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Abstract: We investigate the profiles of off-diagonal components of static linear ( xy, yx), first nonlinear ( xyy, yxx), and 
second nonlinear ( xxyy and yyxx), polarizabilities of repulsive impurity doped quantum dots. The dopant impurity potential 
is expressed as a Gaussian function. The study thrusts on investigating the role of Gaussian white noise on the polarizabil-
ity components. The noise has been applied additively and multiplicatively to the system (in Stratonovich sense). The 
doped system is further subjected to a static external electric field. The dopant site and the mode of application of noise 
design the polarizability components in a subtle manner. We have found that the strength of additive noise fails to influ-
ence the polarizability components. However, the multiplicative noise introduces greater delicacy in the observed profiles 
of polarizability components. The present study reveals appearance of maximization and saturation in the linear and non-
linear polarizability components on some occasions which bears substantial technological importance in the field of noise-
driven optical properties of doped quantum dot systems. 
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1. INTRODUCTION 

Quantum dots (QDs) are the destinations we can finally 
arrive so far, as miniaturization of semiconductor devices is 
concerned. QDs are familiar for displaying much more rich 
nonlinear optical effects than the bulk materials. Thus, they 
have undergone extensive applications as an indispensable 
ingredient in a variety of optical devices. Rigorous study of 
optical properties of these devices endows us with lots of 
important information about their energy spectrum, the Fer-
mi surface of electrons, and the value of electronic effective 
mass. These features have made QDs widely recognized 
high-performance semiconductor optoelectronic materials. 
However, QDs are often contaminated with dopants during 
their fabrication which abruptly alter their properties. The 
said contamination introduces additional potential to the QD 
system which invariably undergoes interaction with intrinsic 
QD confinement potential. The interaction appears to be 
responsible for the dramatic change in various properties of 
QD. A large number of investigations on doped QD [1-7] 
therefore accrue with increasing need of exploring their 
properties. Within the realm of optoelectronic applications, 
impurity guided modulation of linear and nonlinear optical 
properties have been found to be immensely important in  
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photodetectors and in several high-speed electro-optical de-
vices [8, 9]. A cornucopia of important works on both linear 
and nonlinear optical properties of these structures was 
therefore an anticipated outcome [8, 10-22]. 

External electric field has often been found to illuminate 
important aspects related with concerned impurities. The 
electric field changes the energy spectrum of the carrier and 
controls the performance of the optoelectronic devices. 
Moreover, the electric field often hampers the symmetry of 
the system and facilitates the emergence of nonlinear optical 
properties. Thus, the applied electric field assumes special 
attention in view of understanding the optical properties of 
doped QDs [23-30]. 

Recently we have amply discussed the importance of 
noise [31-33] in influencing the performances of QD devic-
es. In these works we have explored the role of Gaussian 
white noise on the diagonal components of frequency-
dependent linear [31], first nonlinear [32], and the third non-
linear [33] polarizabilities of doped QD. In the present man-
uscript we explore the role of Gaussian white noise on the 
off-diagonal components of static linear ( xy, yx), first non-
linear (second order) ( xyy, yxx), and the second nonlinear 
(third order) ( xxyy, yyxx), polarizabilities of doped QD. Inves-
tigation on off-diagonal components demands exploration as 
they interact differently with the applied field from their di-
agonal analogs and thus expected to exhibit noticeably dis-
tinct features. Of late ahin made some important contribu-
tion to the third order optical property of a spherical QD and 
analyzed the role of impurity [13]. The notable work of  
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Karabulut and Baskoutas [20] also deserves mention in a 
similar context which includes the effect of electric field and 
impurity. In the present study noise has been applied to the 
system additively and multiplicatively [31-33]. An external 
electric field of given intensity has been applied to the doped 
system which acts as a perturbation and generates linear and 
nonlinear responses. We have put special emphasis on the 
role of dopant location and the noise characteristics as they 
happen to modulate the static off-diagonal polarizability 
components. The role of dopant site has been critically ex-
plored because of its well-known influence in modulating the 
optical properties of doped heterostructures. In their previous 
works Karabulut and Baskoutas [20], and Baskoutas et al. 
[23] highlighted the importance of off-centre impurities and 
introduced a novel numerical method (PMM; potential 
morphing method). The present analysis reveals the nuances 
in the profiles of aforesaid polarizability components as a 
result of intricate interplay between noise characteristics and 
the effective confinement potential of the doped QD system. 
The effective confinement potential has a strong dependence 
on the site of dopant incorporation and thus the latter makes 
a significant contribution in the fabrication of the overall 
pattern of the polarizability components. The significance of 
mode of application of noise (additive/ multiplicative) to the 
doped system has also been thoroughly addressed in the pre-
sent manuscript. 

2. METHOD 

Our model Hamiltonian represents a 2-d quantum dot 
with single carrier electron laterally confined (parabolic) in 
the x-y plane. The confinement potential reads V(x, y) = 

m*  (x2 + y2), where  is the harmonic confinement fre-

quency. The parabolic confinement potential has found ex-
tensive usage in various studies on QDs [1, 3, 4, 6, 18, 24], 
particularly in the study of optical properties of doped QDs 
by Çakir et al. [14]. A perpendicular magnetic field (B ~ mT 
in the present work) is also present as an additional confine-
ment. Using the effective mass approximation we can write 
the Hamiltonian of the system as 

= + .  (1) 

In the above equation m* stands for the effective elec-
tronic mass within the lattice of the material. The value of 
m* has been chosen to be 0.067m0 representing GaAs quan-
tum dots. 

We have set = e =  =  = 1 and performed our cal-
culations in atomic unit. In Landau gauge [A = ( , 0, 0)] (A 
being the vector potential), the Hamiltonian transforms to 

  

  (2) 

c = being the cyclotron frequency.  2 =  can 

be viewed as the effective frequency in the y-direction. 

 

We now introduce impurity (dopant) to QD and the do-
pant is represented by a Gaussian potential [34-36]. To be 
specific, in the present case we write the impurity potential 
as 

Vimp = V0 . The choice of positive values 
for  and V0 gives rise to repulsive impurity. Among various 
parameters of impurity potential, (x0, y0) denotes the dopant 
coordinate, V0 is a measure of strength of impurity potential, 
and  -1 determines the spatial stretch of impurity potential. 
Recently Khordad and his co-workers introduced a new type 
of confinement potential for spherical QDs called Modified 

Gaussian Potential, MGP [37, 38]. The Hamiltonian of the 
doped system reads 

= + Vimp .  (3) 

We have employed a variational recipe to solve the time-
independent Schrödinger equation and the trial function 

has been constructed as a superposition of the prod-
uct of harmonic oscillator eigenfunctions [31-33] and 

respectively, as 

 = ,  (4) 

Where are the variational parameters and p =  

and q =  . The general expression for the matrix ele-

ments of  and  in the chosen basis has been derived 
[31 - 33]. In the linear variational calculation, the requisite 
number of basis functions has been exploited after perform-
ing the convergence test. And H0 is diagonalized in the direct 
product basis of harmonic oscillator eigenfunctions. 

With the application of noise the time-dependent Hamil-
tonian becomes 

 H (t) = 0   (5) 

The noise consists of random term (  (t)) which follows a 
Gaussian distribution (produced by Box-Muller algorithm) 
having strength μ. It is characterized by the equations [31-
33]: 

,  (6) 

the zero average condition, and 

 ,  (7) 

the two-time correlation condition where the correlation time 
is negligible. The Gaussian white noise has been adminis-
tered additively  as well as multiplicatively 

 [31-33]. 

The external static electric field V2 of strength  is now 
applied where 

.  (8)  

Where  and  are the field intensities along the x and the y 
directions. Now the time-dependent Hamiltonian reads 

  (9) 
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The matrix elements due to  and  can be readily 
derived [31-33]. 

The evolving wave function can now be expressed by a 
superposition of the eigenstates of , i.e. 

   (10) 

The associated time-dependent Schrödinger equation 
(TDSE) has now been solved numerically to ob-
tain . For the numerical solution we have invoked 6-
th order Runge-Kutta-Fehlberg method with a time step size 

 = 0.01 a.u. on verifying the numerical stability of the in-
tegrator. The time-dependent superposition coefficients 
[ ] has been used to calculate the time-average energy 
of the dot [31-33]. We have determined the energy 
eigenvalues for various combinations of  and and used 
them to compute some of the off-diagonal components of 
linear and nonlinear polarizabilities by the following rela-
tions obtained by numerical differentiation. For linear polar-
izability:  

  (11)  

 And a similar expression is used for computing  
component. 

 The off-diagonal components of first non-linear polar-
izability (second order/quadratic hyperpolarizability) are 
calculated from following expressions. 

  (12)  

And a similar expression is used for computing  
component. 

The off-diagonal components of second nonlinear polar-
izability (third order/cubic hyperpolarizability) are given by 

 (13)  

 And a similar expression is used for computing  
component. 

3. RESULTS AND DISCUSSION 

A. Role of Dopant Location 

Fig. (1a and 1b) depict the profiles of  as a function 
of dopant location  for additive and multiplicative noise, 
respectively. In case of additive noise the said off-diagonal 
component remains nearly static with r0 up to  ~ 20.0 a.u. 
As the dopant is moved further, the component makes a dis-
tinct jump and finally at ~ 45.0 a.u. it begins to settle with 

further shift of dopant (Fig. 1a). The sharp jump in the linear 
off-diagonal components can be attributed to sudden fall in 
the dot confinement beyond a dopant location of 20.0 a.u. 
Additive noise exploits this lack of confinement and increas-
es the dispersive character of the system as evident from the 
prominent jump of said polarizability component. The satu-
ration appearing at ~ 45.0 a.u. indicates a balanced situa-
tion between the effective confinement and the noise 
strength. Similar profile exhibits quite different appearance 
when multiplicative noise is applied to the system. The pro-
file now displays prominent maxima at  ~ 20.0 a.u. Fig. 
(1b). A dopant located in the vicinity of dot confinement 
centre simultaneously experiences strong confinement and 
intense dot-impurity repulsive force. The diminished value 
of linear response at on and near off-centre locations indi-
cates dominance of confining factors over the repulsive in-
teraction. On the other hand, a far off-centre dopant under-
goes marginal overlap with dot confinement centre. This 
makes the repulsive interaction insignificant and polarizabil-
ity falls. The observed maximization at  ~ 20.0 a.u. reveals 
absolute dominance of factors that promote the dispersive 
nature of the system over the reverse ones. It is interesting to 
note that dopant location plays some important role in shap-
ing the  component in both the modes of application of 
noise. As a result we find a sudden surge in  at a typical 
dopant location of  ~ 20.0 a.u. in both the cases. However, 
the very mode of application of noise affects the complete 
profile of  component over the entire range of dopant 
site. We can thus infer that the additive and multiplicative 
nature of noise in general discriminates the relative domi-
nance of diverse factors that control the dispersive character 
of the system as a function of dopant site. This is reflected 
through their overall distinct profiles; some kind of harmony, 
though, could be observed at some typical dopant site. The 

 component exhibits nearly similar behaviour and the 
plots are not presented. 

Fig. (2) represents the similar plots for  and  
components with additive and multiplicative noise. In case 
of additive noise both the components exhibit similar pattern 
of variation with  . The variation consists of two distinct 
maxima; one at ~10.0 a.u. and the other at ~35.0 a.u. The 
near maxima are found to be more prominent than the distant 
one. The above two components, however, exhibit different 
profiles under the influence of multiplicative noise. The  
component exhibits distinct maxima at ~20.0 a.u. whereas 
the  component has been found to increase monotonical-
ly with up to ~ 30.0 a.u. beyond which it saturates with 
further shift of dopant. The emergence of second order polar-
izability bears close connection with the asymmetric as well 
as dispersive nature of the system. Since multiplicative noise 
undergoes direct coupling with the system coordinates, it 
interplays more delicately with the effective confinement of 
doped system in comparison with the additive counterpart. 
The difference in the overall behaviour of  and 

components with variation of r0 thus naturally becomes 
highly conspicuous in case of multiplicative noise which can 
discriminate nonlinear polarizability components on the ba-
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sis of direction of applied field. It thus seems logical to real-
ize that the lack of attachment of additive noise to system 
coordinates gives rise to nearly similar behaviour of the two 
components. Furthermore, the effect of gradual shift of do-
pant away from the dot confinement origin is not at all 
streamline. Such a shift makes the system more labile and 
facilitates emergence of the nonlinear polarizability. Howev-
er, on the other hand, such a shift reduces dot-impurity re-
pulsive interaction that could suppress polarizability. Hence 
such a shift of dopant basically causes an alteration in the 
effective confinement of the doped system and increases its 
asymmetric character. The expressions of various off-
diagonal components [cf. eqn (12-14)] clearly reflect that, 
unlike  and , the  components are non-equivalent. 

Noise, by virtue of its basic nature makes the system 
more scattered. However, the scenario becomes quite com-
plicated as the mode of application of noise simultaneously 

combines with various factors of relevance accompanying 
the shift of dopant site. The varying effective confinement, 
asymmetric, and dispersive nature of the system, mingle with 
noise and bring about a rich variety in the profiles of  com-
ponents. The profiles contain maximization and saturation of 

 components as important ingredients at typical dopant 
sites. 

Fig. (3a and 3b) delineate the plots of component 

with using additive and multiplicative noise, respectively. 
In case of additive noise we find a distinct minimum at 

~22.0 a.u. Fig. (3a). Application of multiplicative noise 
completely reverses the outcome and the said component 
displays maximization nearly at the same dopant location 
Fig. (3b). Thus, a change in the mode of noise application in 
turn causes a maximum reversal in the relative dominance of 
various parameters that promote or impede third order polar-
izability. The dopant location corresponding to this maxi-

   
Fig. (1). Plot of  components vs. : (a) for additive noise and (b) for multiplicative noise. 

 

 

Fig. (2). Plot of  components versus : (i)  with additive noise, (ii) with additive noise, (iii)  with multiplicative noise, (ii) 

with multiplicative noise. 
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mum reversal, however, remains nearly unchanged. The 
 component depicts nearly similar feature (figures not 

shown). 

The polarizability profiles discussed so far as function of 
strongly indicate that the dot-dopant interaction (or in oth-

er words the 'effective confinement potential') sincerely de-
pends on  and runs in conformity with the important ob-
servations of Karabulut and Baskoutas [20], and Baskoutas 
et al. [23] in related context. The dopant incorporated around 
a particular location undergoes typical interplay with dot 
confinement center. The mode of application of noise further 
enhances the delicacy of said typical interplay when it modu-
lates the off-diagonal linear and nonlinear polarizability 
components in visibly different fashions. It needs to be fur-
ther mentioned that, in agreement with our earlier works [31, 
32] here also we do not find any influence of noise strength 
(μ) on the linear and nonlinear polarizabilities in case of ad-
ditive noise. However, as before, the application of multipli-
cative noise invites noise strength dependence of polarizabil-
ity components [31, 32]. The present enquiry on off- diago-
nal components, however, reveals one striking contrast with 
our erstwhile findings on diagonal components in the pres-
ence of noise [31, 32]. Previously we have envisaged tre-
mendous enhancement of diagonal polarizability compo-
nents by several orders of magnitude using multiplicative 
noise over that of additive analog [31, 32]. Interestingly, in 
the present enquiry involving off-diagonal components, their 
magnitudes remain comparable in both the modes of applica-
tion of noise. It thus appears that a change in the mode of 
application of noise to doped QD affects the diagonal com-
ponents of linear and nonlinear polarizabilities much more 
severely than the off-diagonal counterparts. 

B. Role of Noise Strength 

Fig. (4a-d) depict the plots of , , , and  

respectively, as functions of strength ( ) of multiplicative 
noise. The component increases monotonically to a  
 

maximum with increase in  up to  ~ 5.5 x  a.u. Fig. 
(4a). An increase in  enhances the dispersive nature of the 
system which results in monotonic increase of  component. 

After maximization,  decreases with  till  ~ 7.2 x 
 a.u. Such a fall in the said component within the do-

main 5.5 x a.u.    7.2 x a.u. seems quite con-

trary to our expectation and may have some different back-
ground. Within this noise strength regime the strong system-
noise interaction appears to enhance the effective confine-
ment. Because of this enhanced confinement the dispersive 
nature of the system could quench leading to a drop in the 

 component. Beyond  ~ 7.2 x  a.u. the dispersive 
character again becomes quite pronounced and permanently 
overcomes confinement leading to monotonic increase 
of .  component displays nearly similar behaviour, as 
well. 

Both  and  components consist of distinct max-
ima at  ~ 3.1 x a.u. and  ~ 2.3 x  a.u., respective-
ly (Figs. (4b-c)). The maximization of first nonlinear polar-
izability of QD devices is of utmost technological im-
portance and the observed behaviour indicates development 
of maximum asymmetric character of the doped system at 
particular values of noise strength. Thus, although the two 
components display an overall similar behaviour as functions 
of , they differ in the typical value of  where maximiza-
tion occurs and in the pattern of their fall after maximization. 
The two profiles also manifest onset of saturation at high 
noise strength regime (which is, however, much more pro-
nounced for  than ) and thus suggest kind of negoti-
ation between noise and the effective confinement strength. 

Fig. (4d) evinces the variation of  with  compris-

ing of distinct maxima at  ~ 3.5 x a.u. The observation 
indicates that the dispersive character of the system reaches 
its most at this typical value of noise strength. A departure 
from this typical value on either direction diminishes the  

   

Fig. (3). Plot of  components versus : (a) for additive noise and (b) for multiplicative noise. 
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dispersive character owing to the dominance of confinement 
effects over noise. The plot of  are quite similar and not 

shown. 

CONCLUSION 

The off-diagonal components of static linear, first non-
linear and second nonlinear polarizabilities of impurity 
doped quantum dots have been investigated under the sway 
of Gaussian white noise. The polarizability components are 
found to be strongly dependent on the site of dopant incorpo-
ration and the mode of application (additive/multiplicative) 
of noise. A variation of dopant location or noise strength in 
turn affects the effective confinement of the system. Conse-
quently, the dispersive and asymmetric character of the sys-
tem are also affected. Whereas the off-diagonal  and  
components mostly depend on dispersive character, the  
component also depends on the asymmetric character of the 
doped system. Particularly, the findings of the third order 
nonlinear polarizability show some connection with the no-
table works of ahin [13] and Karabulut and Baskoutas [20]. 
It is because of its direct coupling to the system coordinates  
 

the multiplicative noise brings about more subtlety in the 
observed profiles of above polarizability components than its 
additive counterpart. In case of additive noise the noise 
strength remains indifferent to the polarizability components. 
Interestingly, unlike diagonal components [31, 32], here the 
magnitudes of polarizability components remain comparable 
independent of the mode of application of noise. The present 
study also predicts a stronger influence of mode of applica-
tion of noise on the diagonal polarizability components rela-
tive to off-diagonal ones. As a result of complex interplay 
between various pertinent parameters frequently we envisage 
maximization and saturation in the linear and nonlinear po-
larizability components that are driven by white noise signal-
ling possibility of significant technological importance. 
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Fig. (4). Plot of off-diagonal polarizability components vs. μ with multiplicative noise: (a) for , (b) for , (c) for , (d) for . 
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