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Abstract: A theory of optical nonresonance vector pulsing solitons in a Kerr media is considered. By using the multiple 
scale perturbative reduction method the wave equation is transformed to the coupled nonlinear Schrödinger equations. 
The shape of the optical nonresonance vector pulsing soliton with the difference and sum of the frequencies is presented. 
Explicit analytical expressions for the optical two-component vector pulsing soliton with phase modulation are obtained. 
It is shown that the two-component pulsing soliton in this special case can be transformed to the scalar pulsing soliton, 
and these waves have different shapes. 
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INTRODUCTION 

The propagation of optical waves in a medium is accom-
panied by different changes in their shape. The effects 
changing the wave form are dispersion, dissipation, and non-
linearity. These mechanisms act separately or in different 
combinations. Of special interest are such wave motions for 
which the mechanisms distorting the shape and induced by 
different effects exactly compensate each other. Under these 
conditions, nonlinear waves of stationary shape such as soli-
tons or their different modifications are formed. The propa-
gation of nonlinear waves of an invariable profile displays its 
own specific properties. In the theory of nonlinear waves 
they play as fundamental a role as harmonic oscillations do 
in the linear wave theory. The nonlinear waves of an invari-
able profile are one of the most important demonstrations of 
nonlinearity in optical systems. The conditions for the exis-
tence of nonlinear waves are different. The determination of 
the conditions of the existence of optical nonlinear waves of 
a stationary shape and the study of their features in different 
physical situations are among the principal problems of the 
nonlinear wave theory. Depending on the character of the 
nonlinearity, the nonresonance or resonance mechanism of 
the existence of nonlinear waves is realized. In the first case 
of nonresonant nonlinearity, which is expressed by means of 
the quadratic or cubic nonlinear susceptibilities, its competi-
tion with the dispersion leads to the existence of nonreso-
nance optical solitons and pulsing solitons (breathers) [1-3]. 
The optical resonant nonlinear solitary waves can be excited 
with the help of self-induced transparency, i.e., from a co-
herent nonlinear resonance interaction of an optical wave 
with impurity atoms or semiconductor quantum dots in sol-
ids [4, 5]. 
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Nonlinear solitary waves can be considered by a single 
nonlinear Schrödinger (NLS) equation for the optical one-
component (scalar) field. Such one-component resonance 
and nonresonance nonlinear waves form when an optical 
one-component pulse propagates inside a medium while 
maintaining its state [2,6]. When this is not the case, the in-
teraction between two field components at different polariza-
tions or different frequencies (but possibly same polariza-
tion) has to be considered. One then has to simultaneously 
solve a system of coupled NLS equations. A profile-
preserving solution of the coupled NLS equations is a vector 
pulse (soliton or pulsing soliton) because of its two-
component configuration. 

The properties of optical nonresonance vector solitons in 
a Kerr medium are governed by two coupled NLS equations 
that describe the connection between two different guided 
modes propagating in multi-mode optical waveguides 
(fibers) [7] or the coupling between two optical wave 
components of two distinct carrier frequencies propagating 
inside a single-mode waveguide [8]. In addition, in a single-
mode waveguide, a single pulse also can form a vector soli-
ton if the birefringence effects lead to a connection between 
its two differently polarized wave components [9]. 

It is of great importance to find double periodic vector 
soliton (vector pulsing soliton) solutions of optical nonlinear 
equations to provide more important information for under-
standing phenomena arising in different scientific fields and 
applications. The pulsing solitons have various interesting 
features that are similar to those of solitons, but unlike them, 
pulsing solitons can be created with relatively low input 
pulse energy. Therefore, pulsing solitons are easier to excite 
than solitons and, in addition, in some physical phenomena, 
pulsing solitons are more stable nonlinear waves and thus 
have wider potential applications in comparison to solitons 
(see, for example, Ref. [10]). 

The theory of two-component nonresonance vector puls-
ing solitons with the difference and sum of the frequencies in 
a Kerr medium will be different from and more complex 
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than the nonresonance one-component solitons and pulsing 
solitons [1-3] and two-component vector solitons [7-9], and 
a separate study will be needed.  

 The goal of the present work is the following: we con-
sider the conditions of realization of the nonresonance two-
component optical vector pulsing soliton with the difference 
and sum of the frequencies with a phase modulation in a 
Kerr medium. We explicitely determine analytic expressions 
for the parameters and the profile of the optical nonreso-
nance vector pulsing soliton. 

BASIC EQUATIONS 

We study the propagation of optical nonresonance two-
component vector pulsing solitons in isotropic, cubic nonlin-
ear and second order dispersive media for linearly polarized 
waves with frequency 
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 is the unit vector of po-
larization directed along the x-axis. Not concretizing the 
physical nature of the dispersive process, we describe the 
dependence of the dielectric function κ by a two variables: 
wave vector   
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k  and frequency !  of the wave (spatial and/or 

temporal dispersion). We note that in optical phenomena we 
usually consider only temporal dispersion, but in some spe-
cial physical situations, spatial dispersion can be effective 
too (see, for instance, Refs. [2, 3, 11, 12] and references 
therein). 
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is the x-component of the non-resonant nonlinear polariza-
tion of the third order, 
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 is the component of the tensor of 

the cubic susceptibility, C is the speed of light in vacuum, 
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first-order susceptibility tensor. 
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Substituting the equations (3) and (4) into the wave equa-
tion (1), we obtain the dispersion relation for the nonlinear 
wave in the following form: 
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and a nonlinear wave equation: 
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The function 
  
! (lk, l" )  is in general complex, but we 

consider only the most important particular case when a 
wave is propagating without damping in a non-absorbing 
(transparent) homogeneous medium. In this case, the real 
part of 

  
! (lk, l" )  is an even function of the frequency and 
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wave number, 
  
! (lk, l" ) =

  
! ("lk,"l# ) , and the imaginary 

part of this function is equal to zero [11, 12]. 

NONRESONANCE VECTOR PULSING SOLITON 

 For further analysis of these equations we utilize the 
multiple scale perturbative reduction method [13], in the 
limit that 
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The quantities Q , Ω and v depend on l and n: however, 
the indixes l and n will be omitted below for simplicity 
where their presence is clear from the context. 

 Obviously, for a pulse free of phase modulation, i.e., 
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To find the form of the functions 
  
!

l ,n

(" ) (# ,$ ) , we equate to 
zero the terms that have the same order of ε . This results in a 
system of equations.  

In the first order in ε, we obtain the equations 
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We have to note that we shall be interested in localized 
solitary waves which vanish as  t ! ±" . Hence, according to 
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 The relations between the quantities Ω and Q are 
obtained from Eq. (11) and have the following form: 
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To second order in ε we have for the functions 
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Substituting Eqs. (12) into Eq. (10), we arrive at the fol-
lowing equation: 
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 From Eq. (14), we derive two coupled NLS equations 
for the functions 

  
u = !"

+1,+1

(1)  and 
  
w = !"

+1,#1

(1)  that determine 
the connection between the two components of the pulse, 

  

i(
!u

!t
+ v

1

!u

!z
) + p

1

!
2
u

!z
2
+ q

1
| u2 | u + r

1
| w

2 | u = 0,

i(
!w

!t
+ v

2

!w

!z
) + p

2

!
2
w

!z
2
+ q

2
| w

2 | w + r
2

| u2 | w = 0,

 (15) 

where 

,
1,11 ++

= vv
 

,
1,12 !+

= vv
  

 
  

p
1
=

H
+1,+1

!h
+1,+1

Q2
,  

  

p
1
=

H
+1,!1

!h
+1,!1

Q2
,  

 



16     The Open Optics Journal, 2013, Volume 67 Adamashvili et al. 

 

  

q
1
=

R2

!2h
+1,+1

,  
  

q
2
=

R2

!2h
+1,!1

,   

  

r
1
= q

1
(1!

"
!1

"
+1

),  
  

r
2
= q

2
(1!

"
+1

"
!1

),  

  
!

+1
= !

l=±1,n=±1
,  

   
!

"1
= !

l=±1,n=m1
,  

  
Q

+1
= Q

l=±1,n=±1
,  

   
Q

!1
= Q

l=±1,n=m1
.  (16) 

 The nonlinear equations (15) determine the slowly 
varying functions u and w, where u represents the wave 
which oscillates with the frequency 
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form-invariant solution of the equations (15) is a vector 
soliton due to its two-component configuration. 
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 Substituting Eqs. (17) into Eqs. (15), we obtain the non-
linear ordinary differential equation for the function 
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After integration of the equation (19), we have 
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This is a soliton ( 2! pulse) solution of the wave equation 
[4].  

 Consequently, we find that the components u and w are 
hyperbolic secants 
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(8) and (17), we obtain for the strength of the electric field 
E(z,t) the two-component vector pulsing soliton solution of 
the Maxwell equation (1) in the form 
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CONCLUSION 

We demonstrated that in cubic nonlinear and second or-
der (spatially and/or temporally) dispersive media, an optical 
nonresonance two-component vector pulsing soliton can 
arise. The explicit expressions for the parameters and profile 
of the optical nonresonance vector pulsing soliton are given 
by Eqs. (7), (16), (20), (22) and (23). The dispersion law and 
the connection between the quantities 
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solution (22) for the strength of the electric field of the opti-
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cal pulse E (z,t). Eq. (22) is a double periodic solution of Eq. 
(1) which, like a one-component soliton, breather and vector 
soliton, loses no energy during propagation through the me-
dium.  

A vector pulsing soliton is an absolutely different nonlin-
ear wave in comparison with nonresonance one-component 
solitons and breathers [1-3, 5, 6] and vector solitons [7-9] 
which have been investigated up to now. The vector pulsing 
soliton is a complex nonlinear wave which consists of two 
coupled pulsing solitons with different frequencies of oscil-
lation and the same polarizations (along the x-axis), which in 
the process of propagation exchange the energy between 
each other. In the particular case when the interaction be-
tween these coupled pulsing solitons is very weak (
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in equations (15)), the exchange energy is also very small. In 
the limiting case when 
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tween the coupled pulsing solitons is equal to zero (the cou-
pled NLS equations (15) will be disconnected), the pulsing 
solitons are propagating independently of each other. Under 
this condition, we can excite only one scalar pulse (one-
component pulse) which has been investigated in Refs. 
[2,3,5,6]. 

A plot of the two-component vector pulsing soliton Eq. 
(22) is shown in Fig. (1). for a fixed value of the z coordi-
nate. We assume that the quantities 
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The one-component pulsing soliton is a special case of 

the vector pulsing soliton Eq. (22). The shape of the one-
component pulsing soliton with the same values of the pa-
rameters as for the vector pulsing soliton is presented in Fig. 
2. It is obvious that the profile of the two-component vector 
pulsing soliton (Fig. 1) differs from the profile of the one-
component pulsing soliton (Fig. 2). 

The conditions of observability of the predicted beating 
effect in the carrier wave can be realized analogously to the 
experimental investigations of few-cycle pulses with dura-
tions of only a few periods of the wave (see, for instance, 
Ref. [14] and references therein). 

The results of this theoretical study of nonresonance vec-
tor pulsing solitons, together with those obtained in Refs. [1-
3, 5, 6] for one-component solitons and breathers and in 
Refs. [7-9] for vector solitons, provide a more complete 
physical description of the propagation of non-resonance 
nonlinear waves in dispersive and Kerr media. 

The presented results will stimulate research of mul-
ticomponent nonresonance vector pulsing pulses in Kerr 
media using, for example, a more complex form of Eq. (8). 

We would like to emphasize that our findings are quite 
general and can be transformed for second order (spatially 

Fig. (1). The x-component of the strength of the electrical field E(0,t) of the two-component vector pulsing soliton is shown for a fixed value 
of z. The nonlinear pulse oscillates with the difference 

 
! "#

"1
 and sum 

 
! +"

+1
 of the frequencies along the t-axis. 
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and/or temporally) dispersive and noncentrosymmetric crys-
tals with quadratic susceptibility. 
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Fig (2). The x-component of the strength of the electrical field E(0,t) of the one-component scalar pulsing soliton is shown for a fixed value 
of z.  
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