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Abstract: In this paper, we consider a parallel machine problem where machines and jobs can be classified into two lev-

els: high and low levels. A high-level machine can process all jobs while a low-level machine can process only low-level 

jobs. The objective of the problem is to minimize the makespan. This problem is a special case of the parallel machine 

problem with machine eligibility restrictions. The problem is NP-hard and a heuristic algorithm has recently been pro-

posed. However, there are no algorithms in the literature that can solve the problem to optimality. In this paper, we de-

velop such an exact algorithm by utilizing some useful properties inherent in the problem. Computational experiments 

show that the developed algorithm can find the optimal solution for various-sized problems in a short time. 
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INTRODUCTION 

 The parallel machine scheduling problem has been dis-

cussed extensively in the literature under the assumption that 

all the m  machines are capable of processing each of the n  

jobs. However, in many real-world situations a job can only 

be processed on a subset of the m  parallel machines. A 

common situation involves the acquisition of new machines 

that usually process a given job at the same speed as existing 

machines, but have the capability to process other jobs that 

existing machines cannot process [1]. Similarly, these new 

machines may not be able to process some jobs that existing 

machines, with older technologies, can process. As an exam-

ple given by Centeno and Armacost [2], the Probe workcen-

ter in wafer testing, one of the major phases in the manufac-

turing of integrated circuits, frequently involves a number of 

testing machines in parallel with different capabilities but 

with the same speed. This machine (server) eligibility re-

striction also exists in the service industry where various 

customers are entitled to many different grades of service 

levels. For example, credit card companies often have plati-

num or infinite members, who are more valued than the 

regular members and are usually entitled to premium serv-

ices [3].

 The purpose of this paper is to develop an exact algo-

rithm to find optimal solutions for the parallel machine prob-

lem in the presence of machine eligibility restrictions. The 

objective is to minimize the makespan. Following the three-

field notation, the problem can be denoted by 

max/ / ,jPm M C  where job j  is only allowed to be processed 

on subset jM  of the m  machines [4]. We address a special 

case of max/ /jPm M C  where both machines and jobs can be  
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classified into two levels: high and low levels. Each job is 

allowed to be processed on a particular machine only when 

the level of the job is no lower than the level of the machine. 

The addressed problem has been shown to be NP-hard by 

Hwang et al. [3]. 

 Due to the complexity of max/ / ,jPm M C  exact algo-

rithms can be developed only for problems with unit-length 

jobs, i.e., max/ 1, / .j jPm p M C=  Pinedo [4] showed that the 

least flexible job (LFJ) rule is optimal for 

max/ 1, /j jPm p M C=  when the jM  sets are nested. The sets 

jM  are nested if the functionality of machines may overlap 

but not partially. Glass and Mills [5] improved Pinedo’s al-

gorithm with a new lower bound and further discussed other 

scheduling objectives on the same problem. For uniform 

parallel machines, Lin and Li [6] developed polynomial time 

algorithms to minimize the makespan with jobs requiring 

identical processing. Li [7] improved their algorithms and 

extended their models to cover various other scheduling ob-

jectives. 

 On the other hand, research on machine eligibility restric-

tions with general jobs (non-unit-length jobs) focuses on 

developing heuristics for various objectives. Centeno and 

Armacost [2] considered a maximum lateness problem with 

non-zero release times. They discussed the problem in a real 

industrial setting where due dates are equal to release dates 

plus a constant. Later, they studied an on-line makespan 

minimization problem with jobs having non-zero release 

times [1]. As an application in the service industry, Hwang et 

al. [3] considered a parallel machine scheduling problem 

with the makespan objective under different grades of serv-

ice levels. They investigated the worst-case performance of 

LPT (longest processing time) and provided an LG-LPT (low-

est grade-longest processing time) heuristic rule for the prob-

lem. According to the heuristic rule, jobs are first sequenced 

based on the priority of the grade of service levels, and then 

jobs within the same level are sequenced in the LPT order. 
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 In this paper we consider the same problem as Hwang et 

al. [3]. To the best of our knowledge, the problem has not 

been solved to optimality by any algorithm. In the following, 

we will propose an algorithm for obtaining the optimal solu-

tion to the problem. 

PROBLEM FORMULATION 

 Consider a two-level scheduling problem with 

m ( )h lm m= +  machines and n ( )h ln n= +  jobs, where the 

subscripts h  and l  stand for the high and low levels. Let jp  

be the processing time of job ,j   ( )h lT T  be the sum of proc-

essing times of all high-level (low-level) jobs, and 

T ( h lT T= + ) be the sum of processing times of all jobs. The 

objective considered is minimizing the makespan. We con-

sider the problem under the following assumptions: 

• Both machines and jobs are classified into two levels: 

high and low levels. A high-level machine can proc-

ess all jobs while a low-level machine can process 

only low-level jobs. 

• All the machines process jobs at the same speed. 

• The numbers of machines in both levels are fixed and 

known in advance, and so are the numbers of jobs in 

both levels. 

• The processing times of all jobs are integer. 

• The ready times of all jobs are zero. 

• No machine may process more than one job at a time. 

• Preemptions are not allowed. 

SINGLE HIGH-LEVEL MACHINE PROBLEM 

 Since all jobs can be processed by the high-level ma-

chine, the number of high-level machines has a greater im-

pact on the solution. Thus, we start to investigate the prob-

lem with a single high-level machine, i.e., 1.hm =  

 Let hM  denote the single high-level machine and lp  

denote the largest processing time of all low-level jobs. In 

the following theorem, we show that the problem with a sin-

gle high-level machine can be formulated as a parallel ma-

chine problem without machine eligibility restrictions. 

 Theorem 1. The problem with a single high-level ma-

chine can be formulated as a max//Pm C  problem. 

 Proof. When 1,hm = hM  must be busy for processing 

during the interval [0, ].hT  It remains to assign ,lT  which is 

equivalent to a parallel machine problem with non-

simultaneous machines where only one machine starts at 

time hT  and all the other lm  machines start at time zero. We 

can adopt the same idea of Liao et al. [8] by treating the in-

terval [0, ]hT  as a composite job and scheduling it with all 

low-level jobs on the parallel machines, which is simply a 

max//Pm C  problem.  

 In the next theorem, we develop a lower bound on the 

makespan for the single high-level machine problem. 

 Theorem 2. For the problem with 1,hm =  a lower bound 

on the makespan is given by 

{ }max max  , , / .l hC p T T m=  

 Proof. The processing requirement hT  has to be proc-

essed on ,hM  and hence hT  is a lower bound. Now consider 

the following two cases: 

(i) / :h l lT T m  In this case, all the processing require-

ment lT  should be processed on the lm  machines, 

which is reduced to a parallel machine problem. A 

lower bound for the problem is { }max , / .l l lp T m  

Since / ,h l lT T m  the lower bound becomes 

{ }max , .l hp T  

(ii) / :h l lT T m<  In this case, lT  cannot be completed at 

time .hT  To minimize the makespan, hM  may proc-

ess part of ,lT  so a lower bound is / .T m  

 Combining all the results, a lower bound can be estab-

lished as { }max max , ,  / .l hC p T T m=   

 Example 1. As an illustration of Theorem 2, consider a 

three-machine ( 1hm =  and 2)lm =  seven-job problem with 

the data given in Table 1. We can compute 

1 2 3 75 4 9, ... 8 6 5 4 1h lT p p T p p= + = + = = + + = + + + +  

24, 33,h lT T T= = + =  and / 33/ 3 11.T m = =  So we 

can obtain a lower bound { }max max 8,9,11 11.C = =  

 By applying Theorems 1 and 2, we can now develop an 

algorithm, named Algorithm 1, to solve the problem. Algo-

rithm 1 is based on an algorithm proposed by Lin and Liao 

[9], but it is more efficient. The basic idea of Algorithm 1 is 

to check whether a specific completion time ,C  starting 

from max ,C  can be achieved. The procedure focuses on only 

one machine and considers its assignable interval (0, ).C  We 

assign jobs (workload) into (0, ),C  and then allocate the rest 

of jobs to the remaining machines, which is again a parallel 

machine problem and can be solved by Algorithm 1. If the 

optimal solution of the embedded parallel machine problem 

has a makespan equal to ,C  the optimal solution is found; 

otherwise, we change the job assignment in (0, )C  and re-

peat the procedure. When all job assignments in (0, )C  have 

been tried by lexicographic search, we relax the assignable 

interval by setting 1C C= +  and redo the algorithm. 

Table 1. Processing Times for Example 1 

 

Job 1 2 3 4 5 6 7 

Level h h l l l l l 

Processing time 5 4 8 6 5 4 1 

h = high, l = low. 

 

 The Steps of Algorithm 1 are given as follows. 
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Algorithm 1 

Step 1: Let job c  be a composite job with processing time 

.hT  Arrange all the jobs in the LPT order. Set the 

upper bound max .C =  Let 

{ }max max , , / ,l hC p T T m=  max ,C C=  

( 1) .a T m C=  

Step 2: Assign jobs, in order (1,..., ),n  into the interval 

(0, )C  until the assigned workload equals to C  (if 

possible). If job k  cannot be put into the remain-

ing interval, proceed with the next job (job 1k + ). 

Let  denote the resulting job sequence and a  

denote the associated workload. 

Step 3: If ,a a<  go to Step 5. Otherwise, assign the rest 

of jobs ( )  to the remaining machines by ap-

plying this algorithm inside the loop. Let maxC  be 

the optimal makespan of the embedded subprob-

lem. 

Step 4: If maxmax ,C C<  update max .C  If max ,C C=  the 

optimal makespan is C ; stop. 

Step 5: Apply lexicographic search to obtain a new job 

sequence  that is assigned into (0, ).C  If job 1 is 

not in ,  set 1,C C= +  update ,a  and return to 

Step 2. Otherwise, return to Step 3. 

 We now elaborate the algorithm. In Step 1, we set the 

prescribed makespan 
maxC C=  and compute the lower 

bound on the assigned workload a  in the interval (0, ).C  

The lower bound a  will be established in Theorem 3. In 

Step 2, we assign jobs into (0, )C  and obtain a sequence  

together with an assigned workload .a  If a a< (Step 3), the 

maximum completion time on the remaining machines must 

be greater than .C  This indicates that the prescribed 

makespan C  cannot be achieved. So we proceed immedi-

ately to change the job sequence (Step 5) without further 

scheduling the remaining machines; this eliminates much 

unnecessary computation. In Step 4, we update the incum-

bent solution if necessary and check whether the prescribed 

makespan has been achieved. In Step 5, we change the jobs 

in  by using lexicographic search. As an illustration, sup-

pose job k  is the last assigned job in .  Then we replace 

job k  with job 1k +  in .  If the last assigned job is job ,n  

it is removed and we consider the second to the last position. 

The procedure is continued until C  has been achieved. 

When job 1 is removed from ,  it implies that C  cannot be 

achieved. In such a situation, we relax the prescribed 

makespan by setting 1C C= +  and redo the algorithm. 

 Theorem 3. In Algorithm 1, a lower bound on the as-

signed workload in the interval (0, )C  is given by 

( 1)a T m C=  

 Proof. Assume that the prescribed makespan C  can be 

achieved. Then the total processing requirement T  can be 

assigned to the total capacity of machines ,m C  and the 

sum of the gaps on all the machines equals ( ).mC T  

Hence, the gap between C  and a (the assigned workload) 

cannot be larger than ( ),mC T  or mathematically 

or  ( 1)

C a mC T

a T m C

 

 Therefore, a lower bound on a  is ( 1) .a T m C=   

 Example 2. As an illustration of Algorithm 1, consider 

the same numerical example as in Example 1. Application of 

Algorithm 1 results in the following steps: 

Step 1. Let job c  denote a composite job with 9.hT =  

The LPT sequence is ( ,3,4,5,6,7).c  Let 

max ,C =  max 11,C C= =  and ( 1)a T m C=  

33 (3 1) 11 11.= =  

Step 2.  Assign ( ,7)c=  with 10a =  into interval (0, ).C  

Step 3. Since 10 11,a a= < =  go to Step 5. 

Step 5. By lexicographic search, we obtain a new job se-

quence ( )c=  with 9.a =  Since job 1 is still in 

,  return to Step 3. 

Step 3. Since 9 11,a a= < =  go to Step 5. 

Step 5. By lexicographic search, we obtain a new se-

quence (3,7).=  Since job 1 is not in ,  set 

1 12C C= + =  and 33 (3 1) 12 9.a = =  Re-

turn to Step 2. 

Step 2.  Assign ( ,7)c=  with 10a =  into (0, ).C  

Step 3. Since 10 9,a a= > =  the rest of jobs (3,4,5,6)  

are assigned to the remaining two machines by 

performing the algorithm with two machines. We 

obtain max 12C =  along with the job sets (3,6)  

and (4,5)  assigned to the two machines. 

Step 4. Since maxmax 12 ,C C= <  we update max 12.C =  

Since max ,C C=  the optimal makespan is 12 and 

the algorithm is stopped. 

 The optimal schedule is to assign job set (1,2,7)  to the 

single high-level machine and job sets (3,6)  and (4,5)  to 

the remaining two low-level machines. 

TWO HIGH-LEVEL MACHINE PROBLEM 

 In this section, we consider the problem with two high-

level machines, i.e., 2.
h
m =  Let hp  be the largest process-

ing time of all high-level jobs. In the next theorem, we estab-

lish a lower bound on the makespan for a problem with two 

or more high-level machines. 

 Theorem 4. For the problem with 2,hm  a lower bound 

on the makespan is given by 

{ }max max , , / , / .h l h hC p p T m T m=  
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 Proof. All the processing requirement hT  has to be proc-

essed by the hm  high-level machines, and hence an obvious 

lower bound is { }max / , .h h hT m p  Now consider the fol-

lowing two cases: 

(i) / /h h l lT m T m  All lT  should be processed on the 

lm  low-level machines, so a lower bound is 

{ }max / , .l l lT m p  Since /h hT m  / ,l lT m  the lower 

bound becomes 
  
max Th / mh , pl{ }.  

(ii) / /h h l lT m T m< : In this case, the hm  high-level ma-

chines may process part of ,lT  so a lower bound is 

/ .T m  

 Combining all the results, a lower bound can be estab-

lished as { }max max , , / , / .h l h hC p p T m T m=   

 Example 3. As an illustration of Theorem 4, consider a 

four-machine ( 2, 2),h lm m= =  nine-job problem with the 

data given in Table 2. We can compute 

22,hT = 23,lT = / 11,h hT m =  and / 12.T m =  Hence 

{ }max max 8,9,11,12 12.C = =  

 Before presenting the steps of the algorithm for 2,hm =  

we briefly explain the basic idea of the algorithm. To begin 

with, we set a prescribed makespan max ,C C=  where 
maxC  is 

computed according to Theorem 4. We focus on one of the 

two high-level machines and assign some high-level jobs 

(along with some low-level jobs if necessary) into (0, ).C  

The remaining problem is treated as a single high-level ma-

chine problem that can be solved by Algorithm 1. If C  can-

not be achieved, we change the job combinations in (0, )C  

by lexicographic search. When all job combinations in 

(0, )C  have been tried, we relax the prescribed makespan by 

setting 1C C= +  and redo the algorithm. 

 The Steps of Algorithm 2 are given as follows. 

Algorithm 2 

Step 1: Arrange all the high-level (low-level) jobs in LPT 

such that 1 hnp p  1( ).hn np p+  Let 

{ }max max  ,  ,  / 2 ,  / ,h l hC p p T T m=  

max ,C C=  ,h ha T C=  ( 1) ,a T m C=  

max ,C =  and ( ) 0A k =  for 1,..., .k C=  

Step 2: Assign high-level jobs, in order (1,..., ),hn  into the 

interval (0, )C  until the assigned workload equals 

to C  (if possible). If job k  cannot be put into the 

remaining interval, proceed with the next job (job 

1k + ). Let h  denote the resulting job sequence 

and 
h
a  denote the associated workload. 

Step 3: If h ha a<  or ( ) 1,hA a =  go to Step 8. Otherwise, 

set ( ) 1hA a =  and ( ) 1.h hA T a =  If ,ha C=  set 

,l =  0la =  and go to Step 5. 

Step 4: Assign low-level jobs, in order ( 1,..., ),hn n+  into 

the remaining interval ( , )ha C  until the assigned 

workload equals hC a  (if possible). Let l  de-

note the resulting job sequence and la  denote the 

associated workload. 

Step 5: If ,h la a a+  apply Algorithm 1 to assign the rest 

of jobs into the remaining machines. Let maxC  be 

the optimal makespan of the embedded subprob-

lem. 

Step 6: If maxmax ,C C<  update max .C  If max ,C C=  the 

optimal makespan is C ; stop. If ,ha C=  go to 

Step 8. 

Step 7: Apply lexicographic search to obtain a new l  

that is assigned into ( , ).ha C  If there exist jobs in 

l , return to Step 5. 

Step 8: Apply lexicographic search to obtain a new h  

that is assigned into (0, ).C  If job 1 is not in ,h  

set 1,C C= + ( ) 0A k =  for 1,..., ,k C=  update ha  

and ,a  and return to Step 2. Otherwise, return to 

Step 3. 

Table 2. Processing Times for Example 3 

 

Job 1 2 3 4 5 6 7 8 9 

Level h h h h l l l l l 

Processing time 8 6 5 3 7 6 5 3 2 

h =high, l=low. 

 

 We now explain the algorithm. In Step 1, a lower bound 

on the assigned workload of high-level jobs is established as 

,h ha T C=  which is simply an application of Theorem 3 

for 2.m =  In Step 2, we assign high-level jobs into (0, )C  

and obtain a sequence h  together with an assigned work-

load .ha  The purpose of Step 3 is to avoid repeating the 

same procedure. Although the number of high-level job 

combinations in (0, )C  is quite large, the number of different 

workload values is relatively small. To achieve this purpose, 

we use ( )A k  as an indicator to identify whether a workload 

k  has been tried. The indicator ( ) 1A k =  if the workload k  

has been tried, and ( ) 0A k =  otherwise. In Step 4, we con-

tinue assigning low-level jobs into the remaining interval 

( , )ha C  and obtain a sequence l  together with an assigned 

workload .la  In the next step, if ,h la a a+  it implies that 

the prescribed makespan may be achieved, so we apply Al-

gorithm 1 to assign the rest of jobs to the remaining ma-

chines. Otherwise, we need to change the jobs in l  by lexi-

cographic search (Step 7). In Step 6, we update the incum-

bent solution if necessary and check whether the prescribed 

makespan has been achieved. If l  is empty, we need to 

change the jobs in .h  When job 1 is removed from ,h  it 
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implies that the prescribed makespan C  cannot be achieved, 

so we proceed with 1C +  and redo the algorithm. 

 Example 4. As an illustration of Algorithm 2, consider 

the same numerical example as in Example 3. Application of 

Algorithm 2 results in the following steps: 

Step 1. The LPT sequences are (1,2,3,4)  for high-level 

jobs and (5,6,7,8,9)  for low-level jobs. Let 

max max, 12, 10,hhC C C a T C= = = = =  and 

( 1) 9.a T m C= =  

Step 2.  Assign (1,4)h =  with 11ha =  into interval 

(0, ).C  

Step 3. Since 11 10h ha a= =  and (11) 0,A =  set 

(11) 1.A =  

Step 4. Since no low-level jobs can be assigned into the 

remaining interval ( , ),ha C l =  and 0.la =  

Step 5. Since 11 9,h la a a+ = =  apply Algorithm 1 to 

assign jobs 2, 3, 5, 6, 7, 8, 9 to the remaining three 

machines. We obtain max 12C =  along with the job 

sets (2, 3), (5, 8, 9) and (6,7). 

Step 6. Since maxmax 12 ,C C= <  we update max 12.C =  

Since max ,C C=  the optimal makespan is 12 and 

the algorithm is stopped. 

 The optimal schedule is to assign job sets (1, 4) and (2, 3) 

to the two high-level machines and job sets (5, 8, 9) and 

(6,7) to the two low-level machines. 

MULTIPLE HIGH-LEVEL MACHINE PROBLEM 

 In the same manner, we can develop an algorithm for the 

problem with three or more high-level machines. Note that a 

lower bound on the makespan has been given in Theorem 4. 

Also, recall that in Algorithm 2 we focus on one of the two 

high-level machines and treat the remaining problem as a 

single high-level machine problem, which can be solved by 

Algorithm 1. Similarly, for the hm  high-level machine prob-

lem, we still focus on one high-level machine and treat the 

remaining problem as an ( 1)hm  high-level machine prob-

lem, which can be solved by the associated algorithm. For 

notational convenience, the algorithm for solving the prob-

lem with hm  high-level machines is named Algorithm .hm  

Algorithm hm  is similar to Algorithm 2 except the following 

two steps. 

Algorithm hm  

Step 1: … { }max max , , / , / ,h l h hC p p T m T m= … 

Step 5: If ,h la a a+  apply Algorithm ( 1)hm  to assign 

the rest of jobs into the remaining machines. … 

COMPUTATIONAL RESULTS 

 The computational experiments consist of two parts. In 

the first part, we justify the use of Theorem 3 in Algorithm 1. 

In the second part, we evaluate the developed Algorithms 1 

and 2 and access the performance of the LG-LPT heuristic of 

Hwang et al. [3]. All the algorithms were coded in Visual 

Basic and run on a PC with Pentium 3.0 G CPU. 

 Consider the first part of the experiments, where Algo-

rithm 1 was implemented with and without the use of Theo-

rem 3. Various job-sized problems with five machines 

( 1, 4)h lm m= =  were solved. The processing times were 

randomly generated from a discrete uniform distribution [1, 

500]. The results are summarized in Table 3, which gives the 

average of 100 replications. It can be observed that without 

the use of Theorem 3 many problems cannot be solved 

within the 600-second limit, where the number of unsolved 

problems is given in parentheses. For small- and medium-

sized problems the number of unsolvable problems is in-

creased as the job number increases. However, the problem 

becomes easier for large-sized problems because the enor-

mous job combinations may easily match the specified inter-

vals to attain optimality. By comparing the results in the two 

columns, it shows clearly that the use of Theorem 3 in Algo-

rithm 1 can improve the algorithm significantly. 

 In the second part of the experiments, we evaluate both 

the efficiency of the developed algorithm and the effective-

ness of the LG-LPT heuristic proposed by Hwang et al. [3]. 

In the experiment, the processing times of jobs were ran-

domly generated from a discrete uniform distribution 

(1, )DU b  with b = 25, 50, 100, and 500. Problems were 

generated with number of machines 3,4,5m =  and number 

of jobs n = 10, 15, 20, 30, 50, 100, 500, 1000. The numbers 

of high-level machines and jobs were set as 1,2hm =  

( 1)l hm m  and ( / ) .h hn m m n=  For example, in a 

problem with 4,m =  1hm =  and 30,n =  we have 8.hn =  

The combinations of the three factors give a total of 160 sets 

of problems. For each problem set, 100 replications are 

made. Hence, we report the results of the total 16,000 prob-

lems solved. 

Table 3. Average Computation Times (in Seconds) by Algo-

rithm 1 with or without Theorem 3 

 

n 
Algorithm 1 

without Theorem 3 

Algorithm 1 

(with Theorem 3) 

10 0.0125 0.0084 

15 0.3406 0.0845 

20 5.6136 0.0153 

30 0.6337(28) 0.0292 

50 0.0000(46) 0.0016 

100 0.0002(36) 0.0017 

500 0.0080(8) 0.0097 

1000 0.0249(4) 0.0267 

The number in parentheses at the superscript represents the number of instances (out of 
100) taking more than 600 seconds. The average computation time is computed exclud-

ing these instances. 

 



Minimizing Makespan on Parallel Machines with Machine Eligibility Restrictions The Open Operational Research Journal, 2008, Volume 2    23 

 Tables 4 and 5 give the average computation time for 

each problem solved by Algorithms 1 and 2, respectively. 

Examining these tables, we observe that the algorithms ap-

pear to perform rather efficiently in deriving the optimal 

solutions, although they have exponential time complexities. 

In general, the computation time increases as the number of 

machines or the range of processing times increases. How-

ever, as stated earlier the computation time may not always 

increase as the number of jobs increases because it is easier 

to match the specified interval when there are more jobs. 

 Table 6 gives the mean percentage deviation (MPD) from 

optimum and the number of optimal solutions (No. Opt.) 

obtained by the LG-LPT heuristic in each set of 100 problem 

instances. The processing times were generated from 

(1,500).DU  It is observed that the MPD tends to decrease as 

the number of jobs and the number of machines increase 

because the problems become easier. For the same number 

of machines, problems with few high-level machines have 

smaller MPD. The results for the number of optimal solu-

tions are similar to those of mean percentage deviations. 

 

Table 5. Average Computation Time (in 10
-3

 seconds) for 

Algorithm 2 ( 2)hm =  

 

m = 4  m = 5 
n 

(1,25) (1,50) (1,100) (1,500)  (1,25) (1,50) (1,100) (1,500) 

10 0.8 1.3 4.8 24.8  2.3 2.0 5.0 27.2 

15 1.4 5.3 8.4 101.1  5.3 6.4 69.2 125.8 

20 0.6 1.9 8.1 119.2  0.9 7.3 30 206.9 

30 0.2 0.3 0.9 59.1  0.5 0.2 0.6 29.5 

50 0.6 0.3 0.3 5.2  0.5 1.1 1.3 3.1 

100 0.5 0.8 0.9 2.8  0.6 1.3 1.1 2.2 

500 8.3 8.4 8.1 8.6  8.4 8.3 8.1 8.9 

1000 27.2 27 28.6 27.8  25.8 25.8 24.4 26.7 

 

CONCLUSIONS 

 Although the parallel machine problem has attracted 

much attention, the studies on the practical problem with 

Table 6. Mean Percentage Deviation and Number of Optimal Solutions Obtained by the LG-LPT Heuristic 

 

mh = 1  mh = 2 

m = 3  m = 4  m = 5  m = 4  m = 5 n 

MPD No. Opt.  MPD No. Opt.  MPD No. Opt.  MPD No. Opt.  MPD No. Opt. 

10 1.45 54  1.46 64  0.18 96  3.92 41  1.84 76 

15 1.39 48  2.57 26  2.07 48  3.89 14  2.69 26 

20 0.91 29  1.33 51  2.31 34  2.39 5  2.84 6 

30 0.34 51  0.67 42  0.76 57  1.31 1  1.74 2 

50 0.12 38  0.25 41  0.31 52  0.40 7  0.53 7 

100 0.03 59  0.05 59  0.10 47  0.10 12  0.17 7 

500 0.00 70  0.00 75  0.00 69  0.00 54  0.00 36 

1000 0.00 88  0.00 86  0.00 80  0.00 79  0.00 73 

Table 4. Average Computation Time (in 10
-3

 Seconds) for Algorithm 1 
  
(mh = 1)  

 

m = 3  m = 4  m = 5 
 n 

(1,25) (1,50) (1,100) (1,500)  (1,25) (1,50) (1,100) (1,500)  (1,25) (1,50) (1,100) (1,500) 

10 0.3 0.2 0.5 2.3 0.8 1.7 5.6 18.1  1.3 2.0 2.5 8.4 

15 0.2 0.3 0.3 1.1  0.5 3.8 1.7 32.7  2.0 13.9 63.8 84.5 

20 0.5 0.5 0.5 2.2  0.6 0.2 0.5 1.3  0.2 0.6 1.4 15.3 

30 0.6 0.5 0.2 0.5  0.2 0.3 0.5 1.3  0.5 0.5 0.6 29.2 

50 0.6 0.5 0.6 0.3  0.5 0.6 0.8 0.9  0.8 0.8 0.9 1.6 

100 0.6 0.3 0.8 0.8  1.3 1.3 0.6 2.0  0.8 0.8 1.1 1.7 

500 7.3 7.5 8.1 8.1  8.1 7.3 8.1 8.0  7.7 8.1 8.1 9.7 

1000 28 25.6 26.6 27.5  25.3 25.6 25.5 26.1  24.4 24.8 24.4 26.7 
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machine eligibility restrictions are relatively few. Due to the 

complexity of the problem, most previous research has fo-

cused on the problem with unit-length jobs, and the limited 

research considering general jobs (non-unit-length jobs) has 

mainly aimed at developing heuristic algorithms. In this pa-

per, we have proposed an algorithm that can be used to solve 

the problem with general jobs to optimality. The algorithm 

has employed some powerful properties, so that it can derive 

the optimal solutions for various-sized problems in a short 

time. The algorithm has also been used to evaluate the exist-

ing heuristic for the problem. Further research is needed to 

develop solution methods for other parallel machine prob-

lems with machine eligibility restrictions, such as non-nested 

machine eligibility or multi-level system. 
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