
34 The Open Obesity Journal, 2011, 3, 34-41  

 
 1876-8237/11 2011 Bentham Open 

Open Access 

Intraperitoneal Adipose Tissue: Associated Health Risks, Quantification 
by Advanced Imaging Methods and Future Directions in Children 

Madeleine Gantz1, Jun Chen1, Steven B. Heymsfield2 and Wei Shen*,1 

1Obesity Research Center, St. Luke’s-Roosevelt Hospital and Institute of Human Nutrition, Columbia University, 
College of Physicians and Surgeons, New York, USA 
2Merck and Co, Rahway, NJ, USA 

Abstract: The prevalence of obesity continues to grow at an alarming rate and currently there are no highly effective 
long-term treatments for obesity at the population level. Targeting childhood is a critical component of the strategy for 
fighting the obesity epidemic and there is an important need to understand the relationship among adipose tissue 
distribution, growth and obesity-related health risks. Growing evidence supports the idea that visceral adipose tissue 
(VAT) is related to insulin resistance, metabolic syndrome, cardiovascular disease, diabetes and other medical conditions 
through blood drainage, hormonal factors, inflammation, and adipocytokines. Recent studies suggest that VAT is not a 
homogenous depot. Intraperitoneal and extraperitoneal adipose tissues (IPAT & EPAT), the two subcomponents of VAT, 
have different venous blood drainage and may also differ in their associations with metabolic risk. The majority of 
previous studies have used imaging methods to measure the total amount of VAT. Few studies have established protocols 
for the analysis IPAT and EPAT and those that have are limited by their approximate nature and relatively large 
measurement error. To better understand the role of adipose tissue distribution in relation to the health consequences of 
obesity, accurate methods to separately measure IPAT and EPAT should be developed. Fortunately, children’s 
characteristic VAT distribution permits easier differentiation between IPAT and EPAT than in adults. Future studies need 
to elaborate the role of regional VAT in growth and obesity with accurate quantification of IPAT and EPAT by advanced 
magnetic resonance imaging methods. 
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INTRODUCTION 

 Obesity is becoming a global health risk and childhood 
obesity continues to increase at an alarming rate [1-4]. 
Visceral adipose tissue (VAT), though a small proportion of 
total adipose tissue, has been found to be closely related to 
health risks associated with obesity. Recent studies suggest 
that VAT is not a homogenous depot [5, 6]. Advanced imag-
ing and surgery techniques have suggested that sub-depots of 
VAT, including intraperitoneal adipose tissue (IPAT) and 
extraperitoneal adipose tissue (EPAT), may have distinct 
metabolic activities [7-9]. IPAT, which consists of omental 
adipose tissue and mesenteric adipose tissue, is believed to 
be most strongly correlated with the health risks of obesity 
[6, 7, 9, 10]. 
 Here we provide an overview of the relationship between 
health risks and IPAT based on a critical analysis of pre-
viously published results. We then examine existing imaging 
methods for measuring IPAT. Our report explores the 
importance of investigating IPAT in children and provides 
suggestions for future research. We believe that understand-
ing the relationship between VAT and its growth in early 
childhood is an important component of the strategy for  
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preventing childhood obesity and fighting the obesity 
epidemic.  

IPAT AND RELATIONSHIP TO HEALTH RISKS 

 VAT, particularly the IPAT portion located in the mesen-
teric and omental areas, has been shown to be associated 
with health risks in animal studies, cross-sectional human 
studies and longitudinal human studies. In particular, VAT is 
associated with metabolic syndrome, cardiovascular disease 
and type 2 diabetes, mainly through insulin resistance [5, 11-
17]. Additionally, VAT increases the risk of developing gas-
troesophageal reflux [17-18], cholesterol gallstones [19, 20], 
sleep apnea [21, 22], Alzheimer’s disease [23, 24], stroke 
[25], cancer [26], and other chronic medical conditions.  
 The first theory to relate VAT to health risks was the 
portal theory, which is based on the observation that VAT 
directly drains into the liver via the portal vein. The high 
lipolytic activity of VAT and the expansion of this adipose 
depot in obese subjects results in direct exposure of liver 
cells to high concentrations of free fatty acids [9, 27]. Fatty 
acids influence liver production of glucose and triglycerides 
and the clearance of insulin by the liver [27]; this may 
account for the high frequency of metabolic complications 
associated with abdominal obesity [7-9]. However, it is the 
intraperitoneal subdepot of VAT that drains into the portal 
vein, whereas EPAT empties into the inferior vena cava [9, 
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10]. Thus, distinguishing IPAT from EPAT is important for 
understanding the role of regional adipose tissue distribution 
in obesity related health risks.  
 In recent years, it has been recognized that adipose tissue 
is an endocrine organ [28, 29]. Adipocytokines such as 
adiponectin, leptin and resistin may mediate insulin 
resistance or modulate the likelihood that obesity results in 
the development of type 2 diabetes [30]. Adiponectin has 
anti-inflammatory and anti-atherogenic effects as well as 
multiple beneficial effects on metabolism. As opposed to 
proinflammatory adipokines, adiponectin levels are reduced 
in obese or diabetic individuals, particularly among patients 
with excess visceral adiposity [31-33]. Reduction of adipo-
nectin is independently related to type 2 diabetes [30, 34]. 
Similarly, the expression of adiponectin receptor AdipoR1 is 
reduced in adipose tissue of obese subjects, with lower exp-
ression in omental adipocytes than in subcutaneous adipo-
cytes [35]. The down-regulation of adiponectin receptors in 
adipose tissue of obese subjects appears to be reversible and 
80% of the expression can be restored after significant 
weight loss [35]. Although the action of adiponectin in the 
liver and in skeletal muscle cells has been studied, the role of 
adiponectin in adipocytes needs to be clarified in future 
studies [35]. Resistin, another adipocytokine, impairs insulin 
action on hepatic glucose production and inhibits glucose 
uptake in skeletal muscle [36-38]. Resistin is positively 
associated with VAT accumulation and may partially explain 
the relationship between adipose tissue distribution and 
cardiometabolic risk factors [39]. 
 The relationship between VAT and health risks can also 
be partially attributed to its secretion of inflammatory mar-
kers such as tumor necrosis factor-α (TNF-α) and interleu-
kin-6 (IL-6) [32]. Additionally, obesity and VAT accumula-
tion have been found to be the critical correlates of elevated 
plasma C-reactive protein (CRP) – another inflammatory 
marker – found in men with atherogenic dyslipidemia with 
the insulin resistance syndrome [40]. VAT also secretes 
markers of hemostasis and fibrinolysis [41, 42] and abdo-
minal obesity is associated with increased plasma levels of 
fibrinogen, FVII and FVIII coagulant activities, as well as 
tissue plasminogen activator (TPA) antigen and its circulat-
ing inhibitor (PAI-1) [41, 43-45]. In addition, elevated serum 
vascular endothelial growth factor (VEGF), which is an 
important angiogenic factor implicated in normal and patho-
logical vessel formation, is associated with VAT accumu-
lation in human obese subjects [46]. 
 In recent years, adipose tissue biopsies from human 
subjects undergoing surgery has made it possible to study the 
metabolic activity and its regulation in omental and mesen-
teric adipose tissue. Several adipokines are oversecreted by 
omental adipose tissue in obese subjects and it is believed 
that these adipokines may link obesity to cardiovascular or 
metabolic comorbidities [47]. Not only stromal-vascular 
cells such as macrophages and endothelial cells, but also 
adipocytes in adipose tissue are active in stimulating inflam-
mation [47-49]. Hypertrophic adipocytes have recently been 
shown to shift their immune balance toward the production 
of proinflammatory molecules, causing dysregulated adipo-
kine expression and secretion [47, 50, 51]. It has also been 
found that TNF-α expression is higher in omental adipose 
tissue than in subcutaneous adipose tissue (SAT), which 

could contribute to cardiovascular risk in centrally obese 
subjects [52]. In a study comparing omental adipose tissue, 
SAT, and liver biopsies, twice as many macrophages were 
found in omental adipose tissue than in subcutaneous adi-
pose tissue [53]. Omental adipose tissue macrophage infiltra-
tion was correlated with insulin sensitivity, triglycerides, 
aspartate aminotransferase (AST), and γ-glutamyl transpepti-
dase. These results suggest that macrophages in omental 
adipose tissue participate in cellular mechanisms favoring 
hepatic fibroinflammatory lesions in obese patients [53]. 
 One recent study sampled omental, mesenteric and 
subcutaneous adipose tissue in diabetic subjects [6]. This 
study showed that mesenteric adipose tissue in obese 
diabetic subjects has a high rate of basal lipolysis and 
impaired isoproterenol stimulated lipolysis. The PPAR-γ 
gene expressions in the mesenteric, but not omental or 
subcutaneous adipose tissue, were up regulated. The 11β-
HSD1 and FAT/CD36 gene expressions were higher in 
mesenteric adipose tissue than in subcutaneous and omental 
adipose tissues. These findings suggest that the alterations of 
these genes in mesenteric adipose tissue may play a critical 
role in insulin resistance in type 2 diabetes and metabolic 
syndrome [6]. 
 A few studies have investigated the health benefits of 
omental adipose tissue removal. Omentectomy combined 
with adjustable gastric banding in severely obese adults 
(BMI >35 kg/m2) improved oral glucose tolerance, insulin 
sensitivity, and fasting plasma glucose and insulin 2 – 3 
times more than adjustable gastric banding alone [27]. The 
omentectomy group tended to lose more weight than the 
control group who underwent adjustable gastric banding 
alone (mean ± SD, 36 ± 14 kg vs. 27± 17 kg, p = 0.07). As 
the sample size in this study was relatively small, larger 
scale studies are needed to clarify whether the health benefits 
of omentectomy are independent of weight loss [27]. A 
surgical protocol titled ‘digestive adaptation with intestinal 
reserve’ (DAIR) consisting of omentectomy, vertical gastrec-
tomy and reduction of the small intestine, improved neuro-
endocrine profile and resolved diabetes [54]. The removal of 
the ometum reduces a major component of IPAT, which is 
believed to contribute to the beneficial effects of DAIR 
including decreasing a source of IL-6, IL-8, TNF-α, and 
resistin, as well as reducing insulin resistance in the liver 
[54]. However, the exact mechanism involved, other than 
weight loss, is not fully understood [55]. The lack of a 
control group in Santoro et al.’s study does not allow an 
accurate evaluation of the effects of omentectomy independ-
ent of vertical gastrectomy and reduction of the small 
intestine. 
 Surgical procedures have been used in animal studies in 
order to evaluate the effects of removing VAT on health 
risks. Omentectomy has been shown to increase insulin 
sensitivity in dogs [56]. Alternatively, rodent studies have 
shown that removal of EPAT can have beneficial health 
effects. It has been shown that removal of EPAT (i.e., 
perinephric and epididymal adipose tissue) prevents insulin 
resistance and glucose intolerance of aging in F344/Brown 
Norway and Zucker Diabetic Fatty rats [57], suggesting a 
potential causal relationship between VAT and insulin 
resistance. Similarly, Barzilai et al.’s study showed that 
removal of EPAT in moderately obese Sprague-Dawley rats 
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improves hepatic insulin sensitivity [58]. While the original 
rationale for VAT’s relation to health risks is based on the 
portal theory [8, 9], the adipose tissue depot removed in this 
study is not drained by the portal vein. Instead, the 
perinephric and epididymal adipose tissue are drained by the 
vena cava. Therefore, these animal studies suggest that there 
may be additional mechanisms involved in the detrimental 
effects of VAT other than portal drainage. There is evidence 
that a series of genes, which might be implicated in the 
insulin-stimulated glucose transporter 4 translocation, are 
differentially expressed in the epididymal adipose tissue of 
rats rendered obese by a high fat diet [59]. Barzilai et al.’s 
study reported that the removal of EPAT did not cause 
significant reduction of total fat amount or total weight 
compared to the control group [57, 58]. Due to this fact, 
there is not enough evidence that the improvement of insulin 
sensitivity with removal of EPAT is mediated via weight 
loss. On the other hand, the findings in rodents may not 
necessarily be reproducible in humans. Future studies need 
to clarify the biological or pathological difference between 
IPAT and EPAT in humans as well as their role in obesity 
and associated health risks.  

IPAT MEASUREMENT 

 Methods of direct measurement of VAT such as 
magnetic resonance imaging (MRI), computed tomography 
(CT), and ultrasound, have been applied to both animals and 
humans. MRI and CT enable the visualization and quanti-
fication of adipose tissue mass in different compartments [9]. 
The choice between the MRI and CT is usually based on cost 
and availability of scanners as well as accuracy and reliabi-
lity of image analysis. CT generates relatively consistent 
tissue attenuation values among images, thus the quanti-
fication of adipose tissue for CT is easier to implement than 
that of MRI. To minimize radiation dose, CT has mostly 
been used as a single-slice method in studying abdominal 
AT Distribution. On the other hand, MRI has several 
advantages over CT including its lack of radiation exposure 
and superior imaging of soft tissue. Furthermore, the lack of 
radiation with MRI allows for the determination of the total 
volume of adipose tissue compartments, which requires a 
longer scanning time.  
 In a study that compared the MRI measurement of three 
human cadavers to the direct measurement of adipose tissue 
mass after dissection of the cadavers, MRI was found to be 
an accurate and precise technique for the evaluation of VAT 
mass as well as the assessment of IPAT and EPAT [9].  
 Despite the high accuracy in measuring regional adipose 
tissue, the application of whole body MRI is limited by cost 
in most studies. A single cross sectional slice at specific 
anatomic locations is often used as a compromise between 
cost and accuracy for measuring VAT [33, 60, 61]. In adults 
of a wide range of adiposity, it has previously been shown 
that total VAT volume can be accurately estimated using the 
single slice method (i.e., at the L3 vertebra or 5-10 cm above 
the L4-L5) [33, 61, 62]. Because large scale studies have not 
been used to determine the anatomic distribution of IPAT 
and EPAT in humans, it is unclear whether a single slice can 
accurately estimate IPAT or EPAT. Furthermore, the 
anatomic location at which a single slice can provide the best 

estimate of IPAT and EPAT total volumes is also unknown. 
Therefore, contiguous or multi-slice cross-sectional imaging 
methods, rather than single slice imaging methods, are the 
best choice when studying IPAT and EPAT, especially at the 
initial research stage. 
 In terms of distinguishing IPAT from EPAT on MRI 
slices, different methodologies exist for the approximate 
differentiation [9, 63-71]. Many studies rely on anatomic 
locations in order to establish an arbitrary line that separates 
the two compartments. For example, in previous studies, a 
straight line was drawn across the anterior border of the 
vertebra and the psoas major muscle, then continued 
tangentially toward the inferior borders of the ascending and 
descending colons and extended to the abdominal wall [63, 
65, 66]. In slices where the kidneys were visible, an oblique 
line was drawn from the anterior border of the aorta and 
inferior vena cava to the anterior border of the kidney 
extending to the abdominal wall [63, 65-66]. IPAT was 
defined as the adipose tissue located anterior to the line 
drawn [63, 65-66]. However, it has been shown that this 
arbitrary method of quantifying IPAT and EPAT has an error 
of 3.8 to 49.4% when validated by high resolution MRI with 
the peritoneum visible [72] (Fig. 1). 

 
Fig. (1). The dashed line represents approximate separation of 
intraperitoneal adipose tissue (IPAT) and extraperitoneal adipose 
tissue (EPAT) as previously reported and the solid line represents 
visible separation of IPAT and EPAT [72].  

 The major difficulty for the separation of IPAT and 
EPAT in adults is that when VAT reaches a certain amount, 
IPAT and EPAT are adjacent to each other and common 
MRI protocols do not provide sufficient resolution for 
visualizing the fascia that separates the two compartments. 
The inconsistent reports on the relationship between IPAT 
and health risks in studies that use approximation methods 
could be attributed, at least partially, to the inaccurate 
measurement of the IPAT compartment. Although VAT can 
be detected in humans as early as infancy [73], there is a lack 
of studies on sub-dividing VAT into IPAT and EPAT in 
children. However, children have a much smaller VAT depot 
than adults [74] and omental adipose tissue is limited to the 
upper abdomen since the omentum is less developed in 
young children [75]. Therefore, the separation of IPAT and 
EPAT in children is more likely to be delineated by organs, 
even in children with a relatively large amount of VAT (Fig. 
2). The Visible Human Project of the National Library of 
Medicine includes 1 mm thick consecutive high-resolution 
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axial photographs of a middle aged man and woman [76]. 
This digital image database allows 3-dimensional reconstruc-
tion of IPAT and EPAT as well as their sub-components. 
The analyst can gain detailed anatomic knowledge at diffe-
rent anatomic locations. Although variation exists among 
individuals, the continuation of IPAT and EPAT depots in 
consecutive images can serve as valuable references for 
segmenting IPAT and EPAT components. Even if arbitrary 
separation is still necessary in a small percentage of subjects 
at certain anatomic locations, the overall accuracy in quan-
tifying IPAT and EPAT in children should still be much 
higher than that of adults. 
 Due to the limited availability of MRI and radiation of 
CT, indirect measurements of VAT such as ultrasound, 
Dual-energy X-ray-absorptiometry (DXA), and anthropo-
metry are sometimes adopted for certain studies. However, 
DXA cannot separate SAT from VAT. Ultrasound has been 
used to measure the thickness of VAT, defined as the 
distance between the recto-abdominis muscle and the aorta 
[77] or the vertebral bodies [78]. Both the semi-quantitative 
non-volumetric nature of ultrasound and the inter-technician 
variability limit the application of ultrasound methods in 
measuring VAT. Waist circumference measurements reflect 
both SAT and VAT compartments as well as lean tissue in 
the abdomen. Although waist circumference is a good 
surrogate for VAT in large scale epidemiological studies 
[79-80], it does not provide an accurate estimate of VAT in 
studies of small sample size. 

IMPORTANCE OF INVESTIGATING IPAT IN 
CHILDREN 

 Due to the lack of a long term weight loss or maintenance 
strategy that is easy to implement in adults [81, 82], pre-
venting childhood obesity is an important strategy for 
fighting the obesity epidemic. However, existing information 
is fragmentary, leaving important gaps in our understanding 
of the relationship between adipose tissue distribution in the 
early years of life and obesity related morbidities later in 
adulthood.  

 Obesity in childhood is not only related to childhood 
health risks [83] such as metabolic syndrome [84] and 
insulin resistance [85], but also to adult obesity [86, 87] and 
associated morbidity and mortality [88, 89]. As growing 
evidence suggests that VAT conveys higher health risk than 
SAT, it is important to accurately quantify VAT and its sub-
depots in order to examine whether a connection exists 
between risk factors present early in life and the incidence of 
obesity in adulthood. Accurate measurement of the subcom-
ponents of VAT in children is also important for pheno-
typing, which is a requisite for gene discovery, the evalua-
tion of pharmacological effects in vivo, and the association 
of subject characteristics to health status and outcome.  
 Although the relationship between VAT and obesity 
related health risks has been relatively well established in 
adults [63, 66, 90-96], the role of VAT in the health risks for 
children remains controversial with inconsistent findings in 
previous studies [97-107]. A relationship between VAT and 
insulin sensitivity has been observed in obese adolescents 
[99, 103] but not in nonobese adolescents, young children 
[99, 104] or children with a relatively wide range of 
adiposity [100]. In a sample of prepubertal children ranging 
from lean to overweight, VAT was found to bear health risks 
similar to that of total body fat in a cross-sectional sample 
during the early recruitment period [100]. However, when 
the study sample reached a larger size, total body fat 
appeared to have the predominant effect on fasting insulin 
levels [100]. The longitudinal follow up of this sample 
showed that abdominal SAT may be more predictive of the 
rate of fasting insulin change than VAT [97, 101]. It has 
been suggested that the associations between VAT and 
health risks develop with age, sexual maturation, or 
establishment of disease [97].  
 Most investigations of VAT in children were based on a 
single image slice or a few aggregated slices near the L4-L5 
level, which has proven not to be the best location for 
representing VAT volume in adults and children [33, 61, 62, 
74]. Children have much smaller amounts of VAT than 
adults and thus a single slice at the L4-L5 level may be even 

 
Fig. (2). The image clearly shows that intraperitoneal adipose tissue (IPAT) and extraperitoneal adipose tissue (EPAT) are separated by 
organs and muscles in a 14 year old girl with a relatively large amount of VAT volume (i.e. 1.6 L with 0.8 L or IPAT and 0.8 L of EPAT) 
comparing to an average of 0.6 L in girls [74].  



38     The Open Obesity Journal, 2011, Volume 3 Gantz et al. 

less adequate to quantify VAT in children. Furthermore, 
while subcomponents of VAT (i.e., omental and mesenteric 
adipose tissue) may be closely related to health risks in 
adults, adolescents, and animals [8, 27, 108], there are no 
reports on the relationship between health risks and 
subcomponents of VAT in young children. 
 Using CT and MRI methods, it has been found that 
African American children have less VAT than Caucasian 
children [97, 104], but are more insulin resistant than their 
Caucasian counterparts after adjustment of total fat [97]. 
These observations confirm that ethnic differences in VAT 
amount exist in childhood. Interestingly, sex differences in 
VAT were not observed in childhood [74], even though sex 
differences in VAT have long been noticed in adulthood. 
There are no studies that examine whether ethnic or sex 
differences have an effect on IPAT or EPAT in children. 
 A unique feature of childhood is that almost all tissue 
compartments are growing. In a five year follow up study of 
children (ages 4.6 to 12.1 years at baseline), VAT exhibited 
significant growth [109]. However, Brambilla et al. found 
that during puberty there is a tendency for VAT to decrease 
in normal weight children and remain stable in obese 
children [110, 111]. Since puberty may have an independent 
effect on adipose tissue distribution [112, 113] and 
Brambilla et al.’s studies only included peri-pubertal child-
ren, it is possible that puberty contributes to the incon-
sistencies across these studies. Puberty may also influence 
the manner in which changes in adipose tissue distribution 
occur between lean and obese children. Some studies have 
suggested that adipose tissue deposition before puberty is 
more likely to be related to insulin resistance than adipose 
tissue deposition during or after puberty [114]. Further 
investigation is needed to clarify the relationship between 
growth, puberty, obesity and health risks. Using CT 
methods, Goran et al. found that the rate of change in VAT 
was similar among children remaining prepubertal compared 
to those who entered puberty during two years of follow up. 
However, VAT did not change significantly in the remaining 
group of four children who were more advanced in pubertal 
status during two years of follow up [115]. These results 
imply that not just puberty, but also pubertal stage, should be 
considered when studying growth and adipose tissue 
distribution. 
 As we have mentioned earlier, there are very few studies 
that examine the potential health benefits of omentectomy. 
To our knowledge there are no omentectomy studies in 
children. The DAIR surgical procedure, which includes 
omentectomy, has been performed on at least one 14 year 
old child, but there is a lack of clinical trials of adequate 
sample size in adolescents [116]. The role of omentum in 
confining inflammation should also be considered when 
evaluating the potential benefits of omentectomy. 

FUTURE DIRECTIONS 

 With recent advances in MRI technology and the expe-
rience gained in VAT MRI analysis, higher resolution fast 
scanning sequences can make the development of IPAT 
analysis protocols possible. Recent advances in the Perio-
dically Rotated Overlapping Parallel Lines with Enhanced 
Reconstruction (PROPELLER) data acquisition showed that 

this technique reduces motion artifacts in pediatric brain 
scans [117-119] as well as breathing artifacts [120]. This 
technology advance, along with other fast imaging choices, 
provide potential solutions to the motion and breathing 
artifacts that have been considered problematic for pediatric 
MRI acquisition [121].  
 Future studies using advanced MRI protocols are needed 
to clarify the relationships between VAT partitioning, 
growth, puberty and obesity related health risks across 
different stages of childhood. Whether there are metabolic 
differences among the sub-depots of IPAT or EPAT may 
also be investigated in future studies. Clinical trials in 
children and adolescents are also needed to evaluate whether 
there are additional health benefits in regimes that target 
VAT or IPAT loss compared to overall weight reduction. 

CONCLUSION 

 More knowledge about adipose tissue distribution and 
health risks in children is needed as part of our effort to 
understand and manage obese patients. Children’s VAT 
partitioning is different from that of adults. Advances in MRI 
have made it possible for future studies to investigate sub-
depots of VAT including IPAT and EPAT. Although adipose 
tissue sampling in the omental and mesenteric adipose tissue 
compartments has greatly improved our understanding of the 
mechanisms at the cellular and molecular levels, biopsy of 
these adipose tissue depots is likely to be limited to morbidly 
obese subjects who undergo bariatric surgery. Imaging 
methods will need to fill in gaps when studying IPAT and its 
sub-depots in non-obese subjects or subjects in the very early 
stages of obesity. Accurate measurement of the sub-depots 
of VAT in children is important for phenotyping, which is a 
requisite for gene discovery and the evaluation of childhood 
obesity intervention methods. It is important to understand 
the early development of IPAT and its relationship to growth 
in order to construct childhood obesity prevention strategies. 
Future studies are also needed to establish whether weight 
loss interventions that target the reduction of VAT sub-
depots, such as omentectomy, are beneficial and practical in 
obese children. 
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