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Abstract: The loss of calcium homeostasis in the lens of the eye appears to be a factor contributing to lens opacity. In the 

human lens, calcium homeostasis depends on the Ca
2+

-ATPase pumps found only in the epithelium. A plasma membrane 

calcium pump, PMCA2 is upregulated in human cataractous lenses. To determine if oxidation caused the plasma mem-

brane Ca
2+

-ATPases (PMCA) or sarcoplasmic/endoplasmic Ca
2+

-ATPases (SERCA) to become upregulated, we cultured 

a human lens epithelial cell line, in the presence of hydrogen peroxide. We observed an increase in PMCA1, PMCA2 

SERCA2b and SERCA3 mRNA levels and protein expression with increasing hydrogen peroxide concentrations and 

treatment times. Hydrogen peroxide caused a rise in the intracellular calcium which could be an initiating factor in the 

concerted upregulation of PMCA1 and SERCA3. Our data support the idea that oxidative stress could contribute to a se-

lective rise in PMCA/SERCA expression in human cataractous lenses. 

INTRODUCTION 

 In the lens, cellular calcium homeostasis is attained by a 
delicate balance between passive inward movement from the 
extracellular milieu through membrane channels [1], extrusion 
by plasma membrane calcium ATPase (PMCA) [2], sodium 
calcium exchange [3], and internal sequestration by sarco-
plasmic/endoplasmic reticular calcium ATPase (SERCA) [4]. 
There are equal amounts of the PMCA and SERCA proteins 
in the lens [5]. In the human lens, the Ca

2+
-ATPase pumps are 

found only in the epithelium [6-9], a single layer of cells on 
the anterior surface beneath the lens capsule. Human lens fiber 
cells contain few or no intracellular organelles and no Ca

2+
-

ATPase [6,7,9]. It is important to define the role of this pump 
in the human lens, especially in light of the study showing that 
Ca

2+
-ATPase activity is 50% lower in human cataractous 

lenses [6]. 

 Oxidation is a major factor in cataract development [10-
15]. The lens Ca

2+
-ATPase pumps are very sensitive to oxi-

dation [16-18] and oxidative inhibition of the lens Ca
2+

-
ATPase can be reversed [18], however, inhibition of SERCA 
and PMCA may occur through a different mechanism 
[19,20]. Elevated intracellular calcium induces the upregula-
tion of PMCA1 out of 4 PMCA isoforms [21], and both 
SERCA2 and SERCA3 [21,22] isoforms in an immortalized 
cell line of human lens epithelium. The oxidant hydrogen 
peroxide can lead to epithelial cell death and cataract [14,23- 
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26]. Hydrogen peroxide levels are elevated in both the vitre-
ous and lens of cataractous human lenses compared to clear 
lenses [27,28]. The expression of numerous proteins [29,30], 
including an increase in PMCA1 [31], are altered in lens 
epithelial cells treated with hydrogen peroxide. The expres-
sion of SERCA is carefully controlled and changes in 
SERCA expression may contribute to the etiology of many 
diseases including Brodie’s disease [32], Darier’s disease 
[33], and heart failure [34]. Oxidative stress reduces SERCA 
activity [35], however, it is not known if this reduction in 
activity is related to a decrease in SERCA protein or mRNA 
levels. In human cataractous lenses PMCA2 mRNA and pro-
tein levels are elevated compared to age matched clear lenses 
[36]. The purpose of this study was to determine if the ex-
pression of SERCA and PMCA isoforms are changed by 
hydrogen peroxide. 

MATERIALS AND METHODOLOGY 

 A human lens epithelial cell line (HLE B-3) was devel-
oped and provided by Andley et al. [37]. The human lens 
epithelial cells were immortalized by transfecting them with 
adenovirus 12-simian virus (Ad12-SV40) to maintain propa-
gation of the cells in vitro [38]. Cell culture conditions, chemi-
cals, membrane preparation, RNA extraction and Quantitative 
Real Time PCR (TagMan

®
, applied Biosystems, Foster City, 

CA), Electrophoresis and Western blotting and statistical 
analysis were performed exactly as described in citation [21]. 

Hydrogen Peroxide Treatment 

 To study the effects of H2O2 as an oxidizing agent on the 
lens epithelial cells, at different exposure times and with 
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different dosages, when cells were ~ 80% confluent, differ-
ent concentrations of H2O2 ranging from 10 to 200 M were 
added to the medium and cells were cultured for 4 hours. 
Untreated cells were used as a control. In a separate, but 
similar study, the cells at ~ 80% confluence were treated 
with 10 M H2O2 for 4, 8, 16 hours. Untreated cells were 
used as a control. To inhibit catalase activity, 3-amino-
triazole was added to the cell culture at 20 mM final concen-
tration. The medium was replaced every 6 hours with fresh 
medium containing 10 M H2O2 because H2O2 disappears 
from cell culture environment after 4 to 6 hours regardless of 
the presence of catalase inhibitor. Cells were analyzed mi-
croscopically with regard to their morphology and viability. 

Measurement of Intracellular Calcium 

 Intracellular ionized calcium concentration was measured 
using Indo-1 AM dye [39]. Cells were grown and treated 
with hydrogen peroxide as in the section above. A stock so-
lution of Indo-1 AM (2 mg/ml) was added to the cell culture 

medium to a final concentration of 2 g/ml. After a 30 min 
incubation at 37°C the cells were suspended with Trypsin-
EDTA, transferred to centrifuge tubes and centrifuged for 6 
min at 180  g, 21

o
C. They were then gently washed twice, 

and the suspension of cells was transferred into fluorimeter 
cuvettes for spectroscopic analysis. Fluorescence intensity 
measurements were made with an ISS PC1 photon counting 
spectro fluorometer (Champagne, IL). Cells were stirred 
gently to avoid damage and to prevent them from settling. 
The excitation fluorescence was 346 nm and the emission 
fluorescence intensity was measured at 400 nm and 475 nm. 
Fluorescence intensities were corrected for the baseline. The 
fluorescence intensity ratio I400/I475 was used to estimate 
changes in ionized calcium concentration. 

RESULTS 

 We examined the effects of hydrogen peroxide on the 
expression of PMCA and SERCA isoforms in HLE B-3 
cells. We observed an increase in PMCA1 (Fig. 1A), 

 

Fig. (1). Dose-dependence of hydrogen peroxide PMCA protein levels. (A) PMCA1, 130 kDa (B) PMCA2, 120 kDa (C) PMCA3, 134 kDa 

(D) PMCA4 129 and 133 kDa. (Top Inset) A typical Western Blot showing dose-dependent effects of hydrogen peroxide on PMCA protein 

expression in the HLE B-3 cells treated for 4 hours. An equal amount of membrane protein was loaded in each lane and subjected to electro-

phoresis. Blots were incubated with a specific PMCA antibody, then stripped and reprobed with -actin antibody (lower Western Blot insert, 

42 kDa). (Bars) Densitometric analysis of Western Blots. Results are presented as mean ± standard error of 3 or 4 separate experiments. A 

value of P  0.05 was considered significant (*). 
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PMCA2 (Fig. 1B), SERCA2 (Fig. 2A) and SERCA3 (Fig. 
2B) levels with increasing hydrogen peroxide concentration. 
Quantification of PMCA1, PMCA2, SERCA2 and SERCA3 
mRNA by quantitative real time RT-PCR (Table 1) also 
showed a does-dependent increase in the mRNA levels. 
There were no differences between the expression of protein, 
or mRNA, for PMCA3 or PMCA4 (Figs. 1C,D, Table 1). 

 In a similar study, we evaluated the effects of hydrogen 
peroxide on the PMCA and SERCA protein and mRNA lev-
els at different treatment times by both Western blot (Figs. 
2C,D and Fig. 3) and quantitative real time RT-PCR tech-
niques (Table 1). Densitometric analysis of the protein bands 
showed that PMCA1 (Fig. 3A), PMCA2 (Fig. 3B), SERCA2 
(Fig. 2C) and SERCA3 (Fig. 2D) protein levels were signifi-
cantly increased with 10 μM hydrogen peroxide treatment in 
a time- dependent manner. The quantification of the level of 
mRNA by real time RT-PCR showed that after 4, 8, and 16 
hours of hydrogen peroxide treatment, the levels of PMCA1, 
PMCA2, SERCA2 and SERCA3 mRNA increased signifi-
cantly (Table 1). The levels of PMCA3 and PMCA4 protein 
and mRNA did not change with treatment time (Table 1). 

 Cell calcium increased after 4 hours of hydrogen peroxide 
treatment (Fig. 4). The increase in cell calcium with hydro-
gen peroxide was concentration dependent and could be fit 
(Sigma Plot 8.0, SPSS, Inc., Chicago IL) to a four-parameter 
logistic equation used to measure ligand binding (r

2
 = 0.944). 

DISCUSSION 

 To evaluate the effects of oxidation on lens epithelial cell 
PMCA and SERCA expression, we used a cell line derived 
from human lens epithelial cells, HLE B-3. In this study, we 
have shown that hydrogen peroxide treatment of HLE B-3 
cells upregulates PMCA1, PMCA2 and SERCA2 and 
SERCA3 in a dose- and time-dependent manner while the 
PMCA3 and PMCA4 expression remained unchanged. In the 
present study, we treated the HLE B-3 cells with hydrogen 
peroxide to evaluate the responses of these cells to oxidative 
stress. The concentration of hydrogen peroxide used in these 
studies was in the range 10-200 μM which is only slightly 
higher than the hydrogen peroxide concentrations found in 
human cataract 1-75 μM [27,28]. Higher concentrations of 
hydrogen peroxide (> 200 μM) caused a fraction of cells to 
die. Wang et al. [40] found that 50 % of the HLE B-3 cells 
were not viable after 8 hours of treatment with 100 μM hy-
drogen peroxide due to the loss of mitochondrial function. 
We did not use “conditioned cells” that have been generated 
by gradually exposing the cells to higher concentrations of 
peroxides which causes the cells to survive in higher concen-
trations of peroxides compared to control cells [29]. These 
cells develop a complex antioxidant defense system which is 
comprised of high concentrations of catalase, gluthation-S-
transferase and regulators of metal ion concentration, such as 
ferritin and hephaestin. 

 

Fig. (2).  (A) and (B) Dose-dependence of hydrogen peroxide on SERCA protein levels. (C) and (D)  Hydrogen peroxide treatment time 

dependence of SERCA protein levels. (Top Inset) A typical Western Blot showing time-dependent effects of 10 μM hydrogen peroxide on 

SERCA protein expression in the HLE B-3 cells.  An equal amount of membrane protein was loaded in each lane and subjected to electro-

phoresis. A and C) SERCA2, 100-105 kDa, B and D) SERCA3, 97 kDa.  Blots were incubated with a specific SERCA antibody, then 

stripped and reprobed with -actin antibody antibody (lower Western Blot insert, 42 kDa).  (Bars)  Densitometric analysis of Western Blots.  
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 In our study, -actin was used as an internal control for 
protein expression and GAPDH was used as an internal con-
trol for mRNA. The expression of -actin may be influenced 
by H2O2 treatment [41]. Because the results for both mRNA 
and protein expression were consistent, the possibility that 
the controls were influenced by H2O2 is not likely. 

 Why do human lens epithelial cells have such a profound 
response to the oxidative stress which is manifested by a 
significant increase in the expression of calcium regulatory 
proteins, PMCA1, PMCA2, SERCA2 and SERCA3? The 
normal electrolyte composition of the healthy lens is 
achieved by the balance between passive ion leakage and 
active transport. Both aspects of ion regulation are compro-
mised when the lens is exposed to hydrogen peroxide [42]. 
Electrophysiological experiments have shown that shortly 
after exposing the lens to hydrogen peroxide, there was a 
significant increase in the lens passive permeability and a 
partial impairment of the lens Na/K- pump [42]. The sensi-

tivity of the lens transport pumps to the concentration of hy-
drogen peroxide changes abruptly around 100 μM. Lower 
concentrations have less effect on the ion transport pumps 
and lens ion content [42] probably because, high concentra-
tion of hydrogen peroxide (> 60 μM) overwhelm the antioxi-
dant protection system of the lens [43]. 

 The sum of lens SERCA and PMCA activity is substan-
tially inhibited by μM levels of hydrogen peroxide [18,44] 
and in light of our findings, we speculate that hydrogen per-
oxide inhibits the calcium pumps in HLE B-3 cells. After 
treating HLE B-3 cells for 3 hours with 125 μM hydrogen 
peroxide, calcium influx doubled as a result of Ca

2+
-ATPase 

inhibition or increased membrane permeability [45]. PMCA1 
was one of many proteins upregulated in HLE B-3 cells that 
were conditioned to withstand high levels of peroxide [46] in 
agreement with the present study. The fact that PMCA1 and 
SERCA3 are upregulated by hydrogen peroxide treatment as 
well as by increased intracellular calcium levels after thapsi-

 

Fig. (3). Hydrogen peroxide treatment time dependence of PMCA protein levels. (Top Inset) A typical Western Blot showing time-

dependent effects of 10 μM hydrogen peroxide on PMCA protein expression in the HLE B-3 cells. (A) PMCA1, 130 kDa (B) PMCA2, 120 

kDa (C) PMCA3, 134 kDa (D) PMCA4 129 and 133 kDa. An equal amount of membrane protein was loaded in each lane and subjected to 

electrophoresis. Blots were incubated with a specific PMCA antibody, then stripped and reprobed with -actin antibody antibody (lower 

Western Blot insert, 42 kDa). (Bars) Densitometric analysis of Western Blots. Results are presented as mean ± standard error of 3 or 4 sepa-

rate experiments. A value of P  0.05 was considered significant (*). 
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gargin treatment [21] or hydrogen peroxide treatment [45] 
indicates a concerted effort by the cells to overcome a delete-
rious peroxide-induced increase in calcium. Thus, oxidation-
induced elevated calcium levels may be an initiating factor in 
the concerted upregulation of PMCA1 and SERCA3 [22]. 

 

Fig. (4). HLE B-3 cells were treated with hydrogen peroxide for 4 

hours and the ratio of the fluorescence intensity of the calcium 

probe Indo-1 AM was used to measure changes in ionized intracel-

lular calcium. A drop in the level of I400/I475 indicates hydrogen 

peroxide treatment caused intracellular calcium to rise. We estimate 

that calcium rose from 120 nM to 160 nM with 200 μM H2O2 

treatment. Data are presented as mean ± standard error. Numbers 

next to the data points are the number of separate experiments 

 The fact that PMCA2 was upregulated in human catarac-
tous lenses [36] and in hydrogen peroxide treated HLE B-3 
cells in this study, but not by thapsigargin [21], a plant de-
rived natural compound that inhibits SERCA and elevates 
intracellular calcium, points to regulatory factors for PMCA2 
other than calcium. Similarly, SERCA2 is upregulated with 
H2O2 treatment, but not up regulated by a thapsigargin in-
duced increase in intracellular calcium. What the regulatory 
factors regulate are and whether other stresses regulate cal-
cium pump expression remains to be determined. In previous 
studies [8,21,22] we made the assumption that we were 
measuring the protein expression of SERCA2b since this 
alternatively spliced isoform is expressed in all cell types 
and SERCA2a has been found only in muscle tissue. Until 
this assumption is tested with antibodies specific for  
 

SERCA2a and SERCA2b, we refrained from making the 
distinction between the alternatively spliced isoforms, a and 
b, of SERCA2. The 120bp nucleotides sequence that we 
used for quantitative real time PCR is specific for SERCA2b 
mRNA [22] and the partial sequence of the 270 bp fragment 
from SERCA2b PCR product is 100% homologus to the 
sequence encoded region from 2864-2983 bp of the human 
SERCA2b gene (M23115) [22]. In this study, mRNA spe-
cific for SERCA2b and protein expression for SERCA2 fol-
low similar patterns of expression. 

 Why PMCA1 and PMCA2 are upregulated by hydrogen 
peroxide treatment and PMCA3 and PMCA4 are not is a diffi-
cult question to answer. PMCA isoform diversity, function 
and distribution have been reviewed [47]. As pointed out in 
the review [47], determining the function of individual iso-
forms is extremely difficult because usually more than one 
isoform is expressed in a tissue and there are no inhibitors 
specific for any of the PMCA isoforms or splice variants. 
Compared to PMCA4, PMCA2 is active at lower calcium, 
ATP and calmodulin concentrations [47-49], so in an oxida-
tively stressed cell with a low ATP concentration, expression 
or PMCA would be advantageous over the expression of 
PMCA4. Another advantage of selectively upregulating 
PMCA2 rather than PMCA3 is that PMCA2 has a 50 fold 
higher affinity for calmodulin than PMCA3 which is virtually 
a calmodulin-independent pump [47,50]. A complication to 
these speculations is that we did not quantify the over 30 
splice variants of the PMCA’s and alternative splicing can 
impact the function of a PMCA isoform. For instance com-
pared to the b splice form, the a splice form exhibits lower 
calmodulin binding and activation, lower calcium affinity and 
lower protein kinase C phosphorylation [47,49]. 

CONCLUSIONS 

 Under a wide range of treatment times and concentra-
tions used in this study, H2O2 did not decrease the expression 
of any of the Ca

2+
-ATPase isoforms measured, and for some 

isoforms, the expression of Ca
2+

-ATPase increased. The 
upregulation of SERCA after 4 hours of H2O2 treatment in-
dicates that Ca

2+
-ATPase activity measurements in human 

lenses need to be interpreted cautiously since human lenses 
are often collected 4-24 hours post mortem. Our data suggest 
that oxidative stress could contribute to the rise in the level 
of PMCA2 expression in human cataractous lenses com-
pared with age matched clear lenses [36]. 

 

Table 1. PMCA and SERCA mRNA Expression Versus Treatment Time and H2O2 Concentration 

 

 4 hr, 10 μM  8 hr, 10 μM  16 hr, 10 μM  4 hr, 10 μM  4 hr, 100 μM  4 hr, 200 μM  

PMCA1 mRNA 1.8 ± 0.2  2.2 ± 0.3 3.3 ± 0.3 1.8 ± 0.3 2.4 ± 0.2 3.0 ± 0.3 

PMCA2 mRNA 1.5 ± 0.2 2.0 ± 0.3 2.5 ± 0.2 1.6 ± 0.1 2.0 ± 0.2 2.9 ± 0.3 

PMCA3 mRNA 1.1 ± 0.2 1.2 ± 0.2 1.2 ± 0.1 1.2 ± 0.2 1.2 ± 0.2 1.3 ± 0.3 

PMCA4 mRNA 1.1 ± 0.2 1.1 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 1.1 ± 0.2 1.2 ± 0.2 

SERCA2 mRNA 1.5 ± 0.2 2.1 ± 0.2 2.9 ± 0.3 1.9 ± 0.2 2.4 ± 0.3 3.4 ± 0.3 

SERCA3 mRNA 1.6 ± 0.3 2.0 ± 0.2 3.1 ± 0.3 1.8 ± 0.3 3.0 ± 0.3 3.4 ± 0.4 

PMCA1 and 2 and SERCA 2 and 3 are statistically different, p < 0.05. 

Data are average ± standard error of the mean, n=3-4. 
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