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Abstract: This review is written for the generalist to provide an understanding of the application of genetics to the care of 

patients with glaucoma and the broader concepts of personalized medicine. More specifically, the review will link 

advances in the genetics of glaucoma with the concepts of pharmacogenetics and its potential to improve patient care. 
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PHARMACOGENETICS 

 Genetic variation contributes to an individual’s response 
to human disease. This variation also underlies the response 
to therapy, including possible adverse effects. These are the 
central tenets of pharmacogenetics. Some health care leaders 
view pharmacogenetics as providing the potential to create 
personalized prescriptions; with the opportunity to improve 
patient compliance, reduce adverse events, and reduce the 
cost of managing chronic disease [1]. As a chronic disease, 
glaucoma seems an ideal target to apply the concepts of 
pharmacogenetics: creating a personalized prescription of 
treatment which encourages compliance, minimizes adverse 
events and is cost-effective. 

 Kalow and Gunn [2] recognized that some patients, when 
administered succinyl choline prior to electroconvulsant 
therapy, had longer lasting effects and apnea tied to their 
level of cholinesterase. This observation was perhaps a 
starting point for the discipline of pharmacogenetics and 
exemplifies the fact that some patients may experience a 
variable or irregular response to a regular treatment. These 
irregular responses are due to genetic differences in between 
patients. In this example, the irregular response to succinyl 
choline was determined at a genetic level; more specifically, 
the genetically determined pseudocholine esterase deficiency. 
Personalized medicine based on genetic principles, may not 
only avoid failures of therapy but also help prevent adverse 
drug reactions. In an another example, we might consider 
pre-treatment testing for glucose-6-phosphate dehydrogenase 
(G6PD) deficiency in individuals for whom primaquine or 
chloroquine malaria prophylaxis will be administered – 
trying to avoid the potential adverse side effects of the drug 
in a genetically at-risk population. Individuals with G6PD 
deficiency are at risk of developing an acute hemolytic 
anemia when these drugs are given. 

 In an editorial by the leadership at Duke University [3], 
these words were used: “Information systems can now draw 
meaningful statistical inferences pertinent to each individual 
from massive data sets that include genomic data, imaging  
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results, and biomarker analyses along with traditional 
clinical variables. Such evidence, made available to 
clinicians working at the point of care, can direct the most 
appropriate preventive and therapeutic actions”.

 
The authors 

of this statement included: Sanders Williams, Dean of 
Medicine at Duke University; Hunt Willard, Director of the 
Institute for Genome Sciences and Policy, a distinguished 
human geneticist and member of the Secretary of Health and 
Human Services Advisory Committee on Genetics, Health 
and Safety; and Ralph Snyderman, the Chancellor of the 
University. They challenged other medical centers to adopt a 
personalized care model targeting the care of high-risk 
individuals, and reducing the cost of health care. Larger 
health care centres and organizations treat patients with 
uncommon and common chronic diseases. Patients’ response 
to therapy may be determined by genetic factors just as their 
likelihood of disease and the severity of disease are also 
genetically determined. Clinical research now has access to 
an array of genetic tools to study of complex or common 
traits, and our challenge as clinicians will be to use these 
tools to improve the management of patients. 

 The US Secretary of Health’s report on Pharmacogenomics 
(see web resources) estimates that by 2020 there will be 134 
million Americans with chronic disease. Further a small 
percentage of the US population represents the majority of 
health care costs and these costs are directed primarily 
towards the care of chronic disease. The report expressed 
concern that effective treatments for chronic disease are 
under-utilized. Fifty percent of patients on chronic treatment 
discontinue therapy after 1 year. The future may try the 
application of genetic tools to improve the care of these 
patients. 

THE IMPORTANCE OF FAMILY HISTORY 

 The US Surgeon General has undertaken to educate the 
public on the importance of genetic make-up and the health 
risks one may encounter in a life time as a result of one’s 
genetic constitution. A free web-based tool is available for 
anyone in both English and Spanish, to collect a family 
history by accessing the web. In preparing such a document, 
a patient can then discuss potential genetic risks with their 
health care provider. If a patient has a first degree relative 
(mother, father, sister, brother) with a common disease, they 
have a 2-3 fold higher risk of developing the same disease as 
compared to the general population [4]. 
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 In a not uncommon scenario, a patient in his 50’s 
consults you about his risk of glaucoma, as he knows that his 
mother has it. You are able to obtain a family history; 
however, as this is a late-onset disorder, there are no other 
family members who can be identified by history with 
glaucoma that allow you to identify a pattern of inheritance 
(Fig. 1). What information, either from your general 
knowledge of the genetics of glaucoma, or empirically from 
the literature, is available to assist? Historically, you may 
have depended on his racial origin (with genetic 
implications) to assist you in suggesting a genetic risk. For 
example, if your patient is of Chinese ancestry, he may be at 
higher risk for angle-closure vs open-angle glaucoma, or if 
he is of Afro-Caribbean descent, he may be at increased risk 
for primary open-angle glaucoma. If he has moderate or high 
myopia he may have an increased risk of POAG [5]. If he 
had been exposed to steroids, he might be more at risk for 
glaucoma. His age will also be a factor to consider. In 
Canada, 2.7% of individuals over 40 and 11% over 80 have 
glaucoma [6]. 

 

Fig. (1). A family history of glaucoma. 

SINGLE GENES AND GLAUCOMA 

 In some cases a specific gene or locus is associated with 
glaucoma (Table 1). For example, mutations in single genes 
have been associated with early-onset primary open angle 
glaucoma (POAG), congenital glaucoma, and anterior 
segment dysgenesis. A locus

1
 suggesting a single gene has 

been found for pigment dispersion syndrome [7]. In some 
cases of glaucoma, for example, adult-onset primary open 
angle glaucoma and normal tension glaucoma, multiple 
factors combine to create the glaucoma phenotype. For 
pseudoexfoliative glaucoma, a polymorphism

2
 in a single 

gene appears to act as a disease modifier [8]. 

 Myocilin, previously known as TIGR (for trabecular 
meshwork inducible), was the first glaucoma gene to be 
isolated and has been associated with both juvenile open 
angle glaucoma and adult-onset glaucoma [9]. The WDR36 
gene, a member of the WD40 repeat protein family, may be 
involved in T-cell activation. T cell-mediated responses have 
been hypothesized to participate in glaucoma-associated 

                                                
1A locus is the location of a gene on a chromosome. 
2A polymorphism is a heritable change in the DNA base sequence, generally 

common. 

optic nerve degeneration. The segregation of a mutation in 
this gene was found in with a large 5-generation family with 
POAG by Monemi and colleagues [10]. The association of 
changes in WDR36 with glaucoma was not replicated in 
matched cohorts of patients with POAG and normal controls 
[11]. 

Table 1. Single Genes Causing or Modifying the Severity of 

Glaucoma 

 

Locus Condition Gene 

1q24-q25;2p21; 
5q21-q22;10p15-

p14 

Early, Adult-onset POAG; 
Low tension glaucoma 

MYOC;CYP1B1; 
WRD36;OPTN 

2p21 Congenital glaucoma CYP1B1 

4q25;6q25 
Axenfeld-Rieger syndrome;  

Iridogoniodysgenesis 
PITX2; 
FOXC1 

9q34 Nail patella syndrome LMX1B 

11p13 Aniridia PAX6 

15q22 Pseudoexfoliation LOXL1 

 

 The OPTN gene encodes a protein called optineurin that 
interacts with huntingtin and Rab8 [12] and is upregulated in 
response to sustained elevation of intraocular pressure, TNF-

 exposure and dexamethasone, suggesting that it has a 
protective role in the trabecular meshwork. Mutations in  
OPTN appear to be clustered in patients with low tension 
glaucoma (LTG) [13]. One non-synonymous

3
 mutation, a 

single base change gaunine (G) to adenine (A) at position 
458 of exon 4

4
, replaces the amino acid glutamic acid with a 

lysine. This particular mutation appears to confer a more 
severe phenotype of LTG and was not found in the cohort of 
patients with POAG. Together, mutations in the MYOC, 
WDR36 and OPTN genes explain only 10% of sporadic 
cases of POAG [14]; and so, whereas testing for mutations in 
genes such as MYOC is available on a clinical basis, without 
a family history of glaucoma, the yield will be low and may 
not affect the management of the patient. 

 Congenital glaucoma caused by mutations in the CYP1B1 
gene is an autosomal recessively inherited trait. The CYP1B1 
gene is involved in the initial phase of metabolism of drugs 
and the metabolism of endogenous steroids, retinoic acid, 
arachidonic acid, and melatonin as reviewed by [15]. 
Whereas many mutations in the CYP1B1 gene have been 
correlated with glaucoma, the direct links with specific 
metabolic pathways remain speculative. The gene has three 
exons. Mutations are commonly found in exons 2 and 3 [15] 
and clinical testing for mutations is available [16]. Mutations 
in CYP1B1 may also act as genetic modifiers in cases of 
POAG due to mutations in the MYOC gene [17]. As 
reviewed by Vasiliou and colleagues [15], mutations in 

                                                
3A non-synonymous change in the genetic code results in the replacement of 

an amino acid by another amino acid. A synonymous change occurs when 

the base change but does not result in an amino acid change, as there is 

some redundancy in the genetic code. 
4The coding sequences of a gene are generally referred to as exons. DNA 

sequences between the exons are termed intervening sequences or introns 

and, in general, these do not normally form part of the messenger RNA that 

forms the protein product of a gene. 
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CYP1B1 occur in a small but important percentage of cases 
of POAG in geographically separated and likely genetically 
distinct populations. 

 The genes PITX2 and FOXC1 encode transcription 
factors that are both implicated in the development of the 
anterior segment of the eye. Mutations in these genes result 
in Axenfeld-Rieger syndrome and iridogoniodysgenesis 
(also termed iris stromal hypoplasia) [18]. The LMX1B gene 
encodes a LIM homeodomain containing protein that is 
strongly expressed in the dorsal mesenchyme and anterior or 
distal limb structures mirroring the developmental defects 
seen in the Nail-patella syndrome. The classic transcription 
factor involved in the development of the eye, PAX6, is 
associated with aniridia and secondary glaucoma [19]. 

 LOXL1 is the gene encoding the protein lysyl oxidase-
like 1. This protein is seen in areas of elastogenesis and 
interacts with fibulin-5. Single nucleotide polymorphisms 
(SNPs) in this gene have been associated with 
pseudoexfoliative glaucoma [8] and further, haplotypes have 
been defined which predispose to or protect against 
glaucoma in patients with pseudoexfoliation syndrome [20]. 
Polymorphisms in LOXL1 appear not to be associated with 
POAG [21] and further do not appear to confer susceptibility 
to pigment dispersion syndrome or pigmentary glaucoma 
[22]. 

GENES AS DISEASE MODIFIERS AND FACTORS IN 
DRUG RESPONSIVENESS 

 Drugs of certain classes are recognized as being more 
effective in certain racial groups and by implication in a 
genetic group. The basis for these clinical responses is now 
being investigated with genetic tools using single nucleotide 
polymorphisms (SNPs) for candidate genes [23]. From 
clinical experience, some patients respond very well to 
latanoprost with intraocular pressure lowering whereas 
others do not. The poor-responders may in turn respond well 
to travaprost or bimatoprost. A hint as to the genetic 
variability that underlies drug response was provided by a 
study by Sakurai and colleagues [24] in which, the IOP 
lowering response of latanoprost was correlated with a SNP 
in the prostaglandin (PG) F2-  receptor gene in 100 Japanese 
normal volunteers. Other similar studies have correlated 
SNPs in genes encoding drug receptors and genes involved 
in drug metabolism with clinical efficacy of glaucoma 
medications (Table 2). At present these reports have not yet 
resulted in a commercially available test which can be 
applied to patient care. 

Table 2. SNPs and Candidate Genes 

 

Gene Drug Population 

PG F2-  receptor latanoprost Japan [24] 

1- adrenergic 
receptor 

betaxolol USA (48 volunteers) [25] 

2-adrenergic receptor -blocker USA (215 glaucoma ) [26] 

2-adrenergic receptor timolol Austria [27] 

CYP2D6 timolol Finland (19 glaucoma, 
18 normal) [28] 

 

GENETICS AND INSIGHTS INTO DISEASE 
MECHANISMS 

 The identification of genes and the creation of animal 
models are helping to elucidate the physiological pathways 
that ultimately cause glaucoma [29]. The tools of genomics, 
molecular biology, developmental biology, bioinformatics 
and computational biology are all contributing to a greater 
understanding of these pathways. This knowledge should 
ultimately lead to a better understanding of the normal 
physiology of the trabecular meshwork, optic nerve, 
ganglion cells, and other associated tissues. An improved 
understanding of the state of the eye in disease and health 
will facilitate the rational development of drugs tailored to 
specific subtypes of glaucoma. 

PRIVACY AND COUNSELLING 

 Legislation to protect against genetic discrimination is 
important. In response the perceived lack of protection of 
patients’ rights and the growing ability of genetics to type 
individuals as affected or at risk, and after many years of 
lobbying, the Genetic Information Non-discrimination Act 
(GINA) was signed into law in the USA. The Act offers 
protection against discrimination in applications for health 
insurance and employment based on genetic information 
[30]. 

 Clinicians need to safeguard genetic data, and also ensure 
appropriate genetic counselling is available. The role of a 
genetic counsellor is to be an informer (not an advisor) 
providing facts and options, so that an informed decision can 
be made by the patient and his/her caregiver(s). 

SUMMARY 

 We are entering an era of genomic medicine, where 
genetic tools are available to improve care of patients and 
make best use of health care expenditures. Enlightened 
patients, aware of their family history, will ideally seek care 
earlier to avoid the complications of chronic diseases such as 
glaucoma. Physicians who understand genetic risk can 
develop a personalized prescription of care targeting at risk 
individuals and tailoring their care towards efficacy of 
interventions while minimizing adverse reactions to 
treatments. As practionners we look forward to the 
availability of genetic tests for our patients, and will need to 
be mindful about how this information is protected and 
shared. At the same time we realize that we as practitioners 
will need to be educated in how these tests can be applied 
and how we can translate their results to improve the care of 
our patients. 

WEB-BASED RESOURCES 

 Realizing the potential of pharmacogenomics: Opportuities 
and challenges. Report of the Secretary’s Advisory Committee 
on Genetics, Health and Society. May, 2008. http://oba.od.nih. 
gov/oba/SACGHS/reports/SACGHS_PGx_report.pdf 

 US Surgeon General’s Family History Initiative. http:// 
www.hhs.gov/familyhistory/ 
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