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Abstract: The purpose of the present work is the use of the Normalized Hilbert-Huang Transform (NHHT) to generate an 
exact quadrature fringe pattern. The NHHT has helped to overcome many of the difficulties of the regular Hilbert 
transform. In the wavelet domain, the phase evaluation method needs a fringe pattern with a spatial carrier. It is possible 
to provide synthetically a modulated fringe pattern by combining a computer generated grating with the pattern and its 
quadrature. Then, using continuous wavelet transform decomposition, it is easy to calculate the phase gradient computed 
from maximums scales and provide by simple integration the phase map coded in the fringe pattern. This method leads 
directly to phase distribution from a single pattern avoiding the complex step of phase unwrapping. 
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1. INTRODUCTION 

 Many whole field optical techniques provide the mea-
surement data codified as the phase of a periodic intensity 
profile. The obtained image is called a fringe pattern. The 
fringe pattern analysis generally consists of the phase evalua-
tion methods [1,2] employed to measure various physical 
magnitudes in variety of scientific and engineering fields. 
The phase evaluation methods can be classified as methods 
without a spatial carrier such as the phase shifting method 
[3] and methods with a spatial carrier such as the Fourier 
transform method [4] and the wavelet method [5,6]. Using 
just a single fringe pattern, the phase evaluation methods 
with a spatial carrier are adequate for real time acquisition 
and dynamic process. 
 It is possible to provide a modulated fringe pattern by the 
superposition of a computer-generated grating with two π/2 
shifted patterns [7]. The spatial carrier is then, introduced 
digitally by combining the pattern and its quadrature; the 
entire process is carried out directly in the computer. Wave-
let transform decomposition [8] leads directly to phase 
distribution avoiding the complex step of phase unwrapping. 
 Considering that significant improvement has been made 
since 1998 [9-11], in this study we applied the Normalized 
Hilbert-Huang Transformation (NHHT) to generate an exact 
quadrature fringe pattern. The NHHT is a novel digital signal 
processing technology based on the combination of the 
empirical mode decomposition (EMD), normalization and 
Hilbert transform application. The NHHT has helped to 
overcome many of the difficulties of the regular Hilbert 
transform. It was developed to satisfy the specific limitations  
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set by the Bedrosian and Nuttall theorems [12]. The com-
prehensive review can be found in [13]. 
 The paper is organized as follows. Section 2 contains a 
short presentation of the Normalized Hilbert-Huang Trans-
form applied to optical fringe pattern. We then expose in 
section 3 the synthetic modulated fringe pattern. Section 4 is 
devoted to phase evaluation by wavelet transform analysis. 
Finally, results and conclusion are presented in section 5. 

2. QUADRATURE FRINGE PATTERN GENERATION 
BY NHHT 

 The fringe patterns, derived from two-beam interfero-
meters, is formulated by the sinusoidal dependence of the 
intensity on the spatial coordinates (x, y) of the image plane 

( , ) ( , ) ( , ) cos ( , )I x y a x y b x y x y!= +  (2.1) 

Where a(x, y) is the background. The terms b(x, y) and  
φ(x, y) are the visibility function and the optical phase. 
 The empirical mode decomposition (EMD) analysis is an 
adaptive and fully-driven data method to decompose any 
signal into a set of components called intrinsic mode func-
tions (IMF) and a residue. Adding all the IMFs together with 
the residue reconstructs the original signal without infor-
mation loss or distortion.  
 When EMD is applied to a fringe pattern and adding all 
the IMFs by just skipping the DC component we remove the 
background. The filtered fringe pattern is 
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( , ) ( , ) cos ( , )J x y b x y x y!=  (2.3) 

 An IMF is not restricted to a narrow band signal, and it 
can be both amplitude and frequency modulated, otherwise 
the AM variations will contaminate the FM part. The 
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normalization step is designed to render IMFs into the AM-
FM model and separate the AM and FM parts by taken the 
envelope as the modulus of the analytic signal of IMF. 
Huang and Long have proposed the normalization of the 
IMFs in the following steps: Starting from an IMF, they first 
find all the maxima of the IMFs, defining the envelope by 
spline through all the maxima. Now, normalize the IMF by 
dividing the IMF by the envelope. Thus, they have the 
normalized function having amplitude always equal to unity, 
and have circumvented the limitation of Bedrosian theorem. 
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 The quadrature signal is obtained by the combination of 
the Hilbert spectrum of each normalized IMF instead of a 
direct Hilbert spectrum on IMF due to the Bedrosian theo-
rem. The Hilbert Transform (HT) is the convolution product 
of the signal and 1/πx. The quadrature fringe patterns is  
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( , ) ( , )sin ( , )qJ x y b x y x y!=  (2.6) 

3. SYNTHETIC MODULATED FRINGE PATTERN 

 The requirement for appropriately introducing a spatial 
carrier into a fringe pattern is a difficult process. In order to 
permit measurement with a greater phase variation, the spa-
tial carrier is introduced digitally by combining the pattern 
and its quadrature. The entire process is carried out directly 
in the computer. The fringe pattern and its Quadrature are 
defined by 

( , ) ( , ) cos ( , )J x y b x y x y!=   (3.1) 
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 The modulated fringe pattern is obtained by combining a 
computer-generated grating to the two shifted patterns 

( , ) ( , ).cos( ) ( , ).sin( )
c q
J x y J x y cx J x y cx= !  (3.3) 

( , ) ( , ) cos( ( , ))cJ x y b x y cx x y!= +  (3.4) 

 The frequency carrier c is selected such that satisfying 
the condition 

max
/c x!> " "  (3.5) 

 The carrier period c can be easily varied. The carrier fre-
quency is not critical factor because the grating period is 
generated after the pattern has been acquired and can be 
modified in a simple manner. 

4. WAVELET OPTICAL PHASE EXTRACTION 

 Wavelets offer a powerful method to quantify how 
energy is spatially distributed at multiple scales [14]. A good 
review of wavelet theory has been published by Daubechies 
[15]. The one-dimensional wavelet transform of the line y in 
the modulated fringe pattern, in the x direction, is given by 
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 And the Parseval identity leads to 
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where * denotes complex conjugation, ψ ((x-u)/s) is the 
analyzing wavelet obtained by shifting and scaling the 
admissible and localized mother wavelet ψ(x); s>0 is the 
scale parameter related to the frequency concept, and u is the 
shift parameter related to position. Jc is the modulated fringe 
pattern. 
 The w(s, u) coefficients quantify the similitude between 
the modulated fringe pattern Jc (x) and the wavelet  
ψ ((x-u)/s). For a given scale s at a position u, the magnitude 
of this resemblance is given by the modulus of w(s, u). The 
w(s, u) is also regarded as coordinates of the signal projected 
in the wavelet basis formed by ψ ((x-u)/s) set. 
 Exploiting the localization property of the wavelet, and 
the development of the phase of interest φ on Taylor series 
close to the central value, we assume a slow variation of  
b(x, y) over the support of the wavelet, which is convenient 
in usual cases. Owing to the localization of the wavelet, we 
can neglect the higher order of (x-u). With these considera-
tions, the wavelet transform becomes 

1/2 *( , ) cos( ( ) ( ). ( )). (( ) / ).w s u s u x u p x x u s dx! "
+#

$

$#

= + $ $%
 (4.3) 
Where  

( ( ) / )p c x x!= + " "  (4.4) 

 And the Parseval identity leads to 
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Where 
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 The wavelet transform becomes 
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 The mother wavelet ψ is the second order of Paul wavelet 
[16] which is formulated by  
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Where n is the order of Paul wavelet. 
 Its Fourier transform FT is 
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where H is the Heaviside distribution 
 In the case of Paul mother wavelet, its Fourier transform 
is null in the negative frequencies, so the second term can be 
neglected and the modulus can expressed as  
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 The phase gradient is computed from extremums scales q 
(u, y) by 

( , ) / (2 1) / 2 ( , )u y x c n q u y!" " = # + +  (4.11) 

 This leads to the phase by integration of the gradient. 

5. RESULTS AND CONCLUSION 

 The numerical simulation consists in generating digitally 
a fringe pattern to verify the ability of the method to deter-
mine the phase distribution. The test phase function we used 
is 

2 2( , ) 0.0005.[( 256) ( 256) ]x y x y! = " + "  (5.1) 

 The intensity distribution of fringe pattern shown in  
Fig. (1) is 

( , ) 1 0.5cos ( , )I x y x y!= +  (5.2) 

 In Fig. (2) we illustrated the IMF’s of the fringe pattern 
from EMD decomposition. The quadrature fringe pattern 

 
Fig. (1). The fringe pattern obtained by numerical simulation. 

 

a     b     c   

d       e  

Fig. (2). The IMF’s of the fringe pattern obtained by EMD decomposition. 
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obtained by normalized Hilbert Huang transforms NHHT is 
depicted in Fig. (3). In Fig. (4) we illustrated the quadrature 
fringe pattern obtained by normalized Hilbert Huang trans-
forms. In Fig. (5) we present the modulated fringe pattern 
obtained by combining numerically the fringe pattern and its 
quadrature. The carrier frequency of the computer-generated 
grating is c=1.08 rd/pixel (the maximum gradient of the 
phase ϕ is 0.74 rad/pixel). The carrier period can be easily 
varied. The difference between the test phase and the retrie-
ved phase from wavelet method is presented Fig. (6). In con-
clusion, our method provides the optical phase distribution 
from a single fringe pattern with a high accuracy. This 
method is adequate for real time acquisition and easy to 
implement and the high potential accuracy is attained with a 
conveniently frequency carrier selection. 

a  b  

c  d  
Fig. (3). The normalized IMF’s of the fringe pattern. 
 

 
Fig. (4). The quadrature fringe pattern obtained by normalized 
Hilbert Huang transforms. 
 

 
Fig. (5). The modulated fringe pattern obtained digitally from the 
fringe pattern and its quadrature. 

 
a 

 
b 

Fig. (6). The difference between the test phase and the phase from 
wavelet method. 
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