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Abstract: Workers’ safety and health is a primary concern in the construction industry due to the significant number of 

occupational injuries and fatalities experienced. Previous research indicates that such injuries and fatalities are multi-

causal, and one of which may be workers drifting towards hazard. The purpose of this study was to develop a method to 

quantify the ability of construction workers to identify hazards such that this drifting can be minimized. The paper is not 

reporting on a specific finding regarding hazard identification ability amongst the population of workers surveyed in the 

research. Rather, it is a foray into a new method that augments assessment of hazard identification abilities of workers. 

This research applied a hybrid model, Fuzzy Signal Detection Theory (FSDT) to quantify workers’ ability to identify oc-

cupational hazards. Data was collected using a survey designed to assess construction workers’ perceptions of safety spe-

cific to the risk of fall accidents for structural steel workers. An eighteen-question survey was based on standards set by 

national safety agencies in the United States and on a mix of conditions that were with no violation, a complete violation, 

and a partial violation. Both the conventional Signal Detection Theory (SDT) and FSDT were used for analysis and the 

results were compared. The comparison of results indicated that the FSDT model provided a richer framework to study 

worker hazard perception on a construction site. The methodology is expected to provide guiding framework for similar 

studies. Increasing data collection of the type presented in this paper will enable refinement and revision of construction 

occupational safety and health regulations by national agencies. 

Keywords: Construction safety, construction hazard, hazard identification, signal detection theory. 

INTRODUCTION 

 Each year, occupational injuries (traumatic, ergonomic, 
and/or exposure) and fatalities temporarily or permanently 
disable many and claim the lives of people in the construc-
tion industry. The staggering statistics collected and dis-
seminated by occupational safety and health concerned orga-
nizations (NIOSH, U.S. Department of Labor, MIOSHA) 
confirm the impact and importance of this problem. With 
increased attention on safety, company-wide safety programs 
became the norm. Many employ full time safety officers or 
consultants to assure that legal requirements are met and, 
hazards and incidents are reduced. Safety programs create a 
counter pressure that aims to minimize exposure to hazards 
and keep workers away from hazardous situations. These 
programs are in place but the industry still remains danger-
ous. Recent research results indicate that the dynamic nature 
of construction work and the transient nature of the 
workforce make the prevention of accident scenarios diffi-
cult [1]. 

 Further improvement is needed, but improvement has 
reached a plateau and construction still kills or injures more 
than eight percent of its workers each year, and claims 23 %  
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of all occupational fatalities and 10.5 % of all occupational 
injuries [2, 3]. Considering that the construction workforce 
accounts only for 6% of the US workforce, the disparity in 
the proportion of construction workforce and the accidents 
related to it is a clear indication of the serious problem in the 
construction industry. 

 To analyze construction worker safety on a job-site, it is 
important to understand the mechanics of safety implementa-
tion efforts. If we take any construction jobsite as an exam-
ple, there is a myriad of conditions that could lead to acci-
dents. Of course there is a gap between the accident actually 
occurring, and an existing condition, i.e., potential for an 
accident. How wide or narrow is this gap, depends upon how 
well the management and workers are prepared to handle a 
dangerous situation. 

 The first point of contact is inevitably the worker, who is 
performing his/her job and often needs to make a decision 
that would result in the potential condition transforming into 
a dangerous one and eventually into an accident. The 
worker’s action simply would release the hazard, or create 
one for another worker. Consequently, hazard identification, 
or the lack thereof, by workers is a most critical aspect in 
successfully implementing safety regulations and guidelines. 
While not the primary focus of this research, other factors 
like adequate personal protection equipment, proper worker 
training with the means and methods, company policies and 
mandatory guidelines are also important, and are constantly 
evolving and form the foundation for all safety training. 
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 Teaching workers to recognize that they have stepped 

into a hazardous situation (zone) is typically achieved 

through intensified and directed training or training rein-

forcement such as signage. However, workers may not con-

sider the same hazardous situation or risks in the same man-

ner, because hazard recognition is contextual and subject to 

individual judgment and experience [3, 4]. In other words, 

one worker may consider a situation hazardous while another 

worker would consider it perfectly safe. As a result, the sen-

sitivity of workers towards unsafe conditions will be differ-

ent and the tendency to work in known hazardous situations 
will depend on a worker’s risk orientation.  

 This topic has received less attention compared to other 

factors such as personal protective equipment and mandatory 

guidelines and directives that are employed in the form of 

written instructions and formal training. This research pro-

poses that assessment of hazard identification ability of 

workers is imperative in understanding the dynamics of con-
struction accidents under different situations. 

 Based on the work of [2], which proposed that workers 

must be trained to recognize hazards and how to respond to 

them in a correct manner, [1] and [3] further explored the 

need for an assessment of the process of hazard identifica-

tion. The application of Signal Detection Theory (SDT) was 

proposed for assessing construction workers occupational 

safety competencies. Although the application of SDT pro-

vided a good initial understanding of the hazard identifica-

tion process in construction, the SDT model fails to capture 

all the information because of its intrinsic binary structure. In 

particular, SDT works on a yes/no (i.e. signal/noise) para-

digm assuming it is possible to have two distinctively clear 

states.  

 This paper considers the use of fuzzy SDT, developed 

[4], as a means to expand the applicability of conventional 

SDT analysis to real world construction settings where the 

definition of a signal event is non-dichotomous. Basically, in 

fuzzy SDT, the binary definition of a signal is fuzzified by 

allowing an observer to assign non-binary membership de-

grees to a particular signal. Use of fuzzy SDT is justified 

given that real world situations are not always clearly de-

fined, with every decision making task having uncertainties 
involved. 

 The specific aims of this research were as follows: 

1. Introduce a fuzzy-based SDT method to assess a 
worker’s ability to identify occupational hazards. 

2. Demonstrate the fuzzy SDT method by designing and 
conducting a survey to assess construction workers’ 
perception of safety, specific to the risk of fall acci-
dents.  

 A brief description of prior research efforts in construc-
tion safety and SDT follows. Application of the proposed 
method is demonstrated using a study involving 30 structural 
steel workers. Results from the sample of 30 ironworkers are 
presented. A comparison between conventional SDT and 
fuzzy SDT and, reflection on the results concludes the paper. 

 This paper is not reporting on a specific finding regarding 
hazard identification ability amongst the population of work-
ers surveyed in the research. Rather, this paper presents pre-

liminary results of a new method that could possibly aug-
ment assessment of hazard identification abilities of workers.  

BACKGROUND 

Construction Occupational Safety and Health  

 Various parties have made efforts to reduce injuries and 
fatalities in construction and other work sectors by develop-
ing or implementing prevention plans and techniques [5-11]. 
These efforts have concentrated on managerial prevention 
plans, safety program implementation, and worker safety 
training [12-14].  

 To aid in identifying the underlying root causes behind 
accidents, construction accident causation models were pro-
posed in the literature by a handful of researchers. McClay’s 
‘universal framework’ [15, 16] identifies three key elements 
of accidents: hazards, human actions, and functional limita-
tions that are exceeded in the case of an accident. Hinze’s 
distraction theory [17] argues that production pressures or 
other stress factors can distract workers from the hazards and 
increase the probability of accidents. The ‘constraints-
response’ model [14] illustrates that any project condition or 
management decision (distal factors) can cause responses 
that create inappropriate conditions or actions (proximal fac-
tors) that may lead to accidents. The root cause analysis 
model by [18] identifies three general root causes—
management deficiencies, training, and workers’ attitude. 
[19], proposed eight root causes: lack of proper training, 
safety equipment not provided deficient enforcement of 
safety, unsafe equipment, method, or condition, poor safety 
attitude, and isolated deviation from prescribed behavior. It 
was proposed in [20] that an accident causality model 
(ConCA), should consider three influence hierarchies in con-
struction accidents, namely, immediate accident circum-
stances, shaping factors, and originating influences. 

 Despitethe contributions of construction accident causa-
tion models to understanding the accident process, none ade-
quately explain the underlying causes of construction acci-
dents. The difficulty in fully explaining construction acci-
dents may be attributable to the dynamic nature of construc-
tion work and the different ways in which accidents occur 
from site-to-site. Moreover, following preset rules can be 
applied in a well-structured environment where changes are 
predictable and controllable. But this is not possible in dy-
namic conditions and environments such as those character-
istic of construction. 

 In [2], a new model was proposed for understanding con-
struction accidents by providing a link between all the 
above-mentioned models and uniting them under Ras-
mussen’s model. In his theory of “Cognitive System Engi-
neering”, Rasmussen argues that there are no objective stop 
rules for tracing the cause of events [21]. According to this 
theory, the analysis stops when an explanation makes sense 
from the analyst’s perspective. He provides five different 
perspectives and the point at which each of them is satisfied, 
limiting the range of potential causes of the error/accident. 
An important conclusion from Rasmussen’s model (Fig. 1) 
was that workers must be trained to recognize hazards, be-
cause only when they are able to identify safe and unsafe 
conditions, they would respond to perceived and actual risks 
in the correct manner. 
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 As shown in Fig. (1), the original Rasmussen’s model, 
the work environment comprises three zones: Zone I or the 
safe zone, Zone II or the hazard zone, and Zone III or the 
loss of control zone.  

 Zone I or the safe zone is enclosed by the “Boundary of 
Unconditionally Safe Behavior”, “Organizational Boundary 
to Economic Failure”, and “Individual Boundary to Unac-
ceptable Workload”[21, 22]. Zone II or the hazard zone is 
encompassed by the “Boundary of Unconditionally Safe 
Behavior” and the “Irreversible Loss of Control Boundary”.  

 Rasmussen states that due to economic or workload pres-
sures, workers will shift their work along the workload 
and/or cost gradients, respectively. Both gradients move 
from a high value to a low value. Thus, as long as workers 
remain within the safe zone, work activities can be safely 
performed. Current safety regulations and management prac-
tices are directed at keeping the workers in the safe zone. 
Rasmussen suggests that enlarging the safe zone through 
proper planning of operations will make the work safer.  

 Workers working in the Hazard zone (Zone II) are con-
sidered to be working at the edge. Hazard zone includes haz-
ards that could result in traumatic, exposure, and/or ergo-
nomic type injuries as well as fatalities. 

 Zone III in Rasmussen’s model is the loss of control zone 
where accidents occur and control is lost leading to injuries 
and/or fatalities. Rasmussen proposes that workers should be 
educated and trained on how to recover from situations en-
compassed by the third zone. This is very similar to instruct-
ing drivers on how to handle slips on icy roads. 

 Rasmussen’s theory recognizes that organizational and 
individual pressures will push people to work in hazardous 
situations. These pressures defeat efforts to enforce safe 
work rules specifically in a changing work environment such 

as in construction. Therefore, this approach emphasizes the 
need to train workers to be conscious of hazardous work 
environments and to engage the work with better planning 
and appropriate protection in a way very similar to how fire 
fighters engage hazardous situations. According to Ras-
mussen the worker is the best person to judge the boundaries 
of safe work. So instead of forcing workers to follow the 
rules and stay in the safe zone, Rasmussen suggested that 
workers be trained to: 

1. Identify in which zone they are working. 

2. Identify hazards. 

3. Prevent hazard release. 

4. Recover when hazards are released. 

 While counterintuitive, Rasmussen’s recommendation to 
train workers to deal with hazards and recover from scenar-
ios when control is lost recognizes that workers will fre-
quently and inevitably work in the hazard zone. Management 
pressures and seeking less physical, and perhaps mental, 
workload effort are realistic examples of what may push 
workers to the hazard zone. While Rasmussen still maintains 
that enlarging the safe zone will increase safety and perform-
ance, he acknowledges that there is need to tell workers what 
to do in the ‘hazard’ zone and when control is lost.  

 Stated differently, the Rasmussen model is basically ad-
vocating a similar approach to social norms marketing used 
by social scientists. Proponents of this approach maintain 
that informing people ‘what to do’ instead of the traditional 
approach of telling people ‘what not to do’ is a better way of 
achieving desired behavioural changes. For example, in-
structing college-aged adults who are also heavy drinkers not 
to drink before driving and citing the grave consequences of 
such behavior has become an overrated message that lost its 
effectiveness. Alternatively, social marketing follows a tact 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Rasmussen’s original model: Three zones of risk [2]. 

Organizational Boundary 

to Economic Failure

Individual Boundary to 

Unacceptable Workload

Boundary of 
unconditionally Safe 

Behavior

Workload  
Gradient

Cost 

Gradient

Irreversible loss 
of Control 
Boundary

Increasing Risk

Safe  
Zone 

Loss of Control 
Zone

Hazard  
Zone

 



Quantifying Workers’ Hazard Identification Using Fuzzy Signal The Open Occupational Health & Safety Journal, 2011, Volume 3    21 

where people are given instruction on what to do if they 
would like to drink – to drink moderately and have fun while 
sparing yourself and others the risks. 

 The acceptance and effectiveness of Rasmussen’s ap-
proach remains an open question that only future research 
can answer. In [2], it was recommended that future research 
efforts consider the following three areas: 

1. IN THE SAFE ZONE: Establish methods and tech-
niques to enlarge the safe zone. 

2. AT THE EDGE: Train workers on the identification 
of safe and unsafe conditions. And once in an unsafe 
condition, workers should be trained on how to re-
cover from errors. 

3. OVER THE EDGE: People will inevitably make mis-
takes resulting in loss of control. Hence, measures 
should be in place to limit the effect of this loss. 

 Of these three areas, this paper is concerned with the 
ability of workers to identify safe and unsafe conditions 
(Zone II - At the Edge). In [1] and [3], the application of 
Signal Detection Theory (SDT) for assessing a construction 
worker’s ability to identify occupational hazards was ex-
plored. However, the SDT model fails to capture the subtlety 
behind a real work situation because of its intrinsic binary 
structure (i.e. signal vs. noise). Conventional (crisp) SDT 
works on a yes/no paradigm. Construction, like many other 
industries, is a real world setting; which is not devoid of its 
share of uncertainties. To provide an accurate assessment of 
construction safety competencies, this paper investigates 
improving the SDT-based model using a Fuzzy SDT ap-
proach. 

From Crisp Signals/Responses to Fuzzy Signals/  
Responses 

 Almost all reasoning and decision-making takes place in 
the presence of some uncertainty. A certain level of compe-

tency is required in the given area to make the correct deci-
sion. There is always a relationship between physical stimuli, 
sensory response, and our ability to detect the two. Signal 
Detection Theory (SDT) provides a basis to measure this 
relationship. SDT is a method of assessing a decision making 
process when a person or a machine has to detect or recog-
nize stimuli and respond accordingly. SDT is a well-
developed psychophysical approach to quantify the ability of 
an observer to discern between signal and noise, where sig-
nal (s), is a state/stimulus in which the event of interest is 
present and, noise (n), is a state/stimulus in which the event 
of interest is absent [23, 24].  

 Two important parameters of the SDT analysis are: “Sen-
sitivity” (d’) and “Bias” (B ) of the observer. Sensitivity 
refers to how well a person can discriminate between 
whether a signal is present or absent, and response bias re-
fers to the inclination of a person to agree with the presence 
or absence of a signal. These two together explain how an 
operator would detect a stimulus and respond. 

RESEARCH METHOD 

 Despite all the functions and usefulness of the conven-
tional SDT, it fails to capture a certain amount of informa-
tion due to its binary nature. Therefore, this study used 
Fuzzy SDT, to expand the applicability of conventional SDT 
analysis to real world construction settings by application of 
fuzzy logic to responses [25]. As compared to conventional 
SDT, where the responses, ‘yes’ and ‘no’ and are represented 
as 1 and 0 respectively; in FSDT, ‘yes’ and ‘no’ are repre-
sented to the extent it is meant by the respondent, which 
could be any value between 0 and 1.  

Signal Detection Theory 

 As shown in Table 1, in a conventional SDT model, the 
worker would respond in a binary manner, either saying 
yes=1, hazard or signal present, and would stop work=0 or 
would respond no=0 (signal absent) and carry on work=1. 

Table 1. Possible Outcomes of Crisp SDT. 

Signal ‘s’ Response‘r’ Hit False Alarm Miss Correct Rejection  

H+FA+M+CR 

0 0 0 0 0 1 1 

1 0 0 0 1 0 1 

0 1 0 1 0 0 1 

1 1 1 0 0 0 1 

 

Table 2. Possible Outcomes of Fuzzy SDT 

‘s’ ‘r’ H FA M CR  

H+FA+M+CR 

0.8 0.9 0.8 0.1 0 0.1 1 

0.2 0.2 0.2 0 0 0.8 1 

0.5 0.2 0.2 0 0.3 0.5 1 

0.1 0.9 0.1 0.8 0 0.1 1 
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Both the signal and the response only take binary values. 
Even if the worker is uncertain, there is always a binary re-
sponse generated. Table 1, provides a truth table for conven-
tional SDT, wherein for all possible conditions the worker 
would yield a value that would populate only one out of the 
four outcomes, and the rest would have zero membership.  

Mechanics of Fuzzy Signal Detection  

 Fuzzy SDT, on the other hand, as shown in Table 2, rec-
ognizes that the worker response is subject to an overlapping 
membership in the two sets of ‘yes’ and ‘no’. Not all re-
sponses are distinctively clear between two states, just like 
not all stimuli are distinctively clear between two states. 
There is a degree to which an event is a signal, i.e., an unsafe 
condition, and a corresponding degree (for the same event) 
to which it is a safe condition. Accordingly, there is a degree 
to which a signal present response (or, yes this is an unsafe 
condition) is made, and a smaller degree to which the same 
response would be no, signal is absent. 

 Similar to conventional SDT, concepts of “Hit” (correct 
signal detection), “Miss” (failed to detect a signal present), 
“False Alarm” (detected a signal when none present) and 
“Correct Rejection” (decided no signal present when none 
present) are valid in the FSDT; it is their binary characteris-
tic that is discarded because of the loss of valuable informa-
tion. Hence, each event represented by a stimuli–response 
pair in FSDT belongs, with some degree, to more than one of 
the four categories used in conventional (or crisp) SDT. 
Consequently, it is possible that events would claim nonzero 
membership in more than one outcome category, as shown in 
Table 2 (‘s’= degree to which an event is a signal; varies 
from 0 to 1; ‘r’= degree to which a ‘yes’ (signal present) 
response was made; varies from 0 to 1). 

APPLICATION OF FUZZY SIGNAL DETECTION 

 In order to apply FSDT to a construction jobsite setting, 
it is important to understand the worker’s perception, which 
is therefore transformed into quantifiable data. The SDT 
literature, [1, 2] indicates that when a worker is faced with a 
hazardous situation, he or she mentally perceives the 
strength of the stimuli. Therefore, the first step would be to 
map the stimuli according to variables that describe the state 
of the world into the signal set – ‘s’, with some degree of 
membership varying from zero to one.  

 In the context of a construction site, the defining vari-
ables are severity of the state of world that inclines towards 
an unsafe condition. For example, some common stimuli-
generating situations that a worker faces are: an unprotected 
or exposed drop of more than six feet, a protruding rebar 
without a protective cap, a crane operation in close proximity 
to power lines, and a faulty steel connection. The variable in 
each of these situations would be the severity of the situa-
tion. Each situation that the worker is faced with is equiva-
lent to a mapping between 0 and 1, but there is no such sin-
gle variable that could be globally used to convert a signal 
strength to an‘s’ value. This mapping is given by the follow-
ing equation (1): [s (SW) = f (x)]. In equation (1), the value 
of ‘s’ is calculated as a function of the severity of unsafe 
condition. Since the severity does not depend upon any one 
single on-site variable, it is not possible to propose an overall 
function that includes all possible unsafe conditions on con-
struction sites. 

 The proposed method to measure in this research was a 
linear scale ranging from 0 = least severe to 10 = most se-
vere. For example, a ‘zero’ would be a condition with a very 
low likelihood of hazard release and, a ‘ten’ would be a con-
dition with a high likelihood of leading to a fatality. Labeling 
of a condition with a zero-rating as a “safe condition” was 
avoided because it would be almost impossible to prove any 
condition “absolutely harmless” on a typical construction 
job-site. However, discussion with safety managers and 
workers indicated that it would be more appropriate to rate a 
condition zero to describe it as “absolutely safe”. This does 
provide a worker with a range that has two clear extremes, 
and hence, aids in generating a more realistic response to the 
presented stimuli. The intermediate values were only whole 
numbers. The continuity of the evidence variable was not 
sacrificed and the range from 0 to 10 helped collate the 
worker’s hazard detection ability. To transform this into an 
‘s’ value, i.e., to determine its membership in the signal set, a 
factor of 0.1 was used. 

 The response generated by the worker was mapped to the 
‘r’ set with a membership ranging from 0 to 1. The response 
value (RV) is dependent upon the worker’s conviction in 
giving either responses, namely, ‘yes – signal present’ or 
‘no-signal not present’. The sole variable here is the level of 
conviction, given by equation (2) as: [r (RV) = f (y)]. In 
equation (2), the value of ‘r’ is calculated as a function of the 
worker’s level of conviction. For the fuzzy SDT model to 
perform effectively, it is desirable to define both ‘s’ and ‘r’ 
on similar (if not identical) scales, hence a linear scale simi-
lar to ‘s’ was used that would produce the variable value 
ranging from 0 to 10. The factor used for transforming the 
response to its r-membership is also 0.1. 

Data Collection 

 The ideal method to determine and analyze worker re-
sponses would require real time assessment on a construction 
job-site. The worker, when faced with both states, safe and 
unsafe, would make a decision based on his/her understand-
ing of the physical context and his/her analysis of the risk 
involved. Though this approach would yield data in its native 
state, it is highly dangerous and practically not feasible. 
Hence the alternative method adopted is a survey that repre-
sents various site conditions pictorially. 

 Based on the safety standards set by agencies like OSHA 
(Occupational Safety and Health Administration), NIOSH 
(National Institute for Occupational Safety and Health) and 
ANSI (American National Standards Institute), there were 
potential conditions selected that could result in fall acci-
dents. There were other safe conditions also selected to bal-
ance the overall survey and provide the subject with a realis-
tic mix of questions. It was very important to present these 
scenarios, as close as possible to how a worker encounters 
them on site. In order to achieve this, the conditions were 
further short-listed to only retain those that could be pre-
sented visually, in the form of real photographs. This would 
enable the worker to select the most natural answer and cap-
ture a truer hazard identification ability of the worker.  

 The subject would select a value for the two questions on 
each of the eighteen conditions, resulting in the ‘s’ and ‘r’ 
pair. Each worker according to his/her understanding first 
selected a value based on how safe he/she thought the pre-
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sented condition was. This value is multiplied by 0.1 to yield 
the membership in the signal set, i.e., ‘s’ value. Similarly, the 
second question (how sure is the worker) calls for a response 
from 0 to 10, which results in the ‘r’ value, i.e., membership 
in the ‘Yes-signal present’ set. 

 The following example will illustrate how the values of 
‘s’ and ‘r’ are determined. In this example, a worker is pre-
sented with a situation as shown in Fig. (2). In the survey, 
the condition was specifically explained above the image, 
which showed that the ironworker was connecting fourth 
floor primary beams without a protected edge and decking in 
place on the lower floors and, that the ironworker was wear-
ing fall protection (fall arrest) gear. The worker presented 
with this situation was asked two questions and was required 
to select one answer from the eleven possible values under 
each question. 

 The first question, namely, “How safe is this?” inquired 
about the strength of the signal, where the worker had to tell 
the two states apart – noise and signal. By expressing how 
safe the situation is, the worker provided a value for calculat-

ing the sensitivity or the discriminability with which he/she 
had identified the hazard. 

 The second question inquired, “How sure are you about 
your answer?” The response to this question indicated the 
level of conviction with which the worker had answered the 
first question. An integer value ranging from 0 to 10, where 
0 was equivalent to “completely uncertain” and 10 was 
equivalent to “absolutely sure”. The specific value selected 
reflected the response criterion of the worker towards the 
situation, indicating if the worker had used a risky or conser-
vative strategy in making his decision about the safety of the 
presented situation (see [3] and [26] for interpretation rules 
and assumptions). 

 Assuming that a worker selects 7 for the first question 
and 6 for the second one, using equations 1 and 2, the values 
for ‘s’ and ‘r’ are 0.7 and 0.6, respectively. The s and r pair 
would yield the following truth table for the four outcomes, 
as calculated using: Hit: H = min (s, r); Miss: M = max (s – 
r, 0); False Alarm: FA = max (r – s, 0); Correct Rejection: 
CR = min (1 – s, 1 – r). The results are listed in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Example to illustrate proposed methodology: Ironworker making initial connections.  
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 The varying degrees of membership under the four pos-
sible outcomes, and a cumulative score from a set of such 
questions, are then used to calculate the values for the two 
primary parameters, sensitivity (d') and response criterion 
( ). 

 Sensitivity (d’) measures how well a person can dis-
criminate between whether a signal is present or absent. This 
is represented by the difference between the means of the 
signal and noise distributions. The inclination or bias of a 
person to say 'Signal Present' in response to a stimulus is 
captured by the response criterion ( ). These two parameters, 
d' and , are not connected to ‘s’ or ‘r, but are indirectly af-
fected by their values. 

 Table 4 gives a sample list of a twelve question survey 
with one worker’s responses, providing an ‘s-r’ pair for each 

question. The calculations for arriving at the two parameters, 
d' and  are also shown (the detailed equations are found in 
[26]). The average d' sensitivity or the discriminability index 
of each worker can be understood as the extent of separation 
between the two states (bell curves) of signal and noise. In 
Signal Detection Theory, a HR (hit rate)-FAR (false alarm 
rate) pair of 0.99 - 0.01, yields an effective ceiling for 
sensitivity, where d' = 4.65. An average performance would 
result in d' = 1.00. 

RESULTS 

 The research focused on ironworkers and falls, as a dem-
onstration example, due to the high risk of accidents. The 
survey presented eighteen on-site conditions that an iron-
worker would typically be faced with during the steel 

Table 3. Example to Illustrate Proposed Data Analysis Method 

s r H FA M CR  

H+FA+M+CR 

0.7 0.6 0.6 0 0.1 0.3 1 

Table 4. Sample Calculations Based on Worker Response (s-r Pair) 

Q Worker response Calculations 

 s r H 

min(s, r) 

M 

max(s-r, 0) 

FA 

max (r-s, 0) 

CR 

min(1-s, 1-r) 

Sum Check 

H+M+FA+CR) 

(1-si ) 

1 0.6 0.4 0.4 0.2 0 0.4 1 0.4 

2 0.8 0.5 0.5 0.3 0 0.2 1 0.2 

3 0.2 0.1 0.1 0.1 0 0.8 1 0.8 

4 0.2 0.1 0.1 0.1 0 0.8 1 0.8 

5 0.3 1 0.3 0 0.7 0 1 0.7 

6 0 0 0 0 0 1 1 1 

7 0.6 0.5 0.5 0.1 0 0.4 1 0.4 

8 0.9 0.8 0.8 0.1 0 0.1 1 0.1 

9 0.2 0.6 0.2 0 0.4 0.4 1 0.8 

10 0.4 0.5 0.4 0 0.1 0.5 1 0.6 

11 0.7 0.8 0.7 0 0.1 0.2 1 0.3 

12 0.6 0.5 0.5 0.1 0 0.4 1 0.4 

 5.5 5.8 4.5 1 1.3 5.2  6.5 

 

HR 

(Hi) / (si) 

MR 

(Mi) / (si) 

FAR 

(FAi) / (1-si) 

CRR 

(CRI) /  (1 – sI) 

Sum Check 

HR + M 

Sum Check 

FAR + CRR 

0.82 0.18 0.20 0.80 1.00 1.00 

d’ = z(HR) – z(FAR)  = Y(HR)/Y(FAR) 

1.76 0.9319 

HR = (Hi) /  (si) for i = 1 to N                    MR =  (Mi) /  (si ) for i = 1 to N 

FAR =  (FAi) /  (1 – si) for i = 1 to N        CRR =  (CRi) /  (1-si) for i = 1 to N 
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Table 5. Calculation for Sensitivity (d') and Response Criterion ( ) for all 30 Workers 

Hit Rate FA Rate Sensitivity Bias Worker # 

HR FAR 

Z (HR) Z (FAR) 

d’ 

Y (HR) Y (FAR) 

 

1 1 0.95 3.80 1.62 2.18 0.00 0.11 0.00 

2 0.95 0.49 1.61 -0.03 1.64 0.11 0.40 0.27 

3 0.94 0.65 1.56 0.37 1.18 0.12 0.37 0.32 

4 0.97 0.79 1.84 0.79 1.04 0.07 0.29 0.25 

5 0.90 0.40 1.28 -0.25 1.53 0.18 0.39 0.45 

6 0.95 0.48 1.67 -0.04 1.71 0.10 0.40 0.25 

7 0.98 0.61 2.01 0.27 1.74 0.05 0.38 0.14 

8 0.89 0.38 1.25 -0.30 1.54 0.18 0.38 0.48 

9 0.95 0.51 1.69 0.01 1.67 0.10 0.40 0.24 

10 0.99 0.74 2.29 0.66 1.63 0.03 0.32 0.09 

11 0.83 0.24 0.97 -0.71 1.68 0.25 0.31 0.81 

12 0.93 0.45 1.47 -0.21 1.59 0.14 0.40 0.34 

13 0.87 0.51 1.13 0.03 1.10 0.21 0.40 0.53 

14 0.97 0.95 1.94 1.66 0.28 0.06 0.10 0.60 

15 0.85 0.42 1.05 -0.19 1.24 0.23 0.39 0.59 

16 0.91 0.59 1.37 0.24 1.14 0.16 0.39 0.40 

17 0.96 0.55 1.80 0.13 1.67 0.08 0.40 0.20 

18 0.94 0.67 1.56 0.45 1.11 0.12 0.36 0.33 

19 0.92 0.47 1.42 -0.09 1.50 0.15 0.40 0.37 

20 1.00 1.00 3.80 3.80 0.00 0.00 0.00 1.00 

21 0.85 0.44 1.04 -0.15 1.19 0.23 0.39 0.59 

22 0.86 0.36 1.06 -0.35 1.41 0.23 0.38 0.60 

23 0.87 0.40 1.14 -0.26 1.40 0.21 0.39 0.54 

24 0.83 0.22 0.97 -0.76 1.73 0.25 0.30 0.84 

25 0.93 0.24 1.50 -0.71 2.21 0.13 0.31 0.42 

26 0.84 0.28 1.01 -0.59 1.60 0.24 0.34 0.71 

27 0.93 0.56 1.49 0.16 1.33 0.13 0.39 0.33 

28 0.93 0.71 1.47 0.55 0.92 0.14 0.34 0.40 

29 1.00 0.73 3.80 0.60 3.20 0.00 0.33 0.00 

30 1.00 0.71 3.80 0.56 3.24 0.00 0.34 0.00 

 

Average 0.92 0.54   1.41   0.43 

Min 0.83 0.22   0.00   0.00 

Max 1.00 1.00   3.24   1.00 

Std. Dev 0.054 0.209   0.649   0.250 
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erection phase of any project. Because the survey already 
targeted a specific group (ironworkers), there was no attempt 
at further reducing the sample. All ironworkers were ran-
domly included, with no restriction on age, gender, or years 
of experience in the industry. The population surveyed com-
prised of randomly selected ironworkers whose average age 
was 35 and average construction experience was six years. 
All ironworkers were familiar with safety standards and had 
undergone some form of safety training, pertaining to their 
company policies. Therefore, it was expected that they had 
sufficient understanding of the conditions presented. Thirty 
complete surveys were received, which was reasonably large 
to allow the use of normal distribution to analyze the data. 
The survey can be found in [26].  

 The following pages present the survey results, with the 
basic calculations. The results of the 30 workers using fuzzy 
SDT is shown in Table 5. Analysis of the survey data is 
shown in Table 5, which indicated a high variation in the 
response to the first question - ‘how safe is this condition?’ 
This explains a variation in the manner each of the 30 sub-
jects perceived the 18 conditions presented to them in the 
survey. Nonetheless the subjects were confident of their re-
sponses, which was confirmed by the higher mean for the 
responses to the second question – ‘how sure are you about 
your answer?’ 

 As shown in Table 5, the average d' (sensitivity) value for 
this group of ironworkers was found to be 1.41 (standard 
deviation = ±0.649), which based on SDT literature [27], 
shows an above average sensitivity to differentiate and detect 
an unsafe condition from a safe one. There are only three 
workers (#14, 20 and 28) whose d' value falls below 1.00. 

 In addition to analyzing the group of the 30 workers as a 
whole, it is instructive to consider the results of a single iron-
worker. Worker #17 is selected (at random) for further 
analysis. This worker scored a HR and FAR pair of 0.96 and 
0.55 respectively, based on the mapping of ‘s’ and ‘r’ values. 
These can be better understood with the help of Fig. (3). 

 For worker’s 17 sensitivity (separation between the two 
bell curves), there is a high Hit Rate recorded, but the False 
Alarm Rate is also very high, indicative of the conservative 
strategy adopted by the worker yielding a very low ‘response 

criterion’ value (the vertical divide). The conservative bias 
pulls the divide towards the noise curve and explains the 
high FAR. In the same manner a distribution could be drawn 
out for each of the 30 workers that would provide informa-
tion as to how well they are able to discriminate between the 
two states (how sensitive they are) and what strategy they 
adopt (risky or conservative). 

 The decision-making strategy of the workers is reflected 
by the response criterion or the bias of the group. As shown 
in Table 5, the average response criterion measure  for this 
group of 30 workers was 0.43 (standard deviation = ±0.25). 
This indicates that the group had a conservative strategy, 
which means they tended to have a high false alarm rate, i.e., 
consider some of the safe conditions as unsafe. Although the 
workers produce a high hit rate, they also produce a high 
number of false alarms.  

 In construction, a conservative strategy is definitely bet-
ter as compared to a risky one, since a risky strategy would 
result in high misses, which translates to high accident costs, 
productivity loss and lower morale. With the proposed fuzzy 
SDT approach and gathered data using a well-defined sur-
vey, the resulting analysis is an accurate reflection of the 
way these ironworkers perceive safety on site (see [3] and 
[26] for interpretation rules and assumptions).  

 The fundamental principle of fuzzy SDT is the non-
binary characteristic of signal and response. The ironwork-
ers’ ability to identify a signal is mapped in the two-step 
process, represented by the two questions with each condi-
tion. The 18 conditions presented were a good mix of: 

• Absolutely safe conditions, conforming to standards. 

• Conditions that were clear violations of all safety 
standards and would lead to a serious accident. 

• Conditions that violated safety standard but were not 
so clearly identifiable. These could result in injuries, 
minor and/or major.  

 For example, question # 3 from the survey presents a 
condition where the distance between beams tied on a multi-
ple rigging assembly for erection is 6 feet. The required 
standard separation between beams in a multiple rigging 
assembly as set by OSHA is 7 feet. This standard is based on 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Distribution of noise and signal for Worker #17. 



Quantifying Workers’ Hazard Identification Using Fuzzy Signal The Open Occupational Health & Safety Journal, 2011, Volume 3    27 

the fact that when an ironworker is standing on a beam and 
the crane lowers the assembly, the 7 feet distance would 
avoid getting the worker hit on the head (when standing up-
right) as the worker lowers the first beam into position. So, 
this is potentially a dangerous condition presented to the 
ironworkers, but depending upon how tall each worker was, 
their perception of threat could vary. The degree of danger 
perceived by the worker, assuming they are aware of the 
standard from training, is captured by the second question. 
Fig. (4) presents a break up of individual responses to this 
condition. More details can be found in [26]. 

DISCUSSION 

Comparing Crisp to Fuzzy SDT 

 To facilitate the comparison of conventional and fuzzy 
SDT, the workers’ responses were analyzed using conven-
tional SDT. Analysis of d' using conventional SDT resulted 
in a mean of 1.97 with standard deviation of ±1.10. This is 
higher than the sensitivity found using fuzzy SDT, and with 
a noticeably higher standard deviation as well. Similarly, the 
measure of response criterion using conventional SDT was 
0.61 on average with a standard deviation of ±0.3. Fig. (5), 
which show a comparison of d' and the response criterion 
using FSDT with the same parameters when calculated with 

conventional SDT. The figures clearly show that the sensi-
tivity and response criterion derived using conventional SDT 
shows a sharp increase in the spread for the 30 subjects 
compared to same parameters derived from fuzzy SDT. 

 The preceding analysis indicates that the data analysis 
using Fuzzy SDT differs significantly from that based on 
conventional SDT. The significance of the difference in val-
ues obtained for either parameters d' and response criterion 
lies in the final characterization of a worker’s ability to iden-
tify hazards. For example, a worker may be regarded as hav-
ing high sensitivity and conservative response criterion 
based on conventional SDT while fuzzy SDT could show 
him/her with a low sensitivity and risky response criterion. 
The wrong assessment may lead to an unnecessary course of 
action, such as less (more) training. 

 While the pilot sample size used is quite small, it is still 
possible to infer that for the same subject, sensitivity and 
response criterion values are very different between the two 
methods. The FSDT model clearly captures the workers sen-
sitivity and response criterion (in the form of s-r pairs). The 
s-r pair then leads to the HR and FAR which on further sta-
tistical treatment result in the d' and  values. In crisp SDT, 
the binary setup forces a worker’s response to the same ques-
tions into a single outcome set (H, M, FA, and CR). It is dur-

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). ‘s’ and ‘r’ responses to Q# 3 by all workers.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Sensitivity (d') distributions for Fuzzy SDT v/s Crisp SDT (left); Response criterion distributions for Fuzzy SDT v/s Crisp SDT 

(right). 
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ing this forced classification that the workers’ ideal measure 
of their ability to sense a signal is confounded. 

Expert Analysis 

 Four construction professionals were interviewed from 
the steel industry in mid and southeast Michigan:  

• Engineering and Safety Manager for a leading steel 
fabrication corporation. 

• Steel Erection Foreman (2) from two different steel 
erection subcontractors. 

• Safety Director at a job site with a leading general 
contracting company. 

 The names of these individuals and companies are not 
disclosed for confidentiality. The discussions were based on 
the survey questionnaire. An important observation from 
these discussions was that an average ironworker on any job-
site is debriefed before the start of any project and updated 
with the most current safety regulations (OSHA, MIOSHA). 
Each project has its own safety and emergency plan drawn 
out and thoroughly discussed with all foremen, at the start of 
the project (or when that trade starts on the project). 

 There was a detailed discussion on the 18 conditions pre-
sented in the questionnaire and the following comments were 
received: 

• Question #3 pertaining to multiple lift rigging proce-
dure for erecting beams requires the separation dis-
tance between two beams to be 7 feet. This is not al-
ways practiced on site, though if noticed by a safety 
professional it would account to a violation. The 
height of the crewmembers actually placing the beam 
in place is the critical dimension, and it is common 
these beams are separated by only 5.5 to 6 feet. This 
is an acceptable practice amongst the erection crew. 
They said they don’t expect someone to stand be-
tween two rigged beams so they don’t pay attention to 
the 7 feet separation, albeit they are aware of it. 

• Though question #6 (see picture in Fig. 1) presents an 
unsafe condition as per codes, the erection crew, if 
completely tied off and fastened by a fall arrest, did 
not consider working on an unprotected edge with a 
drop of more than 3 floors to be unsafe. 

• Question #8 presents a condition where a beam is 
connected with a single bolt at each end and the 
choker is released (it is detailed

1
 in much later). The 

codes clearly refer to this as a violation. This regula-
tion has been in effect for over 35 years and some de-
signers are believed to have developed a particular 
detail whereby this would be a completely safe prac-
tice. It has not yet been accepted by the safety agen-
cies, but there is considerable momentum, that pre-
dicts a change is about to happen. 

• Question #14 presents a condition whereby only three 
out of the four anchor rods for a steel column are 
tightened off with nuts. This again is a violation of 

                                                
1‘Detailing’ in steel erection refers to the process of putting in the remaining nuts and 
bolts, and tightening the joint up. When the steel piece is set for the first time, it is not 

completely detailed (only part nuts/bolts are put in place). This process allows for the 
erection crew to make minor adjustments to plumb the structure up. 

the codes, but a number of industry professionals ac-
cept the fact that on the job site, if there is one anchor 
rod damaged, many a times the column is still 
erected. They return to the fourth rod and repair it 
later. 

 All these scenarios are an indication of a gap in the safety 
regulations/standards and prevalent industry practices for 
steel erection. These are subtleties and finer nuances of the 
specialty trade that on numerous occasions transform into a 
potentially dangerous situation. Often the ironworker identi-
fies this mismatch, but based on experience and expertise 
makes the decision of carrying on with work. There is an 
urgent need to bridge these gaps and make safety training 
more meaningful and effective. The involvement of actual 
ironworkers and their foreman, a discussion/dialogue be-
tween those who define these codes and those who these 
codes are designed to protect, could be the first step in this 
direction. 

 Another useful outcome of this study is that certain 
trends begin to appear in how workers are responding to a 
certain condition. For example, the majority of the workers 
(24 out of 30) considered working on a scaffold 10 feet 
above the lower level with no fall protection as safe, while it 
is in fact unsafe per regulations. Moreover, a majority of the 
workers falsely considered some safe conditions as unsafe. 
Understanding the dynamics behind such findings will be 
invaluable for development of worker-specific training and 
revisions of safe work rules.  

 The study results illustrate how the sensitivity and risk 
orientation of a worker can be determined. This information 
sets a benchmark against which the effectiveness of new 
training can be assessed. Essentially, this information would 
make it possible to determine if a worker’s sensitivity and 
risk orientation towards safe and unsafe conditions in-
creased, decreased, or remained unchanged as a result of the 
training. The use of fuzzy SDT proves to be a reasonable and 
accurate method to measure a worker’s ability to judge the 
boundary beyond which work is no longer safe. 

RESEARCH LIMITATIONS 

 This study covered only those aspects of fuzzy signal 
detection that would have immediate application for the pur-
poses of identification of occupational hazard in the con-
struction industry. For example, the definition of a signal and 
the generated response could have temporal and contextual 
variability, which implies dependence of signal definition on 
situation specific factors and variation of signal strength over 
time [4].  

 The survey methodology developed for this research has 
its own limitations. Once the surveys were distributed to the 
subjects there is no definitive way of concluding that they 
would behave in the same manner as they perform on the 
survey, if they were exposed to the actual condition. The 
survey questionnaire attempted to put as much detail, in 
terms of explaining the physical on site condition, with the 
help of photographs and text. In a few questions the visuals 
do not represent the question in its entirety, or may seem to 
fall short of the condition as explained by the text. The visual 
accompanying the text question must be an accurate explana-
tion, leaving no room for the subject to make his/her own 
assumptions.  
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 A myriad of factors influence worker hazard identifica-
tion, such as workgroup climate, experience type and length, 
etc. The determinants of worker hazard detection are not 
shaped by the attendance of a training session. The paper 
was concerned with the point in time where the worker faces 
a hazard and whether he/she is able to detect it. The schema 
the worker goes through to reach that decision, i.e., why the 
worker considered a situation as safe or not, was out of the 
scope of the paper. 

 Potential biases introduced by the survey/administrator, 
potential biases that would exist in the sample population, 
methods to ensure internal, external, and construct validity, 
and potential implications on the reliability of the results 
were not discussed in this paper. This is mainly because the 
paper is not intended to add a survey to the knowledge base 
but rather explore how fuzzy signal detection theory can be 
adapted to better quantify hazard identification in highly 
subjective situations.  

FUTURE RESEARCH DIRECTIONS 

 Based on the current research findings and limitations, 
future research problems to consider are: comparison be-
tween the outcomes of crisp SDT and fuzzy SDT when deal-
ing with sensitivity and bias; experimentation with different 
permutations and combinations of mapping ‘s’ and ‘r’ values 
(for example, fuzzy SDT analysis can be extended to cases 
in which the signal is fuzzy, but the response is discrete or 
binary); experimentation with population from other trades 
and other geographic regions thereby yielding a much larger 
and richer data set; designing a survey for the officials who 
define safety standards, which would help get information as 
to how well they are aware of industry practices onsite.  

CONCLUSION 

 Safety training is only as good as the worker’s ability to 
detect an unsafe condition when he/she is presented with 
one. Crisp SDT as implemented by [1] and [3] provided a 
good tool for an assessment of this ability. However, the 
assumptions of the conventional SDT model may not be ap-
propriate for construction-specific situations.  

 Preliminary results presented in this study indicate that 
fuzzy SDT captures useful information that would have oth-
erwise been lost with crisp SDT. It appears that fuzzy SDT 
provides a finer resolution of a worker’s ability in identify-
ing hazardous conditions on a construction jobsite. Overall, 
this model could be used in any real world setting that in-
volves assessment of a decision making process. 

 Crisp SDT had been applied earlier to assessment of 
workers’ occupational safety competencies. This research 
further strengthens the analysis by proposing the use of 
fuzzy SDT. SDT in its original form is as robust a theory as 
any other. Fuzzy SDT only improves its application. The 
group of ironworkers surveyed was found to have an above 
average sensitivity, i.e., they were able to differentiate and 
detect an unsafe condition from a safe one. The group had a 
conservative strategy, whereby; they would even consider 
some of the safe conditions as unsafe, yielding a high false 
alarm rate. The outcome of the survey could have been very 
different, based on the sample of ironworkers selected or if 
the survey questions were altered. 

 The intent of this research was to demonstrate an accu-
rate and befitting assessment of the workers ability to iden-
tify a hazard. The survey questionnaire provides a solid 
foundation for next steps to develop valuable, reliable tools 
for assessment of safety competency. With further develop-
ment and testing, it can be used in current safety training in 
the construction industry.  
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