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Abstract: It is well known that the Spanish stock market index (IBEX 35) exhibits unit roots. However, the implications 

of possible structural breaks in this series have not been deeply investigated. In this paper, we show that, when including a 

break at the beginning of 1998, the order of integration of the series becomes slightly smaller, strengthening the evidence 

of mean-reverting behaviour. When the break date is supposed to be unknown, it is found to be January 1998, with both 

subsamples still being characterised by a high degree of persistence. 

INTRODUCTION 

 Two recent papers of DePenya and Gil-Alana [1, 2] show 

that Spanish stock market index (IBEX 35) can be modelled 

as a unit root or I(1) process. These authors use both para-

metric and semiparametric methods to estimate and test the 

fractional differencing parameter, and conclude that, al-

though fractional degrees of integration (slightly smaller 

than one) may be plausible in some cases, the unit root null 

hypothesis cannot be rejected, implying that mean reversion 

does not occur. In this paper, we examine whether these con-

clusions are affected by the presence of structural breaks. 

The interaction of long memory with structural change has 

been analysed in a number of papers, including applied hy-

drology [3], econometrics ([4, 5]), and mathematical statis-

tics ([6, 7]). More recently, Diebold and Inoue [8] provide 

both theoretical and Monte Carlo evidence that structural 

breaks-based models and long-memory processes are not 

easily distinguished. Granger and Hyung [9] also analysed 

theoretically the links between the two types of models, and 

Gil-Alana [10] showed that the order of integration of some 

series is reduced by the inclusion of dummy variables for the 

breaks. Other recent articles of fractional integration with 

structural change are those of Beran and Terrin [11] and Bos, 

Franses and Ooms [12, 13]. 

 The outline of this paper is as follows. In the following 

section we briefly describe a procedure due to Robinson 

[14], which is suitable to test I(d) statistical models including 

structural breaks. Then, this procedure is applied to the 

Spanish stock market index, and also a recently developed 

procedure (see Gil-Alana, [15]) is applied to test for frac-

tional integration in the presence of a structural break at an 

unknown point in time. The final section concludes. 

THE TESTING PROCEDURE 

 Following the contributions of Bhargava [16], Schmidt 

and Phillips [17] and others on the parameterisation of unit-

root models, we consider the following specification: 

yt = ' zt + xt , t = 1, 2, ....,           (1) 
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where yt is the time series we observe at t = 1, 2, …T;  is a 

(kx1) vector of unknown parameters; zt is a (kx1) vector of 

deterministic regressors that may include, for example, 

dummy variables to incorporate structural breaks, and xt is 

given by: 

(1 L)d xt = ut , t = 1, 2, ....          (2) 

with I(0) ut. In general, we want to test the null hypothesis: 

,:
oo
ddH =

            (3) 

in (1) and (2) for any real value do. Based on (3), the least-

squares estimate of  and residuals are: 

ˆ
= wt wt '
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T 1

wt (1 L)do yt ;
t=1

T

wt = (1 L)do zt ; ût = (1 L)do yt
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and the test statistic proposed by Robinson [14], which is 

based on the Lagrange Multiplier (LM) principle, is then 

given by 
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( j ) = log 2 sin j

2
;

ˆ( j ) = log g( j ; ˆ); j =
2 j

T
.

 

 I( j) is the periodogram of ût , and g above is a function 

coming from the spectral density of ut: 

f ( ; ) =

2

2
g( ; ), < ,  evaluated at ˆ  = 

arg min   T 
2
( ). Note that these tests are purely parametric 

and, therefore, they require specific modelling assumptions 

about the short-memory specification of ut. Thus, if ut is 

white noise, g  1, and if ut is an AR process of the form 

(L)ut = t, g = | (e
i

)|
-2

, with 
2
 = V( t), so that the AR coef-

ficients are a function of . 

 Based on the null hypothesis Ho (3), Robinson [14] 

showed that under certain regularity conditions,  

r̂ d N(0,1) as T ,             (5) 

and also the Pitman efficiency theory against local depar-

tures from the null applies. Thus, an approximate one-sided 

100 % level test of (3) will reject Ho against the alternative: 

Ha: d > do (d < do) if r̂ > z  ( r̂ < -z ), where the probability 

that a standard normal variate exceeds z  is . This version 

of the tests was used in empirical applications in Gil-Alana 

and Robinson [18] and in Gil-Alana [19] and, other applied 

studies of the tests based on seasonal (quarterly and 

monthly) and cyclical models are Gil-Alana and Robinson 

[20] and Gil-Alana [21, 22] respectively. 

EMPIRICAL RESULTS 

 The time series analysed in this section is the Spanish 

stock market index (IBEX 35), daily, for the time period 4 

January 1994 to 26 November 2001, obtained from the Span-

ish Stock Exchange Interconnection System (SIBE). The 

IBEX-35 is a value-weighted index that includes the thirty 

five most traded stocks of the Spanish stock market. Every 

semester, the effective trading volumes of all stocks are re-

corded in order to adjust the stocks and their weights and 

compute the index in the following semester. We use this 

series in our analysis in order to be able to make a direct 

comparison with the results obtained in [1] and [2], where 

the same data were used and the authors found strong evi-

dence of unit roots, but they did not allow for possible 

breaks. Moreover, the IBEX is a relatively homogeneous 

market, directly comparable to any other European financial 

market. 

 Fig. (1) displays the log-transformed series. Visual in-

spection reveals a clear change in the mean occurring around 

the beginning of 1998. Therefore, we perform the analysis 

for the pre-and post-1998 subperiods as well as for the whole 

sample period. 

 Denoting the log-transformed series yt, we employ thro-

ughout model (1) and (2), with zt = 1, i.e., 

yt = + xt , t = 1, 2, ...            (6) 

(1 L)d xt = ut , t = 1, 2, ...,            (7) 

testing Ho (3) for values do = 0, (0.25), 2, and different types 

of disturbances. In particular, we assume white noise and 

also Bloomfield [23] disturbances. The latter is a non-

parametric approach for modelling ut which produces auto-

correlations decaying exponentially as in the autoregressive 

(AR) processes. 

 The test statistic reported in Table 1 (and also in Table 2) 

is the one-sided statistic given by r̂  in (4). Thus, for a given 

do, significantly positive values of r̂  are consistent with or-

ders of integration higher than do, whereas significantly 

negative ones imply orders of integration smaller than the 

one under the null. Table 1 (i) reports the results based on 

the whole sample, while Tables 1 (ii) and (iii) correspond 

respectively to the first and the second subsample (4.01.94 - 

31.12.97 and 2.01.98 - 29.11.01). It can be seen that the only 

non-rejection value of d corresponds to d = 1, i.e. to the unit 
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Fig. (1). Log of the Spanish stock market prices. 
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root case, and this is so regardless of the sample used. The 

last two columns in the table report, respectively, the confi-

dence intervals for the values of do when Ho (3) cannot be 

rejected at the 95% significance level, and those which pro-

duce the lowest r̂  across do. We find that all confidence 

intervals include the unit root, and the lowest statistics occur 

when do is equal to 1 or smaller. The results are similar in 

both subsamples, though the values of do are slightly smaller 

in the second one. 

 Table 2 reports the results of the same statistic as in Ta-

ble 1 but including a structural break. We set zt = (1, St) , 

first, with St = I (t  Tb) and then, with St = (t – Tb) I (t  Tb), 

Tb = 2.01.1998. In other words, we introduce a shift and a 

slope dummy variable respectively for the break in the re-

gression model (1). Similarly to Table 1, the unit root null 

cannot be rejected, though the confidence intervals are now 

smaller, and the values of do which produce the lowest statis-

tics are much smaller, especially in the case of the slope 

dummy. Therefore, it appears that the inclusion of a dummy 

variable for the break reduces the order of integration of the 

series, restoring mean-reverting behaviour. 

 Next, we use an alternative approach to test for fractional 

integration in the presence of a structural break. Here, unlike 

in the previous method where it was set a priori, the break 

date is assumed to be unknown, and is endogenously deter-

mined by the model. This procedure was developed by Gil-

Alana [15], and it allows for possibly changing intercepts 

and fractional differencing parameters. The employed model 

is the following: 

yt = 1 + xt ;

(1 L)d1 xt = ut , t = 1,...,Tb
          (8) 

yt = 2 + xt ;

(1 L)d2 xt = ut , t = Tb +1, ...,T ,
           (9) 

where the 's are the coefficients corresponding to the inter-

cepts; d1 and d2 can be real values, and represent the orders 

of integration for each subsample; ut is I(0) and Tb is the time 

of the break that is assumed to be unknown. Note that the 

model above can also be written as: 

 

(1 L)d1 yt =

1 1t (d1 ) + ut , t = 1, ...,Tb ,
          (10) 

 

(1 L)d2 yt =

2 1t (d2 ) + ut , t = Tb +1, ...,T ,
         (11) 

where 
 
1t (di ) = (1 L)di1,  i = 1, 2. 

 This method is based on the least squares principle. First 

we choose a grid for the values of the fractionally differenc-

ing parameters d1 and d2, for example, dio = 0, 0.01, 0.02, …, 

2, i = 1, 2. Then, for a given partition {Tb} and given d1, d2-

values, (d1o , d2o ) , we estimate the 's and the 's by mini-

mising the sum of squared residuals, 

 

min (1 L)d1o yt 1 1t (d1o )
t=1

Tb
2

+

(1 L)d2o yt 2 1t (d2o )
t=Tb+1

T 2

w.r.t.{ 1, 2}

. 

 Let ˆ (Tb; d1o
(1) ,d2o

(1) )  denote the resulting estimates for 

partition {Tb} and initial values d1o
(1)

 and d2o
(1)

. Substituting 

these estimated values into the objective function, we obtain 

RSS(Tb; d1o
(1)

, d2o
(1)

), and minimising this expression over all 

values of d1o and d2o in the grid we get: 

RSS(Tb )= argmin{i, j}  RSS(Tb;d1o
(i ) ,d2o

( j ) ).  Then, the esti-

Table 1. Testing Ho (3) in (1) and (2) with r̂  given by (4) in the Log of the Spanish Stock Market Index 

 

i) Whole Sample (4.01.94 - 29.11.01) 

ut/do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Int. d
* 

White noise 195.94 183.26 113.58 26.44 -0.64 -9.42 -13.49 -15.85 -17.41 [0.97 - 1.02] 0.99 

Bloomfield 1 125.71 110.07 63.07 15.39 -1.05 -6.92 -9.66 -11.11 -12.10 [0.94 - 1.01] 0.97 

Bloomfield 2 97.81 86.00 40.85 12.16 -1.36 -8.23 -10.75 -11.75 -12.09 [0.98 - 1.00] 0.99 

ii) First Subsample (4.01.94 - 31.12.97) 

White noise 120.54 114.10  79.03 20.40 -0.67 -6.94 -9.79 -11.43 -12.50 [0.95 - 1.02] 0.99 

Bloomfield 1 75.06  65.55 42.08 12.11 -0.71 -5.17 -7.21 -8.25 - 9.07 [0.93 - 1.03] 0.98 

Bloomfield 2 55.03 44.69 35.52 10.43 -0.11 -3.50 - 5.78 -6.68 -7.01 [0.94 - 1.07] 1.00 

iii) Second Subsample (2.01.98 - 29.11.01) 

White noise 101.78  80.50  45.51 14.83 -0.51 -6.61 - 9.53 -11.24 -12.35 [0.95 - 1.03] 0.97 

Bloomfield 1  59.67  42.56 22.89  8.00 -0.84 -4.77 -6.76 - 7.81 - 8.72 [0.91 - 1.04] 0.96 

Bloomfield 2 42.72 28.53 14.12  5.63 -1.11 -3.56 - 5.58 - 6.39 -6.899 [0.91 - 1.05] 0.92 

In bold: The non-rejection values of the null hypothesis at the 95% significance level. 
d* is the value of d producing the lowest statistic across d. 
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mated break date, T̂k , is such that: 

T̂k = argmin i=1,...,m RSS (Ti ) , where the minimisation is 

done over all partitions T1, T2, …, Tm, such that Ti - Ti-1  

| T|. Then, the regression parameter estimates are the associ-

ated least-squares estimates of the estimated k-partition, i.e., 

ˆ
i =

ˆ
i ({T̂k}),  and their corresponding differencing param-

eters, d̂i = d̂i ({T̂k}),  for i = 1 and 2. Several Monte Carlo 

experiments conducted in [15] show that this procedure per-

forms relatively well even for small sample sizes. 

 The results for the two cases of white noise and AR(1) 

disturbances are displayed in Table 3. The estimated break 

date is January 12
th

, 1998 for the two types of disturbances. 

Starting with the white noise case, one can see that the order 

of integration for the first subsample is slightly above 1 

(1.02), while d2 (the order of integration after the break) is 

below unity (0.95), implying mean reversion. 

 When allowing for an AR(1) structure in the error term, 

the model corresponding to the lowest RSS is the one with d1 

= 0 and d2 = 1.02, implying short memory for the first sub-

sample and long memory (no mean reversion) after the 

break. However, a rival model, with a slightly higher RSS, is 

the one with d1 = 1 and the same d2 as before (1.02). Note 

that these two models have completely different statistical 

properties, though the differences in specification are only 

slight, the I(0) model for the first subsample having an AR 

coefficient extremely close to 1 (0.9992). This illustrates an 

important problem in econometrics, which is the difficulty of 

determining the appropriate order of integration in series 

with a high degree of dependence. Note that in a fractional 

model with AR disturbances there are two competing forces 

trying to capture time dependence between the observations: 

the fractional differencing parameter and the AR coefficient. 

Theoretically, the former describes the long-run behaviour 

while the latter concerns the short-run dynamics. However, 

in practice, this distinction is not clear. 

CONCLUSIONS 

 In this paper we have examined the stochastic behaviour 

of the Spanish stock market index (IBEX 35) using fraction-

ally integrated techniques, also allowing for possible struc-

tural breaks. The results show that the inclusion of a dummy 

variable for the break slightly reduces the order of integra-

tion of the series, and thus the mean-reversion property of 

prices is reinforced. Admittedly, even when allowing for a 

break the unit root null still cannot be rejected at the 5% sig-

nificance level. However, in all cases the test statistic is very 

close to the boundary of the confidence interval (see the last 

two columns in Table 2), and therefore the evidence of mean 

reversion is strengthened compared to the case without a 

break. When the break date is assumed to be unknown, the 

results support the mean-reversion hypothesis for the second 

subsample if the underlying disturbances are white noise. 

However, when allowing for weak autocorrelated terms, the 

I(0) and the I(1) hypotheses are difficult to tell apart in the 

first subsample. 
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