical 
amplification constituting a putative mechanism inhibiting 
mammary carcinogenesis [120].  

 He also reasoned that manipulating meal timing in 
relation to the rest-activity schedule could be exploited to 
optimize the efficacy and safety of treatment. The restriction 
of feeding to the first 4 hours of the habitual daily rest span 
was shown to shift the rhythm in susceptibility of mice to a 
carcinostatic drug, adriamycin, regardless of whether the 
dose was fixed or adjusted to body weight [41, 121].  

 Inbred Lou/M/Wsl rats bearing a transplantable 
immunocytoma and treated with adriamycin had a longer 
survival time when meal-fed for 2 hours in early light (rest) 
as compared to rats feeding ad libitum [122, 123]. The 
prolongation of survival by meal feeding in early light may 
be partly accounted for by a relative acrophase shift of the 
circadian rhythms in the host (rectal temperature, shifted 
markedly) and tumor (immunoglobulin excretion, no marked 
difference in timing), and by the fact that meal-fed rats 
consumed less food [123, 124].  

 Alternate-day feeding of C3H mice, which develop 
spontaneous mammary tumors, has also been associated with 
a prolongation of mean survival time and a reduction in 
breast tumor incidence [125-127]. Circadian rhythms in body 
weight, urine volume and intraperitoneal temperature 
persisted during alternate-day feeding, but with altered 
rhythm characteristics. Reduction in total food intake was 
shown to be responsible for inhibiting the development of 
autoimmune disease in B/W mice [128]. Diets low in fat and 
high in protein and fiber content reportedly led to delayed 
development of autoimmunity and prolonged lifespan of 
NZH mice of both sexes, while the restriction of protein 
intake alone did not produce the same effect but still 
benefited T-cell functions [128]. 

 A dampened circadian variation in several lipid peroxides 
and other anti-oxidants (malondialdehyde, superoxide 

dismutase, catalase, glutathione peroxidase, glutathione 
reductase, HDL, ascorbic acid and uric acid) was associated 
with gynecological malignancies [129, 130]. The MESOR of 
malondialdehyde is higher in patients with gynecological 
malignancies than in healthy controls and it is also elevated 
in patients with non-insulin-dependent diabetes mellitus, 
with an enhanced circadian variation [129]. 

CALORIE RESTRICTION AND BLOOD PRESSURE 

 Effects of salt and calorie restriction upon circadian 
rhythms in blood pressure and heart rate were individually 
assessed in 13 men [131]. A reduced blood pressure MESOR 
during the salt restriction stage was found in only 50% of the 
subjects complying with the protocol. By contrast, blood 
pressure was lowered in most subjects in association with 
calorie restriction [131]. Whereas, as expected, in some 
subjects, sodium restriction was associated with a decrease 
or no statistically significant change in blood pressure, 
Halberg discovered the existence of another group of 
subjects who actually increased their blood pressure in 
response to sodium restriction in this study [132, 133] as 
well as in a prior study carried out at the National Institutes 
of Health [134]. His results were soon corroborated by 
another investigation and independently validated in a study 
of salt loading wherein a subpopulation of subjects was 
found to have a statistically significant decrease in blood 
pressure [135].  

 The circadian stage-dependent effect of sodium intake on 
blood pressure was later demonstrated in a study of 7 
clinically healthy normotensive women who monitored their 
blood pressure around the clock for 2 days in three stages of 
1 week each, namely their usual distribution of dietary salt 
among the three daily meals, 2/3 of dietary salt at lunch time, 
followed by 2/3 of dietary salt at dinner time [136]. Whereas, 
on the average, the blood pressure MESOR increased when 
2/3 of dietary salt was taken at lunch time, it decreased when 
2/3 of dietary salt was taken at dinner time [136].  

 A recent meta-analysis of data from randomized, 
controlled trials questions the wisdom of reducing dietary 
salt intake across the board, finding no convincing evidence 
for a beneficial effect of salt restriction on mortality, but 
rather an increased risk of all-cause mortality in patients with 
heart failure [137]. The effect of moderate reduction in salt 
and calorie intake on urinary aldosterone and other related 
variables was extensively studied by Cugini et al. [138, 139]. 

MEAL TIMING AND WEIGHT GAIN OR LOSS 

 Problems related to food consumption are as acute today 
as they were in August 1975 when meal schedules and their 
interaction with the body’s schedules [20] were reviewed at 
the Xth International Congress of Nutrition in Kyoto, Japan 
[19, 88, 140, 141]. Economy can be achieved by limiting the 
number of meals as well as by reducing meal size.  

 In areas where only one meal a day can be afforded, it is 
important to find ways in which reduced daily caloric intake 
can be made to contribute most efficiently to the metabolic 
needs associated with the performance of routine body 
activities [20]. Since the timing of a meal or meals can have 
important effects on the body in health and disease, optimal 
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nutrition requires a consideration of when food is consumed 
[20]. 

 It seems possible to better exploit what is being eaten by 
scheduling meals. Food consumption could be scheduled for 
a time when it is physiologically [18, 30, 44, 46, 142, 143] 
and logistically most useful for body weight maintenance. 
Several investigations by Franz Halberg and coworkers have 
shown a relative gain in body weight when a single daily 
meal is consumed at dinner versus breakfast. These results 
still await exploitation whether concerns are for adequate 
body weight maintenance in under-nourished populations or 
for problems of under-consumption of rations by workers in 
the field, such as soldiers [21]. 

 In two separate studies of the effect of meal timing on 
body weight, 9 men and 9 women consumed either a fixed 
2000 kcal meal or a single free-choice meal as breakfast (B) 
or dinner (D). Study stages lasted 1 or 3 weeks, respectively. 
During the reference stage, subjects ate whenever and as 
much as they wanted from a wide selection of frozen or 
canned food rations. They self-measured and self-rated a 
number of variables every few hours during wakefulness 
during the entire study [144]. As seen in Fig. (24), body 
weight remained more or less unchanged on dinner only. A 
decrease of about 1 kg/week was noted on breakfast only. 
The rate of body weight change also differed between the 
two schedules (P<0.01). As seen in Fig. (25), only one 
volunteer gained weight on breakfast versus dinner. Overall, 
the difference in relative body weight loss on breakfast 

versus dinner is statistically significant (P<0.05), whether a 
fixed 2000 kcal meal or a single free-choice meal is 
consumed. Weight change was calculated as weight on 
dinner-only subtracted from weight on breakfast-only. Also 
apparent from Fig. (26) is that the mean relative weight loss 
on breakfast only was greater on a fixed 2000 kcal meal than 
on a free-choice meal. This result suggests that appetite 
(defined as choice and amount of food consumed) modifies 
the effect of meal timing on body weight. As seen in Fig. 
(27), the lesser body weight loss on breakfast versus dinner 
observed on a free-choice versus a fixed 2000 kcal meal 
occurred while calorie consumption on the free-choice meal 
was less (not more) than 2000 kcal per meal. 

 Catfish also show more or less body weight gain 
depending on the circadian stage when food is offered [145]. 
On the average, in two experiments, catfish on restricted 
feeding schedules (in early dark, late dark, early light or late 
light for 45 to 50 days) gained in body weight but more so 
when fed in late dark than in late light. Body weight gain in 
the presumably dark-active catfish seems to be maximal 
when food is made available in the middle or later part of the 
daily dark span [145]. 

MEAL TIMING AND CIRCADIAN TIME 

STRUCTURE 

 In a crossover study, 14 clinically healthy men consumed 
60, 30 and 10% of daily calories on their usual diet at 
breakfast, lunch and dinner for a 3-week span, while during 

 

Fig. (24). The rate of body weight change, i.e., the extent of overall relative body weight loss on breakfast-only vs. dinner-only, differs 
significantly (P<0.01) between the two schedules. © Halberg (with permission). 
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another 3-week span, the distribution of calories was 
reversed [146, 147]. Blood samples were taken every 4 hours 
during 24 hours. Meal timing was found to completely 
synchronize some variables related to energy metabolism, 
either completely (such as plasma triglycerides) or partially 
(such as plasma cholesterol, pancreatic and total glucagon, 
VLDL components, proteins, phospholipids, blood glucose, 
NEFA and ketone bodies, and insulin). Redistributing the 
proportion of food at conventional meal times thus results, 
for the same amount of the same nutrients, in changes of the 
fluxes through the metabolic pathways [146-148]. Whereas 
the shift in the circadian acrophase of insulin is similar in 
this study to that found after a change between breakfast 
only and dinner only, the circadian amplitude is larger in the 
latter study [148]. 

 These results are in keeping with those observed in 
subjects eating a single daily meal either at breakfast or at 
dinner, by comparison to their time structure during an initial 
reference stage during which they ate at will, and also by 
comparison with another group of subjects who followed 
their usual routine [21, 144]. The circadian acrophase in 
body core temperature showed relatively good stability. 
Interestingly, this was also the case for a physician with 
aldosteronism treated with spironolactone and earlier with 
chlorothiazide, whether he manipulated the timing of meals 
in the face of an unchanged drug schedule, the timing of 
medications in the face of an unchanged meal schedule, both  

 

Fig. (26). Appetite (here defined as choice and amount of food) 
modifies the effect of meal timing on body weight. Relative body 
weight loss on breakfast-only (B) as compared to dinner-only (D) is 
less when meal is free choice rather than fixed. © Halberg (with 

permission). 

 

Fig. (25). In two separate studies on the effect of meal timing on body weight, a total of nine men and nine women consumed, some a fixed 
2.000 kcal meal for 1 week, others a single free-choice meal for 3 weeks as breakfast-only (B) or as dinner-only (D). Body weight remained 
more or less unchanged on dinner only. A decrease of about 1 kg/wk was noted on breakfast only. When eating just a single meal within one 
hour of awakening (breakfast-only, gray bars) or not before 12 hours after awakening (dinner-only, black bars), with only one exception 
(subject 39), there is a relative body weight loss on breakfast-only as compared to dinner-only. © Halberg (with permission). 
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his overall meal and activity routine, with or without 
geographic displacement across time zones [144]. Circadian 
rhythms with similar acrophases were found on all four 
schedules for right and left grip strength, finger counting, 
adding speed, vigor and mood. By contrast, heart rate showed 
an advance in acrophase on breakfast only and a delay on 
dinner only, and the circadian acrophase of diastolic blood 
pressure was delayed by breakfast rather than by dinner [144]. 

 In yet another study, 9 male students were kept under 
controlled physical experimental conditions for 72 hours, 
sleeping from 00:00 to 07:00 on the first day and from 12:00 
to 19:00 on the third day, not sleeping at all on the second 
day. Meals were at the same times during all 3 days. The 
circadian acrophase changed only little from day 1 to day 3 
in the case of oral temperature (2 hours and 16 minutes) and 
urinary cortisol (roughly 1.5 hours), but markedly for 
systolic and diastolic blood pressure (almost 12 hours) and 
with intermediate results for several urinary variables such as 
volume, chloride, sodium and potassium [149, 150]. 

PUTATIVE MECHANISMS UNDERLYING LIFESPAN 

PROLONGATION BY FOOD RESTRICTION 

 A long series of lifespan studies on rodents in Halberg’s 
laboratory led to the postulate that a lower body temperature, 

a reduced overall metabolic rate and an increased circadian 
amplitude could be the underlying mechanism by which 
longevity is increased by energy restriction [111, 151]. 
Already by 1952, a restriction in dietary carbohydrates and 
fat by 50% had been found to be associated not only with a 
prolonged lifespan and a markedly reduced incidence of 
breast cancer, but also with an increased circadian amplitude 
of the blood eosinophil rhythm [12]. Restriction in access 
time to food had predictable effects upon a number of 
circadian hormonal and metabolic rhythms in humans  
and rodents at several integration levels: core temperature, 
serum corticosterone, liver glycogen, corneal mitoses, 
chronotolerance of adriamycin and survival in a cool 
environment [152]. At two different ages, 2-day starvation of 
LOU rats was associated with an increase in urinary sodium, 
potassium and glucose excretion (in the young but not the 
older animals in the case of glucose excretion) and with an 
amplification of the circadian rhythm in these variables and 
also of urinary volume [153]. An increase in the circadian 
amplitude of plasma melatonin of rats after 48 hours of 
starvation was also documented by Zeman et al. [154], 
contributing to the earlier observations of the persistence 
during starvation of circadian rhythms in pituitary ACTH 
and corticosterone in the adrenal and in the circulation [39]. 

 

Fig. (27). Appetite (here defined as choice and amount of food) modifies the effect of meal timing on body weight. The lesser body weight 
loss on breakfast (B) versus dinner (D) observed on a free-choice versus fixed 2000 kcal meal occurred while calorie consumption on the 
free-choice meal was less (not more) than 2000 kcal per meal. © Halberg (with permission). 
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 The amplitudes of circadian rhythms in rectal 
temperature, serum corticosterone and liver glycogen were 
all increased by meal feeding in either early light or early 
darkness [155]. The MESORs of corticosterone and glycogen 
were also increased by meal feeding at either stage of the 
lighting regimen. The circadian acrophases of temperature, 
corticosterone and glycogen were determined by the time of 

food presentation, regardless of its relation to the lighting 
regimen [155]. The interval between food presentation and 
the circadian acrophase of corneal mitotic index was greater 
when feeding was restricted to early light [155]. Mice fed in 
early light weighed more and exhibited more irregular 
circadian variation in temperature, corticosterone and mitotic 
index than did mice fed in early darkness [155]. 

 

Fig. (28). Polar cosinor displays quantify a phase advance of rhythms after histologically validated bilateral SCN ablation in several tissues, 
with the exception of the stomach, which may respond to food directly rather than via the SCN. © Halberg (with permission). 
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 The postulate that a lower temperature brought about by 
calorie restriction may underlie, at least in part, its beneficial 
effect in retarding senescence and increasing longevity 
remains central to current investigations. This question was 
examined by Rikke et al. [156] who compared the 
temperature response of 28 different strains of singly-housed 
female mice fed 60% of their ad libitum intake. These 
authors report a highly statistically significant variation, 
ranging from 1.5 to 5.0°C among the different strains, 
representing a genealogically diverse sample of the classical 
inbred strains. This variation reportedly could not be 
accounted for by differences in loss of thermoregulation, ad 
libitum adiposity, sensitivity to hypothermia, motor activity, 
or absolute food intake [156]. 
 Body temperature and fasting insulin were the two 
biomarkers of longevity found to be decreased by prolonged 
calorie restriction in humans [157]. This 6-month 
randomized controlled trial involved 48 overweight, non-
obese healthy, sedentary men and women assigned to one of 
four groups consisting of weight maintenance diet, calorie 
restriction by 25% from reference stage, calorie restriction 
by 12.5% from reference stage with 12.5% increase in 
energy expenditure by structured exercise, and very low 
calorie diet to achieve 15% weight reduction [157]. 

 According to a 2007 review [158], 20% calorie 
restriction over 2 to 6 years in humans is associated with 
reduced body weight, blood pressure, blood cholesterol, and 
blood glucose, variables related to major killer diseases. The 
Okinawans, presumably the longest-lived people on earth, 
consume 40% fewer calories than the Americans and live 4 
years longer [158]. 

 The extension of lifespan by means of caloric restriction 
has been observed in a wide variety of organisms, ranging 
from yeast to mammals [159]. Reducing glucose in the 
growth medium of Saccharomyces cerevisiae reportedly 
extends both the replicative and chronological lifespans 
[159]. Yeast Sirtuins were apparently not required for the 
lifespan extension associated with caloric restriction [159]. 
By contrast, low temperature and high osmolarity additively 
extended the chronological lifespan when combined with 
caloric restriction [159]. Elevated respiration capacity was 
also observed to be an important determinant of longevity in 
this model [159]. 

 Low body temperature has been reported to improve 
health and longevity independently of caloric restriction 
[160]. Carrillo and Flouris [160] present a model describing 
how caloric restriction and low body temperature increase 
lifespan synergistically and independently. Interestingly, 
these authors also consider the nascent notion that the rate of 
aging may be pre-programmed in response to environmental 
influences at critical stages of early development. 

PUTATIVE ROLE OF THE SUPRACHIASMATIC 

NUCLEI (SCN) 

 Froy and Miskin [161] suggest that appropriately reset 
peripheral rhythms could constitute an important mediator of 
longevity in calorie-restricted animals. They note that the 
transgenic alphaMUPA mice that exhibit spontaneously 
reduced eating live longer as compared to their FVB/N wild-

type controls, also have large-amplitude, appropriately reset 
circadian rhythms, notably in clock gene expression in the 
liver, feeding time and body temperature [162]. They posit 
that caloric restriction, and possibly also intermittent fasting 
(food available ad libitum every other day), can synchronize 
the circadian system in the SCN [163].  

 The critical role in circadian timing of the hypothalamus, 
by virtue of its anatomical location and physiological 
secretions, was theoretically anticipated on the precedent of 
its role in sex gland coordination [164]. Rhythmicity of some 
variables, however, persisted after a suprapontine brain 
ablation [165]. As seen in Fig. (28), circadian rhythms in the 
incorporation of tritiated thymidine into DNA of tongue, 
oesophagus, stomach, and colon, and in the mitotic index  
of corneal epithelium persist after lesioning of the 
suprachiasmatic nuclei (SCN). This is also the case for 
ethanol drinking behavior, albeit with a usual phase advance. 
Only in the case of water drinking was a circadian rhythm 
not detected after SCN lesioning [166]. Whereas the 
circadian amplitude is usually at least numerically reduced 
by the removal of the SCN, spontaneous circadian rhythms 
characterizing DNA synthesis and mitosis in the stomach 
and colon of mice are actually amplified [166, 167], Fig. 
(28). The effect of SCN lesioning upon the circadian 
amplitude of DNA labeling elsewhere in the gut is a smaller 
reduction in amplitude, as compared to that in other tissues 
[166, 167]. The relative independence of the gut from the 
SCN, and perhaps a subtractive coupling of the stomach to 
the SCN, deserves further investigation, notably since the 
circadian amplitude of core temperature is statistically 
significantly increased in association with a unilateral SCN 
lesioning, whereas it is reduced in association with a bilateral 
SCN lesioning [167]. 

CLOCK GENES 

 A circadian rhythm can be demonstrated for several 
clock genes in peripheral tissues, including the liver and 
stomach, after 3 days in continuous darkness [168-171]. 
Period genes were shown to coordinate rhythmic changes in 
colonic motility [172]. Intra-colonic pressure changes and 
stool output in vivo, and colonic circular muscle contractility 
ex vivo were shown to be rhythmic with greatest activity at 
the start of night in nocturnal wild-type mice. By contrast, 
rhthmicity in these variables was absent in per1per2 double-
knockout mice [172]. Rhythmicity also could not be detected 
in colonic circular muscle contractility of wild-type mice in 
the presence of N -nitro-L-arginine methyl ester and in 
nNOS knockout mice, suggesting that rhythms in colonic 
motility are coordinated by both clock genes and a nNOS-
mediated inhibitory process, and that the two mechanisms 
may be connected [172]. 

 The effects of timed feeding and vagotomy on temporal 
clock gene expression in the gastrointestinal tract and SCN 
of C57BL/6J mice were examined using real-time 
polymerase chain reaction and Western blotting, while 
colonic clock gene localization was examined using 
immunohistochemistry [173]. Clock immunoreactivity was 
observed in the myenteric plexus and epithelial crypt cells. 
Clock genes were expressed rhythmically throughout the 
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gastrointestinal tract [173]. Timed feeding shifted clock gene 
expression at the RNA and protein level but did not 
significantly shift clock gene expression in the SCN. 
Vagotomy did not alter gastric clock gene expression as 
compared to sham-treated controls [173]. The murine 
gastrointestinal tract thus contains functional clock genes, 
which are molecular core components of the circadian 
system. Day-time feeding in nocturnal rodents is a strong 
synchronizer of gastrointestinal clock genes, occurring 
independently of the SCN [173]. 

 The effects of acute (1 week) and chronic (12 weeks) 
streptozotocin (STZ)-induced diabetes on period (per) genes 
in the stomach body, proximal and distal colon, liver, kidney 
and lung of C57BL/6J mice were assessed using real-time 
polymerase chain reaction. Rhythmicity in expression of 
per2 and per3 persisted in all organs, but was generally 
phase delayed within the gastrointestinal tract but not within 
the kidney or lung in STZ-injected mice as compared with 
vehicle-injected mice [174]. The phase delay was most 
pronounced for per2 in the proximal colon at 12 weeks 
[174]. Food intake was rhythmic with a similar acrophase 
but a larger circadian amplitude for diabetic mice than for 
control mice [174]. Alterations in clock gene expression in a 
mouse model of diabetes are thus most pronounced in those 
organs that are intimately associated with food processing 
and metabolism. 

 Energy coordination and the circadian clock have also 
been linked at the molecular, physiological and behavioral 
levels by others [175]. Genetic mutation of the Clock gene, 
for instance, has been associated with the metabolic 
syndrome in mice [176]. Likewise, a high-fat diet reportedly 
affects circadian behavior and circadian patterns of 
metabolic gene expression [177]. Without citation to the 
extensive body of evidence accumulated by Franz Halberg 
and his associates worldwide, the fact that “the timing of 
food intake itself may play a significant role in weight gain” 
is being rediscovered [175]. Arble et al., [175] indeed show 
that nocturnal mice fed a high-fat diet only during the 12-
hour light span gain more weight than mice fed only during 
the 12-hour dark span. 

 Recent human studies, as well, are in keeping with results 
accumulated during Franz Halberg’s lifetime’s work. In data 
from 499 participants in the Seasonal Variation of Blood 
Cholesterol Study, skipping breakfast was reportedly 
associated with an increased prevalence of obesity [178]. 
Moreover, night eating syndrome, characterized by a time-
delayed pattern of eating relative to sleep, where most food 
is consumed in the evening and night, was reported to be 
positively associated with body mass index [179; cf. 180]. 

CONCLUSION 

 That meal timing has important effects on the body 
supports the proposition that optimal nutrition requires 
consideration of when food is consumed. Meal timing may 
have important implications regarding the ability to obtain 
“more for less” in a world of ever-increasing shortages. Meal 
timing can also serve as the basis for optimization of health, 
safety and productivity. 

 Meal timing can affect body weight, plasma 
concentrations of several hormones, body temperature, 

corneal mitoses, blood pressure and many other body 
functions in humans and many other forms of life [30]. It is 
wasteful to dismiss these effects as feeding phenomena. It is 
even short-sighted to deal with time structure as merely 
“another factor” like genetics that is usually controlled, when 
possible, but that one cannot (as yet) routinely manipulate 
[30]. Nutritionists can use the facts, methods and concepts of 
chronobiology pioneered by Franz Halberg [30]. 

 His contributions, however, range far beyond the field of 
nutrition. One convincing example is that timing matters also 
for treatment. Franz doubled the 2-year disease-free survival 
time of patients with peri-oral cancers treated by 
radiotherapy timed in relation to marker rhythmometry [181, 
182; cf. 183]. Major new directions in endeavors I could 
share with Franz concern how psychophysiology and 
pathology are affected by the cosmos, human mood in 
particular [184, 185], and how our environment near and far 
may affect a novel set of Vascular Variability Disorders, but 
these are other stories for other days. 
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