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Shapes Using Iterative Fourier Transform 
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Abstract: This letter presents a new modal technique that reconstructs a wavefront using iterative Fourier transforms and 

converts the Fourier coefficients as needed to and from the coefficients of the orthonormal basis set over pupils of arbi-

trary shapes. It is shown that, for wavefront slope data, modal reconstruction with Fourier series using an iterative algo-

rithm is faster and more accurate than when an orthonormal basis set is used. Elliptical, annular, hexagonal, and irregular 
pupils are considered as practical examples to illustrate the results. 

INTRODUCTION 

 Wavefront reconstruction from wavefront slope data has 

been discussed at length in the literature [1-6]. Zernike poly-

nomials are used with the singular value decomposition 

(SVD) algorithm [6] when the pupil is circular. For 

noncircular pupils, however, an orthonormal set over that 

pupil must be used [7]. 

 This Letter extends the application of Fourier series [8] to 

wavefront reconstruction over pupils of arbitrary shapes. The 

relationships between the Fourier coefficients and the coeffi-

cients of an orthonormal basis set are derived. Modal recon-

struction of wavefronts from slope data is demonstrated us-

ing iterative Fourier transforms. Because of its natural tie to 

the Nyquist limit, the Fourier technique utilizes the discrete 

wavefront-slope information optimally, i.e., using the spatial 

frequency information exactly up to the Nyquist limit. In the 

SVD technique using the orthonormal basis set, however, 

reconstructing too few modes results in a large residual error 

[6]. Therefore, the optimal number of modes is automatically 

determined in Fourier technique but varies depending on the 

sample size over which the wavefront is to be reconstructed 

in the SVD technique. Also the fast Fourier transform makes 

wavefront reconstruction using the iterative Fourier tech-

nique faster than the SVD algorithm. Examples of 

noncircular pupils such as elliptical, annular, and hexagonal 

are given to cover practical applications of eyes with ellipti-

cal pupils [9] and telescopes with central obscuration [10] or 

with hexagonal mirrors [11]. An irregular pupil is also in-

cluded in the study. 

THEORY 

 Consider a wavefront defined by a domain S in Cartesian 

coordinates, denoted as W(x). Suppose a complete and ana-

lytical set of basis functions {Zi(x)} is orthonormal over do-

main S; we can expand the wavefront into this set as 

W (x) = ciZi (x)
i=1

L

    (1) 
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where L is the total number of expansion terms and the ex-

pansion coefficient ci can be calculated from the orthonor-

mality as 

ci = PS (x)W (x)Zi (x)dx      (2) 

where dx = dxdy and PS(x) is the domain function bounded 

by S. The integration in Eq. (2) and elsewhere in this Letter 

covers the infinite plane. If S is a circular pupil, then {Zi(x)}

is the set of Zernike polynomials. 

 Suppose domain T is inscribed in domain S such that 

T S . If the wavefront is only known within domain T, Eq. 

(2) can no longer be used because the basis set {Zi(x)} is not 

orthogonal over domain T. Instead, a set of orthonormal ba-

sis function {Fi(x)} can be determined with the Gram-

Schmidt orthogonalization process as [7] 

Fi (x) = MilZl (x)
l=1

L

    (3) 

where Mil is the conversion matrix that can be calculated 

recursively. Therefore 

W (x) = biFi (x)
i=1

L

    (4) 

 Once the set of {Fi(x)} is determined, we can obtain the 

expansion coefficients over domain T by use of the orthnor-

mality as 

bi = PT (x)W (x)Fi (x)dx      (5) 

where PT(x) is the domain function bounded by T.

 Now, suppose we want to reconstruct a wavefront from 

its slope data over the domain T. In this Letter, the ANSI 

standard for Zernike polynomials [12] was used as the basis 

set {Zi(x)}. One way to reconstruct the wavefront from slope 

data is to use the SVD algorithm over the discrete data with 

the orthonormal basis set {Fi(x)} within domain T, as dem-

onstrated by Dai [6]. 

 We do this by the use of the iterative Fourier transform 

method [5,8]. Define domain P as a rectangular area inscrib-

ing domain T, or T P . Using sinusoidal functions (Fourier 
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series) as the basis set, we can write the wavefront expansion 

as 

W (x) = a(u) exp( j2 u x)du    (6) 

where j
2
 = -1, du = dudv, and a(u) is the matrix of the expan-

sion, or the Fourier coefficients (Fourier spectrum). These 

coefficients are given by 

a(u) = W (x) exp( j2 u x)du    (7) 

 Substituting Eq. (6) into (5), we get 

bi = a(u)Vi
*(u)du     (8) 

where * stands for the complex conjugate, and the Fourier 

transform of {Fi(x)}

Vi (u) = PT (x)Fi (x) exp( j2 u x)dx    (9) 

can be calculated either analytical or numerically. Substitut-

ing Eq. (4) into Eq. (7), and considering that {Fi(x)} is only 

supported within the domain T, we obtain 

a(u) = biVi (u)
i=1

L

     (10) 

 Note that Eqs. (8) and (10) are exact only when Fi(x) is 

analytical or the wavefront is sampled at least two times the 

highest spatial frequency of the wavefront. 

 Taking derivatives to x and to y on both sides of Eq. (6) 

and noticing the fact that the derivative of Fourier series is 

also Fourier series, we can obtain [8] 

a(u) = j
ubu (u) + vbv (u)

2 | u |2
    (11) 

where bu(u) and bv(u) are the Fourier transforms of the slope 

data. With Eq. (11), the estimated wavefront can be calcu-

lated with Eq. (6). 

 Equation (11) applies only to un-bounded functions, i.e., 

when W(x) does not have a boundary. However, the wave-

front to be reconstructed is bounded by domain T, the 

boundary condition of the slope data must be considered, 

which lead to the iterative algorithm [5]. Without this itera-

tive algorithm, the reconstructed wavefront near the periph-

ery of the domain boundary is in general underestimated. 

RESULTS 

 To demonstrate the effectiveness of the Fourier tech-

nique, common pupils of elliptical, annular, hexagonal, and 

irregular shape were used. The aspect ratio of the elliptical 

pupil is 0.85, and the obscuration ratio of the annular pupil is 

0.35. A noise-free random wavefront was generated with the 

first four orders of Zernike polynomials. Wavefront slope 

data was calculated within these four different pupils using 

sampling size of N = 401x401. Both the SVD technique 

(with reconstruction of the first four orders) and the Fourier 

technique were used to reconstruct the wavefronts. With the 

Fourier technique, the first four orders of coefficients of the  

Fig. (1). Contour plots for the input (first column), SVD-

reconstructed (middle column), and Fourier-reconstructed (last 

column) wavefronts. Four Zernike orders were used for the input 
wavefronts. The contour scales for all plots are identical. 

basis set {Fi(x)} were calculated using Eq. (8), and 20 itera-

tions were used for each case. The Fourier transforms of 

{Fi(x)} for these pupils were calculated using FFT. 

Table 1. RMS Error ( m) in the Reconstruction 

Aperture SVD Fourier 

Elliptical 0.001 0.117

Annular 0.002 0.096 

Hexagonal 0.001 0.036 

Irregular 0.001 0.250

Four Zernike orders were used in the input wavefront. 

 Fig. (1) depicts the input, the SVD-reconstructed, and the 

Fourier-reconstructed wavefronts for the elliptical, annular, 

hexagonal, and irregular pupils. The corresponding root 

mean square (RMS) error is shown in Table 1. The SVD-

reconstructed wavefronts show very good agreement with 

the input wavefronts, and so do the coefficients. Fourier 

technique also shows its effectiveness, but with inferior re-

sults. Unfortunately, in a real situation, the number of terms 

in the reconstruction is always smaller than that in the un-

known input wavefront to prevent aliasing. 
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Fig. (2). Contour plots for the input (first column), SVD-

reconstructed (middle column), and Fourier-reconstructed (last 

column) wavefronts. Six Zernike orders were used for the input 
wavefronts. The contour scales for all plots are identical. 

Table 2. RMS Error ( m) in the Reconstruction 

Aperture SVD Fourier 

Elliptical 0.202 0.048 

Annular 0.357 0.095 

Hexagonal 0.676 0.044 

Irregular 0.348 0.171 

Six Zernike orders were used in the input wavefront. 

 When the number of terms in the input wavefront was 

increased from four Zernike orders to six, the performance of 

the Fourier technique was superior to the SVD technique as 

the Fourier technique uses the information from the discrete 

data optimally. Fig. (2) shows the input and reconstructed 

wavefronts for these four different pupils. The similarity 

between the first column and the last column in Fig. (2) indi-

cates the benefit of using iterative Fourier technique than the 

SVD technique. The corresponding RMS error is shown in 

Table 2. From the RMS error it is clear that the Fourier tech-

nique works better than the SVD technique. Finally Table 3

shows the reconstruction time for the two techniques for 

different sample sizes. The Fourier technique is faster than 

the SVD technique. 

Table 3. Comparison of the Wavefront Reconstruction Time 

(Seconds) for Different Sampling Sizes 

N SVD Fourier 

100 0.016 0.000 

400 0.031 0.002 

1600 0.063 0.016 

10000 0.453 0.141 

40000 1.781 0.609 

CONCLUSIONS 

 In this Letter, we have shown that the iterative Fourier 

reconstruction is faster and more accurate in practical cases 

for wavefront reconstruction from slope data for pupils of 

arbitrary shapes. 
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