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Abstract: This paper considers a general 0-1 random fuzzy programming problem including some previous 0-1 stochastic 

and fuzzy programming problems. The proposal problem is not a well-defined problem due to including random fuzzy 

variables. Therefore, by introducing chance constraint and fuzzy goal for objective function and considering the maximi-

zation for the degrees of possibility that the objective function value satisfies the fuzzy goal, main problem is transformed 

into a deterministic equivalent problem. Furthermore, by using the assumption that each random variable is distributed ac-

cording to a normal distribution, the problem is equivalently transformed into a basic 0-1 programming problem, and the 

efficient strict solution method to find an optimal solution is constructed. 

INTRODUCTION 

 0-1 programming problems are the most important 

mathematical models in practical managements and invest-

ments such as project selection problems, scheduling and 

facility location problems, and there are many previous aca-

demic and practical researches (recent academic studies; 

Balev [1], Freville [2], Jahanshahloo [3], Vasquez [4]). 

 In previous standard mathematical programming prob-

lems involving 0-1 programming problems, the coefficients 

of objective functions or constraints are assumed to be com-

pletely known and dealt with constant values. However, in 

practical systems, they should be treated as rather uncertain 

values than constant values due to probabilistic situations 

such as predictions of future profits or some machine trou-

bles derived from historical data and ambiguous situations 

such as decision makers’ substitutions. In order to consider 

such uncertainty, some uncertain models for mathematical 

programming problems have been introduced; stochastic 

programming problem (for example, Beale [5], Dantzig [6], 

Vajda [7]), fuzzy programming problem (for example, 

Inuiguchi [8], Sakawa [9], Zimmermann [10]) and the appli-

cations of fuzzy logics in various real cases (for example, 

Cheng [11] and Zhao [12]). Furthermore, Hasuike [13] has 

considered a 0-1 programming problem considering ran-

domness and flexible goals for objective function and con-

straints. Katagiri [14] has considered a 0-1 programming 

problem involving both random and fuzzy conditions, i.e., 

fuzzy random 0-1 programming problem. Then, Katagiri 

[15] has considered a random fuzzy programming model 

based on possibilistic programming. Most recently, Huang  
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[16] has proposed a project selection model including ran-

dom fuzzy variables. However, there are few researches con-

sidering a general 0-1 random fuzzy programming problem 

at this time. Therefore, this paper particularly considers the 

more general random fuzzy 0-1 programming problem 

maximizing the objective function involving random fuzzy 

variables, considering both the objectivity derived from sta-

tistical analysis of data and decision maker’s subjectivity 

such as their institution derived from wide-ranging experi-

ences, simultaneously. In this paper, we deal fuzzy numbers 

with L-R fuzzy numbers and random variables with continu-

ous random distributions, particularly normal distributions. 

 On the other hand, generally speaking, solution methods 

of 0-1 programming problems mainly divides into two types; 

(a) strict solution methods such as dynamic programming 

and branch-bound method, (b) approximate solution methods 

such as genetic algorithm, heuristic methods, etc.. Further-

more, in mathematical programming, 0-1 programming 

problems considering randomness and fuzziness become 

more complicate models than the previous problems. Then, 

since these problem are not well-defined problems due to 

including both random variables and fuzzy numbers, it is 

almost impossible to solve them analytically. Therefore, in 

order to solve them directly, we need to set the target values 

for stochastic and fuzzy constraints and construct its efficient 

solution method. In this paper, we transform main problems 

into deterministic equivalent integer programming problems 

using chance constraints, possibility measure and fuzzy goals 

based on both stochastic and fuzzy programming ap-

proaches. 

 In Huang [16], a random fuzzy simulation based on ap-

proximate solution methods has been used. However, 

through the development of information technology and im-

provement of computers, we solve 0-1 programming prob-

lems more quickly using not only approximate solution 
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methods but also strict solution methods even if they are 

little bit large scale problems. Therefore, in this paper, we 

propose the efficient strict solution method based on a mixed 

method with 0-1 relaxation problem and branch-bound 

method, and show the analytical efficiency comparing with 

previous strict solution methods. 

FORMULATION OF RANDOM FUZZY 0-1 PRO-
GRAMMING PROBLEM 

 A random fuzzy variable is one of the mathematical con-

cepts dealing with randomness and fuzziness, simultane-

ously. In this paper, we deal with the random fuzzy variable 

based on the study of Liu [17]. 

Definition 1 (Liu [17]) 

 A random fuzzy variable is a fuzzy set defined on a uni-

versal set of random variables. 

 Then, we formally introduce the following 0-1 program-

ming problem: 

  

Maximum  rx

subject to  Ax b, x 0,1{ }
n            (1) 

where each notation is as follows: 

A: m n coefficient matrix 

b: m-dimensional column vector 

x: n-dimensional decision column vector (Decision variable) 

 The coefficient vector of objective function is 

  
˜ r = ˜ r 1, ˜ r 2,..., ˜ r n( )  and each ˜ r j  is a random fuzzy variable ac-

cording to a normal distribution N ˜ m j , j
2( ) where ˜ m j  is a 

mean value and j
2
 is a variance. Then, we represent the ijth 

element of variance-covariance matrix as ij . Furthermore, 

we assume that ˜ m j  is a fuzzy variable characterized by the 

following membership function: 

μ ˜ m j
( ) =

L
m j

j
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where L(x) and R(x) are nonincreasing reference function to 

satisfy L(0)=R(0)=1, L(1)=R(1)=0 and the parameters j  

and j  represent the spreads corresponding to the left and 

the right sides, respectively. Problem (1) is a random fuzzy 

0-1 programming problem due to including random fuzzy 

variables. Then, its objective function   ̃  Z = ˜ r x  is defined as a 

random fuzzy variable by the following membership func-

tion introducing a parameter  j  and an universal set of nor-

mal random variable : 

μ ˜ Z 
u ( ) = sup
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μ ˜ r j
 j( ) u =  j x j

j =1

n 

 
 

  

 

 
 

  

, u Y  

where 
 

=
1
, 2 , ..., n( ) , μ˜ r j

 j( )  is defined by 

μ˜ r j
 j( ) = sup

s j

μ ˜ M j
s j( )  j ~ N s j , j

2( ){ },  j
 

and Y is defined by 

Y =  j x j
j=1

n

 j , j = 1,2,...,n
 

 
 

  

 

 
 

  

 

From these settings, we obtain 
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where 

  

V x( ) = ij xi x j
j=1

n

i=1

n
 Furthermore, we discuss the prob-

ability that the objective function value is greater than or 

equal to an aspiration level f. Then, we represent the prob-

ability as Pr ˜ r j x j
j =1

n

f
 

 
 

  

 

 
 

  

. Since ˜ r j x j
j =1

n

 is represented 

with a random fuzzy variable, we express the probability 

Pr ˜ r j x j
j =1

n
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 as a fuzzy set ˜ P  and defined the member-

ship function of ˜ P  as follows: 

  

μ ˜ P p( ) = sup
u 

μ ˜ Z 
u ( ) p = Pr u ( ) f{ }{ }
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where 
  
s = s1,s2,...,sn( ) . Due to these randomness and fuzzi-

ness, problem (1) is not a well-defined problem, and so it is 

necessary to interpret the problem from some point of view 

and to transform the problem into the deterministic equiva-

lent problem. In this paper, we consider the case where a 

decision maker prefers maximizing the degree of possibility 

for the probability that the value of objective function satis-

fies the fuzzy goal, based on previous research Katagiri [18] 

and Hasuike [19]. A fuzzy goal for the probability is charac-

terized by the following membership function: 

μ ˜ G P
p( ) =

1 p1 < p

g p( ) p0 p p1

0 p < p0

 

 
 

 
 

 

where g(y) is a monotonous increasing function. Then, using 

a concept of possibility measure, the degree of possibility 

that the objective function value satisfying a fuzzy goal G is 

as follows: 

G( )
P

= sup
p

min μ ˜ P p( ),μ ˜ G P
p( ){ }  
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 Consequently, problem (1) is transformed into the fol-

lowing problem: 

  

Maximum  G( )
P

subject to  Ax b,  x 0,1{ }n
 

 This problem is equivalently transformed into the follow-

ing problem introducing a parameter h. 

  

Maximum  h

subject to  G( )
P

h,

                 Ax b,  x 0,1{ }n

           (2) 

DETREMINISTIC EQUIVALNET TRANSFORMA-
TION OF THE PROPOSAL MODEL 

 In problem (2), constraint G( )
P

h  is transformed into 

the following inequality based on the result obtained by Ka-

tagiri [18] and Hasuike [19]: 
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where R*(x) is a pseudo inverse function of R(x). From this 

inequality, problem (2) is equivalently transformed into the 

following problem: 

  

Maximum  h

subject to  Pr u ( ) f{ } g 1 h( ),

                 u ~ N m j + R h( ) j( ) x j
j =1

n

,V x( )
 

 
 
 

 

 
 
 
,

                 Ax b,  x 0,1{ }n

         (3) 

 Furthermore, with respect to stochastic constraint 

Pr u ( ) f{ } g 1 h( ), by using the property of normal distri-

bution, this constraint is equivalently transformed into the 

following form: 

  

Pr u ( ) f{ } g 1 h( )

m j + R h( ) j( )x j
j =1

n

f

V x( )
K

g 1 h( )

 

where F(z) is the distribution function of the standard normal 

distribution and Kt=F
-1

(t). Furthermore, each decision vari-

able xj satisfies xj {0,1}, we obtain xj
2
=xj, and assume that 

each vairiance is independent, i.e., 

ij =
j
2 i = j( )

0 i j( )

 
 
 

 

 Consequently, problem (3) is equivalently transformed 

into the following problem: 

  

Maximum  h

subject to  

m j + R h( ) j( )x j
j=1

n

f

j
2x j

j=1

n
K
g 1 h( )

,

                 Ax b,  x 0,1{ }n

         (4) 

 It should be noted here that problem (4) is a nonconvex 

integer programming problem and it is not solved by the 

linear programming techniques or convex programming 

techniques. However, since a decision variable h is involved 

only in first constraint, we introduce the following subprob-

lem involving a parameter q: 

  

Maximum  

m j + R q( ) j( )x j
j=1

n

f

j
2x j

j=1

n

subject to  Ax b,  x 0,1{ }n

          (5) 

 In the case that we fix the parameter q, problem (5) is 

equivalent to a convex integer programming problem. Fur-

thermore, let x(q) and Z(q) be an optimal solution of problem 

(5) and its optimal value, respectively. Then, the following 

theorem is derived from previous study [18, 19]. 

Theorem 1 

 For q satisfying 0<q<1, Z(q) is a strictly increasing func-

tion of q. 

 Furthermore, let ˆ q  denote q satisfying Z ˆ q ( ) = g 1 ˆ q ( ) and 

the optimal solutions of main problem (4) be 
  

x ,h( ) . Then 
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the relation between problems (4) and (5) is derived as fol-

lows derived from previous study [20]. 

Theorem 2 

 Suppose that 0< ˆ q <1 holds. Then x ˆ q ( ), ˆ q ( )  is equal to 

  
x ,h( ) . 

 From these theorems, by using bisection algorithm for 

parameter q and comparing objective function Z(q) with g
-

1
(q), we repeatedly solve problem (5) for each q using 

branch-bound method, and finally obtain the optimal solu-

tion. This solution method is assured that its calculation 

times are infinite. However, it is not efficient due to increas-

ing computational times voluminously with the increase of 

parameters and decision variables. Therefore, we need to 

construct the more efficient solution method. 

CONSTRCUTION OF THE EFFICIENT STRICT SO-
LUTION METHOD 

 In order to construct the efficient strict solution method 

for problem (4), first of all, we introduce the following 0-1 

relaxation problem of problem (4): 

  

Maximum  h

subject to  

m j + R h( ) j( )x j
j=1

n

f

j
2x j

j=1

n
K
g 1 h( )

,

                 Ax b,  0 x j 1,  j = 1,2,...,n

         (6) 

 In a way similar to problem (4), this problem is also a 

nonconvex programming problem and it is not solved by the 

linear programming techniques or convex programming 

techniques. Subsequently, we introduce the following sub-

problem: 

  

Maximum  

m j + R q( ) j( )x j
j=1

n

f

j
2x j

j=1

n

subject to  Ax b,  0 x j 1,  j = 1,2,...,n

          (7) 

 In this paper, it is assumed that there exists a feasible 

solution satisfying mj + R q( ) j( ) x jj=1

n
> f . This means 

that the probability that total future profit is more than target 

value f  is greater than 1/2. Furthermore, problem (7) is 

equivalent to the following problem: 

  

Minimum  

j
2x j

j=1

n

m j + R q( ) j( )x j
j=1

n

f

subject to  Ax b,  0 x j 1,  j = 1,2,...,n

          (8) 

 In the case we fix the parameter q, since problem (8) is a 

nonlinear fractional programming problem due to including 

a square root term 
j
2x j

j=1

n
 in the objective function, it is 

difficult to solve this original problem directly. Therefore, 

we introduce the following parameters; 

  

t =
1

m j + R q( ) j( )x j
j=1

n

f

, y = tx  

and we do the transformation into the following determinis-

tic equivalent problem: 

  

Minimum  j
2y j

j=1

n

subject to  m j + R q( ) j( )y j
j=1

n

ft = 1,

                 Ay bt ,  0 y j t,  j = 1,2,...,n

 

 Since objective function 
j
2y j

j=1

n
 is a monotonous in-

creasing function, this problem is equivalently transformed 

into the following problem: 

  

Minimum  j
2y j

j=1

n

subject to  m j + R q( ) j( )y j
j=1

n

ft = 1,

                 Ay bt ,  0 y j t,  j = 1,2,...,n

          (9) 

 Problem (9) is a linear programming problem in the case 

that q is fixed, and so we efficiently obtain the optimal solu-

tion using linear programming approaches and bisection al-

gorithm for parameter q. 

 Furthermore, let the optimal value of parameter h in 

problem (4) be h
*
. Then, the following lemmas hold: 

Lemma 1 

 With respect to problem (4), there exists ranges [hk, hk+1] 

(k=1,2,…) that the optimal solution of problem (4) is unique 

for any h including in [hk, hk+1]. 

Proof 

 From the continuity of parameter h and discreteness of 

decision variable x
*
, this lemma clearly holds. 

Lemma 2 

 Let the optimal value of problem (6) be h , the optimal 

solution of problem (4) be x* and the optimal value be h
*
. 

Then in the case that we set a range [hL, hU] satisfying h  

[hL, hU], h
*

 [hL, hU] holds. 

Proof 

 We consider the case that h
*

 [hL, hU] and h  h L ,  h U[ ] . 

If  h U < hL , there exists the optimal solution    x  and the op-

timal solution  h  satisfying  h hL ,hU[ ]. This contradicts 

the optimality of parameter h
*
. In a way similar to  h U < hL , 

if  h L > hU , we obviously find that  h L > h . This means that 

the optimal value of discrete problem is larger than that of 

continuous problem, and contradicts the optimality of pa-

rameter h > h . Consequently, this lemma holds. 
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 From these lemmas, the following theorem to the relation 

between problems (4) and (6) holds: 

Theorem 3 

 Let the optimal solution of problem (6) be x*
  
(h )  and the 

optimal value of parameter h be  h . Then, the optimal solu-

tion of the following problem; 

  

Maximum  

m j + R h ( ) j( )x j
j =1

n

f

j
2x j

j =1

n

subject to  Ax b,  x 0,1{ }n

        (10) 

is equivalent to that of problem (4). 

 Consequently, in the case that we solve 0-1 relaxation 

problem (6) and obtain its optimal solution h
*
, we obtain an 

optimal solution more efficiently than previous parametric 

approaches due to not using branch-bound method every 

value of parameter h repeatedly. However, since the objec-

tive function of problem (10) is a nonlinear function, it is not 

easy to deal with several efficient solution methods for inte-

ger programming approaches. Therefore, in order to have the 

more general versatility for our proposed model, we consider 

the other deterministic equivalent transformations for main 

problem. 

 First, we equivalently transform main problem (4) into 

the following problem; 

  

Maximum  h

subject to  m j + R h( ) j( )x j
j=1

n

K
g 1 h( ) j

2x j
j=1

n

f ,

                 Ax b,  x 0,1{ }n

      (11) 

and introduce this 0-1 relaxation problem as follows: 

  

Maximum  h

subject to  m j + R h( ) j( )x j
j=1

n

K
g 1 h( ) j

2x j
j=1

n

f ,

                 Ax b,  0 x j 1,  j = 1,2,...,n

      (12) 

 This problem is a nonlinear programming problem. 

However, this problem is much similar to problem (6). 

Therefore, in order to solve problem (11) analytically, we 

introduce the following subproblem in a way similar to the 

transformation from problem (6) into problem (7): 

  

Maximum  m j + R h( ) j( )x j
j=1

n

K
g 1 h( ) j

2x j
j=1

n

subject to  Ax b,  0 x j 1,  j = 1,2,...,n

       (13) 

 Then, we consider the following auxiliary problem: 

  

Maximum  m j + R h( ) j( )x j
j=1

n

K
g 1 h( ) j

2x j
j=1

n 

 
 
 

 

 
 
 

subject to  Ax b,  0 x j 1,  j = 1,2,...,n

       (14) 

 In the case that we fix parameter h, with respect to the 

relation between problems (13) and (14), the following theo-

rem holds based on the previous research of Ishii [21]. 

Theorem 4 

 Let the optimal solution of problem (13) be x(h). Then, in 

the case 
= 2 j

2x j
j=1

n
, the optimal solution of problem (14) 

is equal to x(h). 

 From Theorem 4, in the case that parameter h is fixed, we 

obtain the optimal solution x(h). Furthermore, we consider 

the following problem to deal with optimal value h  of prob-

lem (6): 

  

Maximum  m j + R h ( ) j( )x j
j =1

n

K
g 1 h ( ) j

2x j
j =1

n 

 
 
 

 

 
 
 

subject to  Ax b,  0 x j 1,  j = 1,2,...,n

       (15) 

 Let this optimal solution be x( h ). Subsequently, the 

following lemma with respect to each optimal solution for 

problems (4) and (11) holds. 

Lemma 3 

 The optimal solution of problem (11) is equal to that of 

problem (4). 

Proof 

 Since each problem is the deterministic equivalent prob-

lem for main problem (3), this lemma obviously holds. 

 Therefore, we obtain x( h )=x*. Then, the following theo-

rem holds extending previous research of Hasuike. 

Theorem 5 

 With respect to 
= 2 j

2x j
j=1

n
, the optimal solution of the 

following problem; 

  

Maximum  m j + R h ( ) j( )x j
j =1

n

K
g 1 h ( ) j

2x j
j =1

n 

 
 
 

 

 
 
 

subject to  Ax b,  x 0,1{ }n

      (16) 

is equal to that of problem (3). 

 From Theorem 5, we finally solve this linear 0-1 pro-

gramming problem. It is more efficient to obtain its optimal 

solution of problem (11) using some efficient solution meth-

ods for integer programming approaches than that of prob-

lem (4). Furthermore, in the case using branch-bound 

method, we find that upper limited value for main problem 

becomes 

m j + R h ( ) j( )x j h ( )
j =1

n

K
g 1 h ( ) j

2x j h ( )
j =1

n

 

substituting optimal solution x( h ) and optimal value h  of 

problem (6) and lower limited value becomes f. Therefore, 

by using these values in branch-bound method efficiently, 

we obtain the optimal solution of main problem more easily 

and rapidly. Consequently, we construct the following solu-

tion method. 
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Solution Method 

 STEP 1: Elicit the membership function of a fuzzy goal 

for with respect to the probability and set each parameter. 

 STEP 2: Solve 0-1 relaxation problem (6), and find the 

optimal solution x* and optimal value h .  

 STEP 3: Solve 0-1 programming problem (16) by using 

integer programming approaches such as branch-bound 

method. 

CONCLUSIONS 

 In this paper, we have proposed a general 0-1 random 

fuzzy programming problem considering both random and 

fuzzy conditions. Since our proposed model has been a non-

linear 0-1 programming problem by introducing the chance 

constraint and doing the transformation into the deterministic 

equivalent problems, we have constructed the efficient strict 

solution method by dealing with some 0-1 relaxation prob-

lems. Consequently, we have found that the number of using 

branch-bound method in our proposed method is much less 

than that in previous parametric solution methods. 

 This solution method may be applicable to the general 

integer programming problems because our proposal model 

includes some previous models not considering randomness 

or fuzziness. However, in the case there are many decision 

variables and parameters, it takes much computational time 

to solve this 0-1 random fuzzy programming problem even if 

we use this solution method due to the nonpolynomial time 

algorithm to branch-bound method. Therefore, as future 

studies, we need to construct its efficient solution method 

using not only strict solution method such as branch-bound 

method but also approximation methods such as genetic al-

gorithm and heuristic approaches. Futhermore, we consider 

the multidimensional 0-1 and integer random fuzzy pro-

gramming problems. 
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