
Send Orders for Reprints to reprints@benthamscience.net 

84 The Open Optics Journal, 2013, 7, (Suppl-1, M5) 84-94  

 
 1874-3285/13 2013 Bentham Open 

Open Access 

Nanostructured Materials in Optical Fiber Sensing 

M. Hernaez*, C. R. Zamarreño, J. Goicoechea, I. R. Matias and F. J. Arregui 

Electrical and Electronic Engineering Department, Universidad Pública de Navarra: Edif. Los Tejos, Campus Arrosa-
dia, 31006 Pamplona, Spain 

Abstract: This work comprehends a review of nanostructured materials employed in the fabrication of optical fiber sen-
sors in the last years. The continuous advances in nanofabrication techniques have enabled to manipulate the matter pre-
cisely producing well defined nanostructurated coatings or repetitive patterns at nanoscale level. The interactions of light 
with these nano-organized materials or patterns at the nanoscale level enable to observe interesting phenomena, such as 
interferometry, fluorescence, absorbance, resonances and many others which can be exploited in the fabrication of sensing 
devices. A particular case consists of optical fiber sensors, where the light travelling through an optical fiber interacts with 
the sensitive layer. The properties of the sensitive layer, such as the organization, physical properties, chemical bounds 
etc. will determine the sensing characteristics of the final device. The utilization of some of the most common nanostruc-
tured materials, such as polymers, nanoparticles, metals, metal oxides or biological coatings are reviewed here. 
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1. INTRODUCTION 

Optical fiber sensors have been established as an emerg-
ing technology in many different fields such as biomedicine, 
environmental control, food quality test or navigation sys-
tems [1]. These sensors rely on different physical or chemi-
cal principles and can measure multiple magnitudes, for ex-
ample pressure, temperature or chemical compounds concen-
trations [2-4]. The very well-known advantages of optical 
fiber sensors comprise, among many others, the immunity to 
electromagnetic interferences, easy multiplexation, low 
weight and transmission losses, small size or real time moni-
toring [5,6]. 

Much research has been done in the field of thin-film 
coated optical waveguides within the last decades [7,8]. 
Nanostructured thin-films when used in conjunction with 
optical fibers can dramatically improve the performance and 
functionality of optical fiber sensors [9-12]. However, the 
fabrication of these micro and nano-coatings is not trivial 
and requires in most cases a multidisciplinary knowledge 
[13]. 

Different thin-film coated optical waveguide configura-
tions have been studied in order to exploit the advantages of 
the optical fiber configuration in the fabrication of sensing 
devices, and many of them have been described in different 
sensing applications and patents [14]. 

In the next sections, it will be described the utilization of 
different optical fiber configurations combined with diverse 
nanostructured materials for the fabrication of optical fiber 
sensors based on different sensing principles such as  
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interferometry, fluorescence, absorbance or electromagnetic 
resonances. 

2. INTERFEROMETRIC NANO-CAVITIES 

One of the simplest structures that can be fabricated us-
ing nanostructured coatings onto optical fibers is an interfer-
ometer. It consists of a nanocoating deposited onto the per-
pendicularly cleaved end of an optical fiber. This coating 
forms an interferometric cavity schematically represented in 
(Fig. 1) [15]. 

 
Fig. (1). Schematic representation of an interferometric cavity at the 
end of an optical fiber. 
 

In this interferometric cavity, two optical mirrors are 
formed due to the different refractive indices of the optical 
fiber core (n1), the deposited coating (n2) and the surround-
ing medium (n3). 

The reflectivity depends on the thickness of the coating 
and the refractive index of the three materials involved (opti-
cal fiber core, coating and external medium). Assuming that 
the optical fiber refractive index is fixed, the reflected power 
will change if there are changes in the refractive index of the 
external medium or if the coating suffers any variation. 
Therefore, in order to detect changes in any magnitude, it is 
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just necessary to use a material sensitive to this magnitude to 
create the coating. This way, the variation in this parameter 
will produce a variation in the reflected optical power that 
can be measured with a typical reflection experimental setup. 

Light launched from a light source pass through an opti-
cal coupler and reaches the interferometer. Part of the optical 
power is transmitted to the external medium, and the rest is 
reflected. This reflected power can be measured in the detec-
tor after passing again through the coupler. As the thickness 
of the cavity is shorter than the coherence length of a LED 
source, it is possible to use this kind of sources, avoiding the 
use of lasers [16-20]. This fact and the simplicity of this ar-
chitecture have allowed the development of many kinds of 
optical fiber sensors based on it. 

Different humidity sensors based on interferometric cavi-
ties have been developed in the last years. As it has been 
stated above, a change in the effective refractive index of the 
deposited coating will produce a variation in the reflected 
power. This way, if this coating is made of a material which 
thickness or refractive index is sensitive to humidity 
changes, the reflected power will represent these variations 
in the relative humidity of the surrounding medium. For ex-
ample, in [21], an optical fiber humidity sensor based on 
SiO2 nanoparticles is presented. It shows a good sensitivity 
and really fast rise and fall times, improving previous humid-
ity sensors that used polymeric coatings [22]. 

The utilization of films that change their thickness when 
the pH of the external medium varies (swelling/deswelling 
effect), such as hydrogels or polymers [23], has enabled the 
fabrication of repetitive and robust pH sensors. In [24] the 
well known poly(allylamine hydrochloride) / poly(acrylic 
acid) (PAH/PAA) structure [25-28] is deposited onto an op-
tical fiber tip to create a pH-sensitive nanocavity. 

Interferometric cavities have been used to detect different 
volatile organic compounds (VOCs). For example, Consales 
et al. developed NO2 detectors based on this architecture 
[29-31]. Moreover, ethanol and other VOCs detectors based 
on vapocromic compounds nanocavities have been fabri-
cated [32-34]. 

In the last years, some biosensors based on optical fiber 
interferometers have been developed. For example, in 
[35,36] a hollow core fiber fragment is used to create a gap 
between a SMF and the sensing film made of chitosan and 
PSS. This way, a bovine serum albumine sensor has been 
fabricated. 

3. FLUORESCENT SENSORS 

An important group of optical fiber sensors consist of 
those based on fluorescence or phosphorescence measure-
ments, referred as fluorescence henceforward. Fluorescence-
based optical fiber sensors have been used traditionally in 
applications such as analytical chemistry, biochemistry, pho-
tochemistry, cellular biology, medical diagnosis or biotech-
nology for the detection of different compounds with high 
sensitivity and specificity [37-41]. The fluorescent or phos-
phorescent dye, used as transducer can be adhered to the 
optical fiber and is usually entrapped in a matrix with high 
permeability to the measurand [42-44]. Thus, the sensitivity 
of the optical sensor depends on both the fluorescence inten-

sity of the dye and the matrix characteristics, such as its den-
sity, viscosity, hydrophobicity, transparency etc. [45]. 

Concerning the fluorescence intensity (If), it is in general 
proportional to the excitation intensity (Ie) and the dye con-
centration ([D]), which also depends on the quenching ef-
fects. It is also important to take into account the fluores-
cence efficiency (η) of the dye, in other words, the ratio be-
tween the photons absorbed by the material and the photons 
emitted by fluorescence or phosphorescence mechanisms. 
This relation is expressed by Parker’s law in 1. 
If = 2.3 • K• l ε •Ie •η•[D]             (1) 
where l is the path length of the light within the detection 
layer, ε is the molar absorption coefficient and K is a fitting 
factor associated to the geometry of the measurement in-
strument. However, most of the detection systems do not 
quantify directly the analyte concentration from the fluores-
cence intensity but using and indirect approach that com-
pares the fluorescence intensity in absence of analyte (Io) and 
the fluorescence intensity in the presence of the analyte (Iq) 
which is given by the Stern-Volmer equation in 2 [46]. 
Io/IQ = 1 + KSV[Q]             (2) 
where [Q] is the quencher concentration and Ksv is the Stern-
Volmer constant, given by the expression Ksv=τokq, where kq 
is the bimolecular deactivation speed constant and τo is the 
excitation state time. 

As it was advanced before, fluorescence emission can be 
expressed as a function of the quencher target molecule con-
centration but it is also necessary to take into account other 
effects that depend on the fluorescent material itself such as 
the photodegradation or photobleaching that occurs when the 
indicator is exposed to the excitation source for a long time 
[47], the selfquenching or self-absorption at high concentra-
tions of fluorophore and the leaking or diffusion loses of the 
fluorescent indicator molecules through the supporting ma-
trix. In general, the design of an optimum fluorescent sensor 
requires the selection of dyes with long unquenched state 
lifetime and matrices with high permeability to the meas-
urand, good mechanical and chemical stability, and none or 
low interference with the measurements [48, 49]. 

Fluorescent molecules have been traditionally used in the 
fabrication of optical fiber sensors [45]. These molecules can 
be easily entrapped into a supporting matrix and adhered to 
the optical fiber using different fabrication techniques and 
optical fiber configurations as it is summarised in (Table 1). 
For instance, the fluorescent dye 1-hydroxy-3,6,8-pyrene 
trisulfonic acid trisodium salt (also known as pyranine or 
HPTS) has been used in pH sensing applications [50] as well 
as CO2 detection in gaseous [51], aqueous [52] or blood [53] 
media. In the same manner, ruthenium-based coatings have 
been applied in the fabrication of optical fiber sensors for pH 
[54, 55] and O2 [56, 57] detection, fluorescein-based com-
pounds have been also applied to obtain optical fiber sensing 
probes for pH [58-60] or cocaine [61] and eosin red fluores-
cent dye has been used for pH [62] and ammonia [63] detec-
tion by means of different optical fiber configurations. Fluo-
rescent polymers have been also used for the detection of 
explosives [64], Cu2+ [65] or Na+ [66] ions employing thin-
films fabricated onto fiber end tips, decladded MMFs or 
MOFs respectively. 
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Table 1. Summary of Optical Fiber Sensors Based on Fluorescent Dyes 

Fluorescent Indicator Target Supporting Matrix Fabrication Technique Optical Structure Reference 

propyltriethoxysilane and (3-
glycidoxy)propyl trimethoxysilane 

Sol-gel [50] 
V-tapered fibers 

[67] 
pH 

polyelectrolytes LbL 
[47] 

Gaseous CO2 
n-octyltriethoxysilane (Octyl-

triEOS)/tetraethylorthosilane (TEOS) 
[51] 

Aqueous CO2 Hybrid xerogels 

Sol-gel dip-coating 

[52] 

HPTS 

pCO2 in blood Hydrophobic sol-gel glass Sol-gel 

MMF end tips 

[53] 

U-bent POF [57] 
Aqueous O2 TEOS/MTEOS 

Spiral-shaped POF [56] 

tetraethoxysilan and phenyltriethoxysilan 

Sol-gel 

[54] 
Ruthenium complexes 

polyelectrolytes LbL 
Fiber End tips 

[55] 

Hydrogel-matrix Sol-gel Side-polished fiber [58] pH 

tetraexthoxysilane (TEOS) Sol-gel V-tapered fibers 
[59]; 

[60] 
Fluorescein complexes 

cocaine Molecularly imprinted polymer Polymerization MMF end tips [61] 

pH MPOF [62] 
Eosin 

ammonia 
cellulose acetate (CA) Liquid flow 

MOF [63] 

 
Other materials, such as functionalized carbon dots and 

vapochromic compounds can also exhibit fluorescence when 
excited at certain wavelengths. The LbL technique has been 
used successfully to immobilize both carbon dots and vapo-
chromic compounds onto optical fiber end tips for the detec-
tion of Hg2+ ions [68,69] and VOCs [32] respectively. Simi-
larly glucose/galactose binding proteins functionalized with 
a fluorescent dye have been adhered to an optical fiber end 
tip within a hydrogel matrix and used for continuous glucose 
monitoring in animals [70]. Here, the conformational change 
of the protein in presence of glucose inhibits the fluores-
cence as it is shown in (Fig. 2). 

In this context, luminescent semiconductor nanocrystals, 
or quantum dots (QDs), are particularly attractive. The 
unique optical properties of QDs, such as the particle-size 
dependent luminescence, high efficiency, narrow fluores-
cence emission band, broad absorption spectrum and high 
photostability when compared to those of traditional molecu-
lar fluorophores, can provide new solutions to many of the 
problems associated with traditional luminescence sensors 
and are the promise for a completely new set of applications 
using different optical fiber configuration [71]. As an exam-
ple, CdTe quantum dots of various sizes have been embed-
ded in polymeric films using the Layer-by-Layer technique 
in order to obtain temperature sensors by means of different 

optical fiber configuration schemes. In [72], the structures 
have been fabricated onto MMF tapered ends while in [73] 
and [74] the structures have been fabricated in the inner part 
of HCFs and in the holes of MOFs respectively (see Fig. 3), 
which protects the QD nanofilm from the environment while 
it is still sensitive to temperature changes reducing consid-
erably the effects of photobleaching. Moreover, the utiliza-
tion of quantum dots of various sizes enabled the utilization 
of several reference signals [73]. Optical fiber sensing 
probes for Cu2+ detection were also fabricated in [75] by 
immobilizing CdSe/ZnS quantum dots onto optical fiber 
tapered end tips using the sol-gel dip-coating technique. 

4. ABSORBANCE-BASED SENSORS 

The transmission of the light through an analyte (T) fol-
lows Lambert-Beer’s law (ec. 3) 

T = I/Io = 10 -α l = 10 ε [C] l  (3)  
where Io and If represent the light intensity before and after 
passing through the sensitive region respectively, l is the 
path length of the light within the absorbing material and α 
is the absorption coefficient of the indicator, which can be 
expressed by the product between the molar absorption coef-
ficient (ε) and the concentration [C] of the target. The 
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Fig. (2). (A) Ribbon structures depicting the glucose-mediated 
conformational change of glucose/galactose binding protein 
(GGBP). Left: Open unliganded conformation of GGBP usin 
Protein Data Bank structure file 2FW0. Right: the closed or glu-
cose-bound structure of GGBP using Protein Data Bank structure 
file 2FVY. (B) Fluorescence response of acrylodan-labeled 
GGBP to glucose. The shaded regions show wavelength bands 
monitored by the optical system. Extracted from [70] with per-
mission from Elsevier.  

 
Fig. (3). Top: Microscope image of the MOF-MMF splices. Bottom: 
Picture of the optical fiber arrangement under UV illumination. In the 
middle region the red quantum dots’ fluorescence from the MOF 
inner holes can be seen. Extracted from [74] under Creative Com-
mons License.  

 
logarithmic relation of ec. 3 can be also expressed in terms 
of absorbance as a linear function of the absorbing material 
concentration (eq. 4). 

A = -log10 I/Io = α l = ε [C] l           (4)  
Absorbance-based optical fiber sensors are often used in 

optical fiber sensing owing to the readout simplicity associ-
ated to these devices. The utilization of these sensors relies 
on the characteristic light absorption of every material and 
its spectral signature. However, this requires complex dis-
crimination algorithms and sometimes tedious learning proc-
ess in order to obtain optimum results [76-78]. An alternative 
approach comprises the utilization of an active indicator as 
the transducer. The generic idea is that the active indicator 
changes its optical properties (absorbance) depending on the 
presence or concentration of the sole target to be measured, 
which enables to determine the target concentration. In order 
to maximize the interactions of the light with the indicator, 
the latter can be adhered, directly or immersed in a support-
ing matrix, to the fiber surface. Therefore, the matrix proper-
ties together with the optical fiber geometry will determine 
the penetration depth of the evanescent field within the sen-
sitive structure and it will be crucial in the overall response 
of this kind of sensors [79]. The next paragraphs will focus 
the attention in the utilization of thin absorbing films ad-
hered to different optical fiber schemes for the fabrication of 
optical fiber sensors as it is summarized in (Table 2). 

In general, the optical fiber schemes employed are in-
tended to grant the major access to the light travelling 
through the optical fiber core in order to maximize the inter-
actions of the light with the active thin-film. Bent fibers can 
be an interesting choice to increase the evanescent field and 
hence the interactions with the surrounding active media as it 
is described by several authors for the fabrication of humid-
ity [80,81], pH [82], ammonia [83], H2O2 [84] and Hg2+ [85] 
sensors. 

An alternative approach and one of the preferred em-
bodiments due to its simplicity consists of the removal of the 
optical fiber cladding and the fabrication of the thin-film 
directly onto the optical fiber core. This, configuration is 
usually referred as cladding removed (CR) followed by the 
optical fiber type such as multi-mode fiber (MMF) or plastic 
optical fiber (POF) and have been largely exploited in litera-
ture for the development of optical fiber sensors for ammo-
nia [86,87], humidity [88,89], toluene [90], H2S [91,92], 
aerosol [93] or pH [94-104] detection.  

Other options aimed to maximize light interactions with 
the sensitive film comprise the modification of the regular 
optical fiber structure or the utilization of special optical 
fibers. As regard as the modification of the optical fiber 
structure it can be mentioned the fabrication of optical fiber 
sensors by means of hetero-core optical fibers (HCOF)  
[105-107], tapers [22, 108, 109] or side-polished fibers 



88    The Open Optics Journal, 2013, Volume 7 Hernaez et al. 

Table 2. Summary of Optical Fiber Sensors Based on Absorbance Measurements 

Optical Fiber Configuration Target Active Coating Fabrication Technique Reference 

SiO2/PDDA [86] 
ammonia 

Tetrakis-(4-sulfophenyl)porphine(TSPP) 
LbL 

[87] 

Polymer fibers Electrospinning [88] 
Humidity 

agarose sol-gel [89] 

Toluene TiO2/SiO2  [90] 

H2S Ag Sputtering [91,92] 

Aerosol [93] 
Thymol blue + TEOS 

[94] 

cresol red, chlorophenol red, bromophenol blue + 
CNTs 

[115] 

Cresol red, chlorophenol red, bromophenol blue [95,96] 

Ethyl violet [97] 

Bromophenol blue [98] 

Bromocresol green & cresol red [99] 

silica matrix [100] 

methyl orange 

sol-gel 

[101] 

polymeric film [102] 

CRMMF/CRPOF 

pH 

[103] 

pH 
neutral red 

[82] 

Hg2+ PVC/bis(2-ethylhexylsebacate) 

LbL 

[85] 

Ammonia Bromocresol purple/SiO2 [83] 

H2O2 Ti(IV)-oxyacetylacetonate doped Nafion [84] 

Agarose [80] 

Bent fibers 

SiO2/methylene blue 

sol-gel 

[81] Humidity 

PDDA/poly-R LbL [22,80,108] 
Tapered fibers 

Alcohol Novolac resin and PVDF [109] 

pH Cresol red, chlorophenol red and bromophenol 
blue 

sol-gel 
[110] 

Side polished fiber 

Pd/WO3 sputtering [111] 
H2 

Pd/Au evaporation [105,106] 
Hetero-core fibers 

Humidity poly (ethylene oxide) [116] 

pH Phenol red & cresol red 
sol-gel 

[112] 

Polymer [108] HCFs 
Humidity 

Poly-glutamic acid/poly-lysine 
LbL 

[107] 

H2 Pd Thermal evaporation [113] 
MOFs 

HCl Porphyrin-doped TiO2 sol-gel [114] 
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[110, 111] while the use of special optical fibers for the fab-
rication of sensors is mainly referred to hollow-core fibers 
(HCFs) [112, 108] and microstructured optical fibers 
(MOFs) [113, 114]. 

5. RESONANCE-BASED SENSORS 
When an optical waveguide is coated by a thin-film (see 

Fig. 4), the propagation of light is affected. Depending on 
the properties of the different materials involved in the sys-
tem (the waveguide, the coating and the external medium), 
three different cases of electromagnetic resonances can be 
distinguished [117]. 

 
Fig. (4). Schematic representation of the optical system used to 
obtain electromagnetic resonances. 

The first case occurs when the real part of the thin-film 
permittivity is negative and higher in magnitude than both its 
own imaginary part and the permittivity of the material sur-
rounding the thin film. In this case, a resonance called Sur-
face Plasmon Resonance (SPR) is produced. 

The second case occurs when the real part of the thin-
film permittivity is positive and higher in magnitude than 
both its own imaginary part and the permittivity of the mate-
rial surrounding the thin film. In these conditions a second 
type of resonances called Lossy Mode Resonance (LMR) is 
produced. 

Finally, the third case occurs when the real part of the 
thin-film permittivity is close to zero, while the magnitude of 
its imaginary part is large. This case, known as long-range 
surface exciton polariton (LRSEP), has not been applied to 
the fabrication of optical fiber sensors and will not be in-
cluded in this review. 

The system showed in (Fig. 4) can be easily adapted to 
optical fiber. The uncladded core of an optical fiber is used 
as a waveguide and the appropriate coating is deposited onto 
it. This device is connected in both extremes to an optical 
source and a detector to obtain the complete interrogation 
setup [118]. 

When an electromagnetic resonance (EMR) (SPR or 
LMR) is produced, the generated absorption peak shifts to 
different wavelengths when the refractive index of the exter-
nal medium changes.  

SPR have become an optical fiber sensor standard in the 
last years, with a lot of research done in this field. For exam-
ple, different optical fiber refractometers based on SPR have 

been developed by using MMF, SMF or tapered fiber-
schemes [118-125]. 

If the SPR supporting thin film (usually a metal) is 
coated with any material which refractive index is sensitive 
to some magnitude, a variation in this magnitude will pro-
duce a shift in the SPR absorption peak. This architecture 
has been applied for the fabrication of different optical fiber 
sensors. For example, in [126] a pH sensor was fabricated by 
adding a pH-sensitive hydrogel to a SPR supporting coating. 
In addition, different sensors based on SPR have been devel-
oped for the detection of volatile organic compounds (VOC), 
such as alkanes [127, 128] or ammonia [129]. 

However, the fabrication of biological sensors is the field 
where SPR-based optical fiber sensors have acquired the 
main interest [130, 131]. These sensors include biologically 
active structures that detect the target, such as bacterial cells, 
enzymes, antibodies and other proteins and allow the detec-
tion of proteins [132], viruses [133, 134], pesticides [135], 
living cells [136], etc. 

As it has been mentioned, the apparition of SPR devices 
has supposed an important breakthrough in the field of opti-
cal fiber sensors. But this phenomenon have some limita-
tions, such as the necessity of using polarized light or the 
fact that it is only generated by some specific metals. 

Recently, the first optical fiber sensors based on LMR 
have appeared using LMR supporting coatings from differ-
ent nature. Thus, optical fiber refractometers including dif-
ferent metal oxides have been fabricated [137-139]. These 
sensors present sensitivities in the range of similar SPR-
based sensors, but the experimental setup and the fabrication 
procedure are simpler. 

In addition, sensors based on these refractometers have 
been developed by just adding a sensitive coating to the pre-
vious device. For example, polymeric coatings were depos-
ited onto the LMR supporting devices in order to obtain hu-
midity and pH sensors [27, 140, 141]. 

However, metal oxides are not the only materials that can 
generate LMR. In [142] a refractometer based on TiO2 
nanoparticles is presented and in [143], a polymeric coating 
is simultaneously used as LMR supporting coating and sensi-
tive coating in order to obtain a pH sensor with a really fast 
and sensitive response and low hysteresis (Fig. 5). 
 

 
Fig. (5). Dynamical response of a pH sensor based on LMR gener-
ated onto a polymeric coating. Extracted from [143] with permis-
sion from Elsevier. 
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Table 3.  Summary of Optical Fiber Sensors Based on Electromagnetic Resonances 

Optical Fiber Configuration Target Active coating Fabrication Technique Reference 

Au, Ge, Ag, SiO2 RF sputtering [144] 

Au Evaporation [119] 

Au Layer by Layer [123] 

Au  [118] 

Ag, ZrO Sol-Gel [124] 

Refractive index 

Al RF sputtering [125] 

Alkanes Ag/Pt RF sputtering [127] 

Hydrogen Au/Pd  [106] 

pH Smart hydrogel Silanization [126] 

Ammonia Polyaniline Sol-Gel [129] 

Living cells reactions Au RF sputtering [136] 

pesticides acetylcholine esterase Gel entrapment [135] 

DNA hybridization DNA aptamer bioreceptors [145] 

Cadmium phytochelatins [146] 

SARS coronavirus anti-N-1 monoclonal antibody [134] 

Influenza A virus Antibodies against the hemagglutinin [133] 

alpha-fetoprotein Antigen – antibody sandwich [132] 

SPR 

thrombin Human thrombin binding aptamer 

Chemical adsorption 

[147] 

ITO [137,138] 

InO 
Sol-gel 

[139] Refractive index 

TiO2/PSS Layer by layer [142] 

ITO + Agarose Sol gel [140] 
Relative Humidity 

ITO + PAH/PAA Sol gel + LbL [27] 

pH PAH/PAA Layer by Layer [141,143] 

LMR 

VOCs ITO Sol gel [148] 

 
In (Table 3) a summary with different examples of opti-

cal fiber sensors based on SPR and LMR is shown. 

6. CONCLUSIONS 

This paper has reviewed four categories of nanostruc-
tured optical fiber sensors based on fluorescence, absor-
bance, interferometric nano-cavities and electromagnetic 
resonances. All these sensors rely on the interactions of light 
with the nanostructured thin-films. The sensing mechanism 
behind each category and current state of the art has been 
presented. 

7. FUTURE DEVELOPMENTS 

In the last few years, different studies have shown the ex-
cellent potential of carbon derivates as sensitive materials for 
the detection of ambient pollutants. The particular structure 
of these carbon-based materials and their unique properties 
such as their tensile strength, high surface area, low density 
as well as their exceptional electrical and thermal properties 
make them very attractive to produce small and portable 
sensors usable on many different substrates [149] such as 
optical fibers [30, 29, 150]. A step forward could be the 
functionalisation of these carbon-based structures that can 
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include fullerenes, graphene films, carbon nanotubes, 
nanoporous carbon films and diamond like carbon films 
among others in order to increase their sensitivity and mini-
mize the undesired effects like cross-sensitivity [151]. 

Additionally, the utilization of metal-organic framework 
materials could also expand the challenges in the design and 
synthesis of structures with exceptionally high surface areas. 
(up to 3,000 m2·g-1) [152] while the investigation of the sens-
ing properties of these porous materials combined with opti-
cal fibers is still an unexplored field. 
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