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Abstract:

Introduction:

Genus  Carduelis  (Fringillidae  family)  includes  goldfinches,  siskins,  redpolls,  greenfinches  and  crossbills.  Many  of  the  species
classified  within  this  genus  and  other  related  genera  have  been  grouped  by  using  molecular  systematics  and  the  mitochondrial
cytochrome b (mt cyt b) gene. According to this, the Eurasian siskin (C. spinus) is the only one extant direct ancestor of several
North American finches;  North American /  South American radiations may have been originated by Eurasian siskin (or  extinct
relative).  In  the  present  work,  we  aim  to  perform  a  study  of  transpecies  and  transcontinental  analyses  of  MHC  (Major
Histocompatibility Complex) Class I alleles in several genus Carduelis / Spinus species in order to draw evolutionary conclusions in
several wild bird species belonging to the genus Carduelis / Spinus.

Materials and Methods:

Blood  was  taken  from  worldwide  wild  bird  species.  Passerine  phylogeny  was  done  after  analysing  mtDNA  with  Maximun
Likelihood  and  Bayesian  dendrograms.  Major  histocompatibility  complex  alleles  were  obtained  by  standard  DNA  cloning  and
sequencing.

Results:

We found two matches between MHC-I DNA alleles from different South American siskins at DNA level. Also, it was observed that
the Eurasian siskin shares a protein with pine siskin and another with three South American siskins. Eight South American siskins
species also share the same MHC protein. In addition, studied songbirds MHC class I intron 2 is longer than that of Gallus gallus.

Conclusion:

We have drawn the following conclusions: 1) We present the first direct evidence that “Minimal Essential MHC” does not exist for
birds; one of its main definition characters, i.e.: small intron size does not hold for songbirds. 2) We also report that MHC genes
transpecies evolution exist in birds by showing also for the first time that worldwide bird species keep the same MHC protein and
DNA alleles. 3) New evidences on MHC alleles conservation from Eurasian Carduelis spinus (most ancient) to South American
siskins (most recent) during million years support that Eurasian siskin is the parental species for American Genus Carduelis (Spinus)
species. It is uncertain whether Eurasian siskin (or extant relative) had initially an Holoartic distribution, including America.

Keywords: MHC, Major Histocompatibility Complex, mtDNA, Carduelis, Spinus, Passerinae, Songbirds, Transpecies evolution,
Introns.
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1. INTRODUCTION

Genus Carduelis / Spinus includes goldfinches, siskins, redpolls, greenfinches and crossbills [1]. It is comprised
within the Fringillidae family of birds together with canaries, many sparrows, bramblings and chaffinches. Most of
them are familiar to birdwatchers and urban and country people [2 - 4]. Many of the species classified within genus
Carduelis  and  other  related  genera  have  been  grouped  by  using  molecular  systematics  and  the  mitochondrial
cytochrome b (mt cyt b) gene sequence [5 - 8]. According to this, the Eurasian siskin (C. spinus) appeared on Earth in
the Pliocene Epoch about 5 million years ago [1, 8 - 10]. It is the one extant direct ancestor of several North American
finches,  which  appeared  around  2  million  years  ago  [8,  10  -  12]:  C.  dominicensis,  the  Antillean  siskin  from  the
Caribbean high peaks of La Hispaniola Island; C. pinus, the pine siskin from North America; and C. atriceps, the Black-
capped siskin from Guatemalan - Mexican altiplano [10, 11]. In addition, North American C. tristis and C. notata (also
in South America) radiations may have been originated by Eurasian siskin (C. spinus) entrance to America [7, 8, 11,
12].

On the other hand, Major Histocompatibility Complex (MHC) is the most polymorphic loci in humans and studied
vertebrates and its  molecules present  antigenic peptides to clonotypic T-cell  receptors  in order  to start  the immune
response [13]. Classical MHC-I molecules are expressed on all nucleated cells and inhabit receptor structures that bind
short peptides (antigens) derived from intracellular pathogens (like viruses) as well as peptides of individual’s own
body.  After  an  antigen  has  been  bound,  the  MHC-antigen  complex  is  transported  to  the  cell  surface  where  it  is
recognized by CD8+ T-cells. When the presented antigen is from a pathogen, CD8+ T-cell becomes activated and the
infected host cell is killed [14]. Non-classical MHC-I molecules (class-Ib) have a similar structure to classical class I
molecules but they are less polymorphic and are not expressed to the same extent [15]. These class – Ib proteins evolve
rapidly and are quite different in primary sequence among different vertebrate species [15, 16]. In the last years, non-
classical class I MHC (HLA) genes are currently being studied: its function is immune modulation (in order to avoid
autoimmunity) and immune suppression (in order to maintain mother/father proteins compatibility) and prevent fetus
infection as a transplant (for an extensive review see [16]). MHC evolution is proposed to be under several kinds of
selection:  a)  balancing selection,  i.e.:  many different  alleles  are  maintained in  the  population because  they may be
beneficial [17], thus heterozygosis is favoured in order to maximize the range of antigens that can be recognized [18 -
20]; b) frequency-dependent selection. Rare alleles would be privileged in the prevention of rare pathogens appearance,
which may unexpectedly enter into a population [13, 21]; c) a transpecific evolution; this has been observed also in
humans and primates [22, 23]. Some specific alleles are markedly favoured and are preserved through speciation, so
they can be found in different, genetically related species.

In this high variability context which may include non-classical class I molecules [16, 23], it is relevant that some
proteins of a locus or loci may remain identical in quite distant species which have diverged in a relatively long time lag
[22]. This has been observed in vertebrate Major Histocompatibility Complex [24] and Plant Histocompatibility System
[18]. It usually occurs when a strong positive directional evolutive selection is acting on molecules. In this respect,
primate species sometimes may share the same MHC class I molecules [25]. Also, molecular analyses based on MHC
class I molecules in songbirds, particularly species from genus Serinus and Carduelis, reveal that these species have two
different residues in positions 10 and 96 of the molecule when they are compared with different vertebrate species [26].

In the present study, we describe new MHC songbirds molecules in genus Carduelis species which have radiated
within million years time lag in distant Earth areas and continents. Thus, we perform a study among species, which
thrive  in  transcontinental  habitats  of  MHC  class  I  alleles  in  several  genus  Carduelis  species  in  order  to  draw
evolutionary conclusions in these freely occurring wild vertebrate species belonging to the same genus (Carduelis).

2. MATERIALS AND METHODS

2.1. Sampling

Blood was collected from 36 individuals of wild bird Carduelis species (Table 1). Distribution and cytochrome b
GenBank sequence accession numbers are given in Table 1. Blood was obtained from wild birds in their natural thriving
areas, and kept at 4°C with an ethylenediaminetetraacetic acid (EDTA) solution until use [26].
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Table 1. Origin and Cytochrome b GenBank accession numbers of the species analyzed in this study.

Name Common Name GenBank Origin
Carduelis ambigua Black-headed greenfinch U78322 Szechwan, China
Carduelis atrata* Black siskin L76385 Sucre, Bolivia
Carduelis atriceps Black-capped siskin AF342863 Quetzaltenango, Guatemala
Carduelis barbata Black-chinned siskin L77868 Magallanes, Chile

Carduelis cannabina Eurasian linnet L76298 Madrid, Spain
Carduelis carduelis caniceps Grey-crowned goldfinch L76388 Katmandu, Nepal

Carduelis carduelis parva Eurasian goldfinch L76387 Madrid, Spain
Carduelis chloris European greenfinch L76297 Madrid, Spain

Carduelis citrinella citrinella Citril finch L77872 Madrid, Spain
Carduelis citrinella corsicanus Citril finch AY583725 Sardinia, Italy

Carduelis crassirostris Thick-billed siskin L77869 Mendoza, Argentina
Carduelis cucullata* Red siskin L76299 Venezuela

Carduelis dominicensis Antillean siskin AF342864 Constanza, Dominican Rep
Carduelis flammea Common redpoll L76386 Brussels, Belgium

Carduelis flavirostris Twite U83199 Antwerp, Belgium
Carduelis hornemanni Hoary redpoll U83201 Antwerp, Belgium
Carduelis lawrencei Lawrence's goldfinch L76392 San Diego (CA), USA

Carduelis magellanica* Hooded siskin U79016 Misiones, Argentina
Carduelis notata* Black-headed siskin U79019 Chiapas, Mexico

Carduelis olivacea* Olivaceous siskin L77871 Lima, Peru
Carduelis pinus perplexus Pine siskin perplexus DQ246804 Quetzaltenango, Guatemala

Carduelis pinus pinus* Pine siskin U79020 Jackson (WY), USA
Carduelis psaltria colombianus Dark-backed goldfinch U78324 Maracay, Venezuela
Carduelis psaltria hesperophila Green-backed goldfinch L76390 Sacramento (CA), USA

Carduelis sinica Grey-capped greenfinch L76592 Szechwan, China
Carduelis spinescens* Andean siskin U79017 Merida, Venezuela
Carduelis spinoides Black-headed greenfinch U79018 Katmandu, Nepal
Carduelis spinus* Eurasian siskin L76391 Madrid, Spain
Carduelis tristis American goldfinch U79022 San Francisco (CA), USA

Carduelis xanthogastra* Yellow-bellied siskin L76389 San Jose, Costa Rica
Carduelis yarrellii* Yellow-faced siskin U83200 Recife, Brasil

Rhodopechys obsoleta Desert finch AF342889 Kabul, Afghanistan
Loxia curvirostra curvirostra Common crossbill AF342876 Alcala de Henares, Spain
Loxia curvirostra japonica Common crossbill AF342877 Beijing, China
Loxia leucoptera bifasciata Two-barred crossbill AF342878 Siberia, Russia

Fringilla coelebs Chaffinch L76609 Madrid, Spain
Asterisks (*) show species whose MHC class I alleles have been analysed (see Table 2).

2.2. DNA Extraction

DNA was isolated from whole blood with an automatic DNA extracting device (Nucleic Acid Extraction System.
QuickGene-810, FUJIFILM) after treating samples with a commercial kit (QuickGene Whole Blood Extraction Kit S,
FUJIFILM). DNA concentration was measured with a spectrophotometer (ND-1000, NANODROP), and adjusted to
about 100 ng/μl. Finally, samples were stored at -20°C.

2.3. MHC and mtDNA Cyt b Amplification, Cloning and Sequencing

Sequences of the MHC molecule most variable region (exon 2, intron 2, exon 3) were amplified by the polymerase
chain  reaction  (PCR)  method [27]  in  42  cycles  (10  s  at  95°C,  30  s  at  65°C,  60  s  at  72°C)  using  an  EPPENDORF
thermocycler and AmpliTaq DNA Polymerase (APPLIED BIOSYSTEMS) [28]. Primers were used as described in [26].
Fragments of about 850 base pairs were obtained; some of them were purified by electrophoresis in a 2% agarose gel in
order to verify the amplification process. Sequencing was performed using the Sanger method [29], using the same
primers  as  for  amplification,  plus  an  internal  primer:  5'-  GGATTGATGTGGCTCCAAGG-3'.  Ambiguities  due  to
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heterocygosity were solved by cloning in competent Escherichia coli cells. An average of 12 different cloned sequences
per  individual  were  obtained.  Amplification  and  sequencing  of  cyt  b  gene  924  base  pairs  (bp)  was  performed  as
previously described [30].

Table 2. MHC class I DNA alleles found in wild Carduelis individuals. GenBank accession numbers are also shown.

Species Common Name (Number of Analysed Individuals in Brackets) Alleles GenBank

Carduelis spinus Eurasian siskin
(14)

Casp-F*0101 FJ266399
Casp-F*0102 FJ266400
Casp-F*0103 FJ266401
Casp-F*0106 FJ266404
Casp-F*0201 FJ266409
Casp-F*0202 FJ266410
Casp-F*0203 FJ266411
Casp-F*0301 FJ266412
Casp-F*0401 FJ266414
Casp-F*0402 FJ266415
Casp-F*0403 FJ266416
Casp-F*0501 FJ266421
Casp-F*0502 FJ266422
Casp-F*0503 FJ266423
Casp-F*0504 FJ266424
Casp-F*0505 FJ266425
Casp-F*0601 FJ266426
Casp-F*0701 FJ266427
Casp-F*0702 FJ266428
Casp-F*0901 FJ266434

Carduelis pinus Pine siskin
(6)

Capi-F*0101 FJ266376
Capi-F*0201 FJ266379
Capi-F*0301 FJ266381
Capi-F*0401 FJ266383
Capi-F*0501 FJ266384
Capi-F*0601 FJ266385
Capi-F*0701 FJ266388
Capi-F*0803 FJ266391

Carduelis atrata Black siskin
(8)

Caat-F*0101 FJ266350
Caat-F*0102 FJ266351
Caat-F*0201 FJ266354
Caat-F*0202 FJ266355
Caat-F*0301 FJ266359
Caat-F*0302 FJ266360
Caat-F*0401 FJ266361
Caat-F*0402 FJ266362
Caat-F*0501 FJ266365
Caat-F*0601 FJ266367
Caat-F*0901 FJ266371
Caat-F*1002 FJ266373

Carduelis notata Black-headed siskin
(1)

Cano-F*0101 DQ257468
Cano-F*0201 DQ257469

Carduelis spinescens Andean siskin
(1) Caspe-F*0101 DQ257472

Carduelis olivacea Olivaceous siskin
(1)

Caol-F*0101 DQ257470
Caol-F*0201 DQ257471

Carduelis cucullata Red siskin
(1)

Cacu-F*0101 DQ257465
Cacu-F*0102 DQ257466
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Species Common Name (Number of Analysed Individuals in Brackets) Alleles GenBank

Carduelis
xanthogastra

Yellow-bellied siskin
(1)

Caxa-F*0101 DQ257473
Caxa-F*0201 DQ257474

Carduelis yarrellii Yellow-faced siskin
(1)

Caya-F*0101 DQ257475
Caya-F*0201 DQ257476

Carduelis
magellanica

Hooded siskin
(1) Cama-F*0101 DQ257467

Black-headed siskin (C. notata)
This bird is found in Middle America, Central Mexico and Nicaragua. It is observed in conifer and oak forests and lower edges of cloud forests, both
in summer and in winter [4]. This siskin or a related ancestor was thriving on Earth about 3 million years ago (Fig. 1) and it probably is the extant
ancestor of South American siskin radiation [11]. Two different alleles were found in this species in 1 individual (Table 2).
Black Siskin (C. atrata)
It thrives in Andes from central Peru to western Argentina. Specifically inhabits in puna grassland, rocky slopes, crags, gullies and hillsides, both in
winter and in summer [4]. The time of appearance on Earth of this species is approximately 500,000 years ago (Fig. 1), being part of South American
siskin radiation group; its extant ancestor which gave rise to South American siskin radiation is C. notata [11]. In the present work, twelve different
alleles were found in 8 different individuals (Table 2).
Andean Siskin (C. spinescens)
This species lives in northern South America, mainly it is found in areas such as low bushes, forests, open hillsides, subtropical and paramo zones in
scrub [4]. This bird appeared on Earth approximately 500,000 years ago (Fig. 1) and it is a descent of C. notata, being part of South American siskin
radiation [8, 11]. Only one allele is found in 1 individual (Table 2).
Olivaceous Siskin (C. olivacea)
This siskin lives in South America, especially in areas from Ecuador to northern Peru and Bolivia. It is observed in forest edges of the subtropical
zone [4]. Olivaceous siskin appeared on Earth about 1.2 million years ago (Fig. 1). Two different alleles were found in 1 individual (Table 2).
Red Siskin (C. cucullata)
This bird can be found in northern Venezuela and Colombia, in forests, dry scrubs and grassy areas with scattered trees [4]. Red siskin belongs to
South American siskin group and appeared on Earth 1 million year ago (Fig. 1, Table 2) from the common ancestor of this group of siskins, the
Black-headed siskin (C. notata) or an extinct relative. Two different alleles were found in 1 individual (Table 2).
Yellow-Bellied Siskin (C. xanthogastra)
This species inhabits in Central and northern South America, mainly in tropical and subtropical forest edges and pastures [4]. It appeared on Earth
approximately 1.2 million years ago considering our phylogenetic results shown in Fig. (1). Two different alleles were found in 1 individual in our
present analyses.
Yellow-Faced Siskin (C. yarrellii)
This siskin may be observed in northern Brazil, in areas such as, lowland humid forests, woodland and edges of plantations [4]. It appeared on Earth
500,000 years ago being part of South American siskins (Fig. 1). Two different alleles were found in 1 individual of this species (Table 2).
Hooded Siskin (C. magellanica)
It thrives in South America. It may be observed in woods, groves or plantations, edges of cultivation, scrubs, parks and large gardens from coastal
lowlands to tropical and subtropical zones [4]. This bird as well as Yellow-faced siskin appeared on Earth 500,000 years ago (Fig. 1). Only one allele
is found in 1 individual in the present study (Table 2).

2.4. Phylogenetic Analyses

MEGA 5.0 software [31] was used to align MHC sequences and translate DNA sequences into protein, for each
individual and clone. Different alleles were identified and characterized manually.

Regarding  to  cyt-b  gene,  sequences  were  further  analyzed  with  MEGA  5.0  as  described  [31].  Phylogenetic
dendrograms were obtained using Maximum Likelihood (ML) methodology [32] with PAUP* v. 4.0b10 program [33]
and Bayesian Inference (BI) methodology using MrBayes program [34, 35]. Model test v. 3.7 [36] was used to find out
a  DNA  substitution  model  that  fits  the  data  best.  Also,  best  model  was  used  prior  to  both  ML  and  BI  analyses.
Linearized ML dendrograms were obtained with PAUP* v. 4.0b10 [33] with the estimated branch length [37] which
assumes that the rates among the evolutionary lineages may not be constant. Tree calculation strategy consisted of a
heuristic search with NNI (Nearing Neighbour Interchange) swapping algorithm. Robustness of nodes was assessed by
1000 bootstrap replicates in the ML analyses. The parameters rates defining the model of evolution were allowed to
change in the BI analysis after each generation in order to increase the likelihood of resulting trees. Therefore, none of
the parameters were a priori fixed. In BI analyses, two independent runs (with one cold and three heated chains each)
were  performed  along  with  5  million  generations.  Trees  were  sampled  every  100  generations  and  the  first  12,500
samples were discarded as ‘burn-in’. Split frequencies average standard deviation approached to zero being around 0.01
at  the  end  of  the  analysis.  Posterior  probability  values  (ppv)  indicate  the  robustness  of  the  nodes  in  the  BI.  In
Phylogenetic  analyses  chaffinch  (Fringilla  coelebs)  (family  Fringillidae,  subfamily  Fringillinae),  was  used  as
outgroup.

(Table 2) contd.....
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3. RESULTS

3.1. Phylogenetic Trees and Age of Appearance on Earth

The  peopling  of  America  continent  by  genus  Carduelis  species  could  be  carried  out  by  three  rapid  radiations
according to extant present day species: A Mesoamerican goldfinch radiation, a North American siskin radiation and a
South American siskin radiation [11]. In this work, species from South American and North American groups have
been studied.  The age of appearance on Earth of the extant  ancestor of North American group,  Eurasian siskin (C.
spinus) is approximately 5 million years ago [8, 11, 12] (Figs. 1 and 2). It is suggested that this bird passed to America
through  Beringia/Aleutian  Islands  [38],  since  there  have  been  sightings  of  these  birds  in  areas  near  these  islands.
However,  it  is  possible  that  C.  spinus  entering  to  America  came  also  through  the  East  Coast  (Greenland,  Iceland,
Newfoundland): both East and West entering may have possible [11]. Eurasian siskin (or extinct close relative) evolves
to Antillean siskin (C. dominicensis) during the Pliocene Epoch due to a geographical isolation after reaching Antillean
area.  Pine  siskin  (C.  pinus)  seems  to  be  the  descendent  of  Antillean  siskin  (Figs.  1  and  2).  Regarding  the  South
American siskin group, the Black-headed siskin (C. notata) is suggested to be as extant ancestor of this group. South
American radiation occurred probably after 3 million years ago, and C. notata or an extinct ancestor passed to South
America from Mexican mountains, probably after Isthmus of Panama emerged [11]. This fact favoured the invasion of
mesothermal  plants  from the  Rocky Mountains  to  Andean  Spine  causing  the  expansion  of  this  species  Carduelis  /
Spinus genus and triggering the radiation [11].

North American siskin group and South American siskin group are closely related. Both were separated almost 5
million years ago (Fig. 1). However, the common precursor of South and North American radiations, namely, the link
between Eurasian siskin (C. spinus) and Black-headed siskin (C. notata) is missing, as well as the common ancestor of
all three groups (North, Meso and South radiations) [11], unless that C. spinus was the American siskin ancestor and
several links are missed [12].

Fig. (1). Linearized Maximum likelihood dendrogram based on mitochondrial cytochrome b DNA sequences. Fringilla coelebs was
chosen as outgroup.
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Fig. (2). Linearized Bayesian dendrogram based on mitochondrial cytochrome b DNA sequences. Fringilla coelebs was chosen as
outgroup.

3.2. New MHC Alleles Found in Genus Carduelis

Once  collected  all  MHC  DNA  sequences,  they  were  classified  according  to  DNA  coding  groups  of  similar  or
identical proteins. Then, a new provisional nomenclature of alleles was carried out according to the proposal of J. Klein
[39], (Fig. (3) footnote). The MHC locus was generically identified with the letter F, referring to chicken class I genes
(BF complex),  since found alleles  have been compared to human and other  species  class  I  molecules and found to
belong to class I type of MHC molecules [26]. MHC class I molecules often different genus Carduelis species have
been studied in the present work. Details of appearance on Earth and habitat of South American siskins are accounted in
Table 2 footnote (low case letter).

Eurasian siskin (C. spinus) thrives in Paleartic and Oriental forests and conifer woodland in summer, whereas in
winter it is observed in common weedy areas, plantations and gardens [4]. Eurasian siskin appeared on Earth 5 million
years ago: this is observed in the linearized Maximum Likelihood dendrogram (Fig. 1). It is the extant ancestor of the
North American goldfinch group [1, 7, 8, 10, 12]. In this study, twenty different alleles of C. spinus were found in 14
individuals (Table 2). This species may have been ancestor of all North American siskins [1, 7, 8, 10, 12]. Its close
relative Pine siskin (C. pinus) inhabits in all North America and goes South to Guatemala. It may be observed in conifer
forests, plantations, thickets and shrubs [4]. This bird is living on Earth since 200,000 years ago, as it is deduced from
Fig. (1). Eight different alleles of pine siskin were found in 6 individuals in this present study (Table 2).

DNA alleles were compared with each other (Table 2). Similarities were found: Caat-F*0101 C. atrata allele also
appears in C. olivacea (Caol -F*0201) and Caat-F*0401 C. atrata allele is present in other 6 species of South American
siskins, such as C. spinescens (Caspe-F*0101), C. xanthogastra (Caxa-F*0101), C. olivacea (Caol-F*0101), C. notata
(Cano-F*0101), C. magellanica (Cama-F*0101) and C. cucullata (Cacu-F*0102).
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Fig. (3). Map which shows the geographic location of species which share MHC-I proteins. Proteins of different species are named
as follows: Carduelis spinus (Casp-F*); Carduelis pinus (Capi-F*); Carduelis notata (Cano-F*); Carduelis spinescens (Caspe-F*);
Carduelis  olivacea  (Caol-F*);  Carduelis  atrata  (Caat-F*);  Carduelis  magellanica  (Cama-F*);  Carduelis  yarrellii  (Caya-F*);
Carduelis xanthogastra (Caxa-F*)  and Carduelis cucullata (Cacu-F*).  Color of the circles indicates the three different proteins
found and number inside each circle indicates species that share each protein (Fig. 4).

Fig. (4). Carduelis spinus (left side) and Carduelis atrata (right side). Carduelis spinus appeared on Earth 5 MYA and Carduelis
atrata appeared on Earth 0.5-1 MYA [8, 10 - 12].

When MHC protein alleles are compared, it is observed that C. spinus shared a allele with C. pinus (Casp-F*07 =
Capi-F*08) and another one with C. atrata (Casp-F*01 = Caat-F*01) (Fig. 3). Furthermore, if South American siskins
proteins are considered, it is observed that Casp-F*01 protein is the same one than Caol-F*02 (C. olivacea) and Caya-
F*01 (C. yarrellii). Fig. (3) shows one the most shared protein (blue) that is present in 8 species of South American
siskins; the most worldwide extended protein (red) appears both in Europe and in South America. And finally, there are
3 species which share 2 proteins (C. olivacea, C. atrata y C. yarrellii, blue and red).

Therefore a total of 2 DNA allele sequences present in 7 different species were found: (C. atrata (Caat-F*0401), C.
spinescens (Caspe-F*0101), C. xanthogastra (Caxa-F*0101), C. olivacea (Caol-F*0101), C. notata (Cano-F*0101), C.
magellanica (Cama-F*0101), C. cucullata (Cacu-F*0102)) and in 2 (C. atrata (Caat-F*0101) and C. olivacea (Caol -
F*0201)) and 3 protein allele sequences are showed in 8 different species (C. notata (Cano-F*01), C. olivacea (Caol-
F*01), C. xanthogastra (Caxa-F*01), C. yarrellii (Caya-F*02); C. magellanica (Cama-F*01), C. spinus (Casp-F*01);
C. cucullata  (Cacu-F*01);  C.  atrata  (Caat-F*04)),  4  (C. spinus  (Casp-F*01),  C. olivacea  (Caol-F*02),  C. yarrellii
(Caya-F*01), C. atrata (Caat-F*01)) and 2 (C. spinus (Casp-F*07), C. pinus (Capi-F*08)). South American siskins are
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the species that  most sequences have in common, and the Eurasian siskin (C. spinus)  shares proteins with the pine
siskin  (C.  pinus)  and  even  South  American  siskins  C.  atrata,  C.  olivacea  and  C.  yarrellii  (Fig.  3).  A  preliminary
comparison of these DNA sequences with those found in Passer domesticus class I sequences [40] do not show close
relatedness with this other species.

4. DISCUSSION

4.1. The Extant Ancestor: Eurasian siskin (C. spinus)

Eurasian siskin migratory behaviour is unpredictable each year: its North to South migrations do not always follows
the same longitudinal patterns (it  is “irruptive”) [4]. Nowadays, this bird does not thrive in America, but it  lives in
easternmost and westernmost Eurasia, being a gap between Central Russia and its easternmost range. It is possible that
Eurasian  siskin  was  thriving  in  Eurasia  and  also  in  North  America  about  Pliocene  /  Pleistocene  Epoch  limits,
approximately 2 million years ago. Later, the Eurasian siskin might have advanced to Caribbean Islands and to Mexican
mountains and Guatemalan-Mexican altiplano. About 200,000 years ago, the Eurasian siskin might have given rise to
pine siskin (C. pinus) in Mexican sierras and to Antillean siskin (C. dominicensis), nowadays isolated in Hispaniola
Island  [11,41];  documented  rainfall  variations  in  the  Caribbean  during  the  Pleistocene,  however,  could  have  also
affected distribution of these birds [42]. This may be a typical example of adaptive radiation originated by a North to
South  migration  barrier  and  provincialism  that  drove  evolution  to  create  these  new  finch  species.  Last  Wisconsin
Glaciation ended and North American ice melted about 12,000 years ago: pine siskin would have followed the ancestral
North to South migrations observed today and covered all North America. It might occupy American niches of Eurasian
siskin which could not reach America from Asia during the last 2 million years because of an extant thick ice shield.
Neither could it later because of species competition by ecologic niche with its descent pine siskin [12].

4.2. Number of Alleles

A detailed genetic map of the MHC in songbirds has not been obtained, so nothing can be said about the precise
number of genes that composes it and its proximity on the chromosome. In spite of this, some gene numbers have been
postulated [43]. In this work we have not analyzed such a characteristic and we have found no more than two different
MHC alleles  per  single  individual  of  the  studied species  of  these  particular  genes.  Therefore,  our  findings  fit  with
detection of one paternal and one maternal gene belonging to a single locus.

In species such as Coturnix japonica at least four classic class I genes have been found with a high variety of alleles
[44 - 46]; this also is the case of goose [47]. Duck has five classic class I genes although only two of them seem to
actively work [48]. In songbirds, class I sequences have been studied in very few species. In the great reed warbler [49,
50] a high genetic MHC variability has been described compared with chicken (Gallus gallus) while in South American
siskins [51] and in canaries [52, 53] only one gene with a low variability has been found.

4.3. MHC Transpecies Evolution in Birds

A transpecific gene existance occurs in several mammals MHC, like apes [25, 51]. This phenomenon usually occurs
when speciation happens quickly, while gene differentiation has not yet taken place. It could also mean that the MHC
naturally adapts to habitat of species and select alleles to combat characteristic antigens / pathogens thriving in the area,
and does not need to generate an unlimited polymorphism as in the case of “artificial” MHC, where there are a high
number of alleles and numerous immunological disorders that appear to be associated with the HLA system, such as
autoimmune processes [51, 52]. Human, laboratory mouse and chicken are considered “artificial” vertebrate models
because all have originated through a bottleneck and subsequent relatively high inbreeding, which enhances crossover
at meiosis and thus to excessive MHC diversity [22, 51, 52].

Phylogenetic analysis of MHC sequences from the species studied in the present work allowed to visualizing more
clearly the phenomenon of trans-specificity since, two matches between MHC-I alleles from different South American
siskin species were found at DNA level. It was also found that the Eurasian siskin shares a MHC protein allele with the
pine siskin (North-Central America range) and another protein allele with three South American siskin species. Eight
South American siskins species, including parental C. notata, also share another MHC protein among themselves (Fig.
3). All MHC genes transmit their alleles to the descendant species, but the most common fact is that the allelic identity
between the ancestral species and their descendants get lost due to balancing selection diversification. The antiquity of
studied  MHC alleles  goes  back no longer  than four  -  five  millions  years,  when South  American siskins  and North
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American goldfinches species were separated (Figs. 1 and 2) [11].

A closest relationship between the Eurasian siskin and the Pine siskin had been found [8, 10, 11]. This is further
supported by the fact of sharing one MHC protein allele. Eurasian siskin (o extant relative) could have been a species
widely spread around Europe, Asia and America that could be have led to both North American goldfinches and South
American siskins radiations. Otherwise, it could have only originated North American goldfinches radiations and these
could have originated the South American siskin radiation [11, 12].

In conclusion,  our data on mitochondrial  cytochrome-b combined with the first  evidence of trans-species MHC
evolution  so  far  described  in  birds,  suggests  that  the  Eurasian  siskin  is  the  extant  ancestor  of  all  North  and  South
American Carduelis species [11, 12].

4.4. MHC Large Intron Size in Passerines

This  set  of  wild  bird  species  studied  (Table  1  [26],)  has  given  the  first  direct  evidence  that  one  of  the  main
characters of “Minimal Essential Bird MHC” postulated for birds [54] is in fact not universal for birds.

MHC class I introns from presently and previously [26] studied songbirds are longer than humans. Chicken introns
are the shortest ones [26]. In addition, MHC class I genes introns 2 were homologous on 38.3% to human class I MHC
and 35% to Gallus gallus one. MHC class I intron 2 had an average of 304 bp in songbirds, 238 bp in human and 288
bp in Gallus gallus [26]. This is also a direct evidence that the main postulate of “Minimal Essential MHC” for birds
only  applies  to  Gallus  gallus,  and  not  to  Passerines  [54].  Additional  information  may  be  found  in  references  [55,
56].The fact that songbirds other than Carduelinae family (i.e.: Acrocephalus arundinaceus and Taeniopygia guttata,
zebra finch [26]) are also different at residues 10 and 96 at MHC class I proteins than all other vertebrates (including
Gallus gallus) may indicate that our observations of on large intron size and different conserved 10 and 96 residues on
MHC proteins could be extended to songbird family (i.e.:  about half  of  the about 10,000 avian extant  species [3]).
Passerine evolutionary pathway may be altogether different from that of other birds [26].

CONCLUSION

“Minimal Essential MHC” concept is not valid for birds.Trans specific evolution on MHC wild birds is observed
and it also supports that Carduelis spinus (Eurasian siskin) or extinct relative is parental species of all American Genus
Carduelis (Spinus) species.
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