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Abstract: In this article, we propose a theoretical framework to estimate performance measures in simulation experi-

ments, incorporating both sample data from a random component and priors on input parameters of the simulation model. 
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1. INTRODUCTION 

 When using a model for decision making, it is not un-

common to have uncertainty in one or several parameters of 

the model, so that the decision maker can provide a prior 

(i.e., a probability distribution) for these parameters. The 

existence of priors to quantify parameter uncertainty of a 

model is quite useful; for example, a parameter related to the 

demand (e.g., mean time between customer arrivals) for a 

new business process is very unlikely to be known accu-

rately, so the performance of the process must be evaluated 

based on a prior for the parameter of the future demand. A 

prior for a parameter can also be constructed from forecasts 

based on expert judgment [1]. On the other hand, it is be-

coming frequent to find that besides a prior, we may have 

data providing additional information about some parame-

ters; for example, information about demand patterns of a 

new product can be obtained through acceptance testing [2]. 

These reasons have motivated us to investigate how we can 

incorporate both forecasts for a parameter and observations 

from a random component when using a simulation model to 

estimate the performance of a system. 

 A random component (also called random input) of a 

simulation model is a sequence 
 

U1,U2 ,…  of random quanti-

ties that are needed as input to the simulation. When the 

Ui ’s are assumed to be independent and identically distrib-

uted (i.i.d.), a random component is identified by the corre-

sponding probability distribution. Random components re-

flect the inherent uncertainty of the model, frequently called 

stochastic uncertainty. The distributions corresponding to the 

random components of a simulation model, however, depend 

upon parameters that usually reflect the particular scenario of 

the system that is being simulated. The uncertainty on the 

value of these parameters constitute another source of  
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uncertainty that is called parameter uncertainty [3-5] and 

may be quantified using information about the random 

component. As we will detail in this paper, parameter 

uncertainty can be incorporated in a simulation model using 

observations of a random component and/or priors on the 

uncertain parameters. 

 The classical approach to specify the distribution of a 

random component in a simulation experiment consists of 

selecting the distribution (and its parameters) that best “fit” a 

set of observations of the component, which are commonly 

assumed to be i.i.d., i.e., for a given probability distribution 

the value of the parameters are set using a point estimation 

procedure (e.g., the method of maximum likelihood), and the 

“best distribution” is usually chosen according to a measure 

of goodness of fit (e.g., the mean square error) [6]. A classi-

cal approach, however, can not be applied when there are no 

observations of the random component (e.g., it is a new sce-

nario). On the other hand, several authors [3, 5] criticized the 

classical approach for ignoring parameter uncertainty. Since 

we assume parameter uncertainty in this article, we will 

adopt a different approach based on Bayesian estimation. 

 Different estimation methods that incorporate parameter 

uncertainty have been proposed for input analysis in simula-

tion experiments, some of these [7, 8] attempt to estimate an 

expected value in the form of E W � =
�

� x0( )�
�

�
� , where W  

is the output of a simulation (see equation (4) below), �  

denotes a parameter and �̂ x0( )  is a function of the sample 

data 
0

x . In this article, however, we adopt a Bayesian ap-

proach, since do not assume the existence of a particular 

value for the parameter, instead we quantify parameter un-

certainty through a prior (when no data is available) and a 

posterior probability distribution (when data is available). 

Since this article suggests the estimation of conditional ex-

pectations, our approach has more similarity with that of [3, 

5, 9] where the estimation of performance measures in the 
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form of E W x0�� ��  from the output of simulation experi-

ments is discussed. 

 In this article we present a theoretical framework to esti-

mate a conditional expectation (given the data) that may be 

used as a performance measure of the transient behavior of a 

simulation model, and extend the results initially presented 

in [10]. The organization of the paper is as follows. In sec-

tion 2 we introduce the notation and mathematical frame-

work that is appropriate to formulate our estimation problem, 

and present two examples that illustrate its potential applica-

tions. In section 3 we discuss different methodologies to 

solve the estimation problem. In section 4 we present ex-

perimental results from applying the proposed methodolo-

gies to a specific example, and finally in section 5 we present 

our conclusions and directions for future work. 

2. MATHEMATICAL FRAMEWORK 

 We assume that the output of our simulation model de-

pends upon two random components with density (probabil-

ity in the discrete case) functions f x �1( )  and g y �2( )  re-

spectively, where f x �
1( ),�1 �P1{ }  and g y �

2( ),�2 �P2{ }  

are families of density functions that depend upon the pa-

rameters 
1

�  and 
2

� , with 
1

P  and 
2

P  as their corresponding 

parameter spaces. Under a Bayesian framework, the parame-

ters of the density functions are random variables �1 , �2  

and �1 �P1 , �2 �P2  denote particular values for the parame-

ters. We denote � = �1,�2( ) , � = �1,�2( ) , and P = P1 � P2 . 

 For the first random component we have a set of observa-

tions 
 

x0 = x1, x2 ,…, xn( )  that arise from a random sample 

 

X = X1, X2 ,…, Xn( )  of the density function f x �1( ) . In 

other words (see e.g., Bernardo and Smith, 1994), the condi-

tional (given �1 = �1[ ] ) density of 
 

X1, X2 ,…, Xn  satisfies: 

 

fn x0 �1( ) = f x1 �1( ) f x2 �1( )… f xn �1( ) ,           (1) 

where
 

x0 = x1,…, xn( )��n
and � = �1,�2( )�P . In our par-

ticular applications the sample data x0  provides information 

only on �1 , so that we assume that the sample information is 

independent of the parameter �2 , in other words, the condi-

tional (given � = �[ ] ) density of 
 

X1, X2 ,…, Xn  satisfies: 

fn x0 �( ) = fn x0 �1( ) ,           (2) 

where 
 

x0 = x1, x2 ,…, xn( )��n
, � = �1,�2( )�P , and 

fn x0 �1( )  is defined in (1). 

 For the second random component there are no observa-

tions, but there is a prior density function p�2
�2( ) . We also 

assume the existence of a prior density function for the pa-

rameter �1 , which is not restrictive, since we can use a non-

informative prior distribution when we wish to consider a 

prior that “favors” no possible values of �1  over others [11, 

12]. For simplicity, we assume the priors for �1  and �2  are 

independent, in other words, the joint density of �1,�2  sat-

isfies: 

p� �( ) = p�1
�1( ) p�2

�2( ) ,            (3) 

for any � = �1,�2( )�P . 

 Let Y = Y s( ), s � 0{ }  be the stochastic process (possibly 

�d
-valued) that represents the output of a simulation ex-

periment. Since we wish to estimate performance measures 

for transient simulation, we let T  denote the run length and 

assume that T  is a stopping time with respect to the process 

Y  [13]. Using this notation, we define our performance 

measure as: 

r x0( ) = E W X = x0�� �� ,            (4) 

where W = g Y s( ), 0 � s � T( )  is the random variable that 

reflects the system’s performance. We remark that the a ex-

pected value is usually chosen as a good performance meas-

urement since it can be interpreted as a long-run average. 

 We assume that the random sample X  is independent of 

the simulation output, on which case, if h w x0 ,�( )  and 

h w �( )  denote the conditional density functions of W (given 

X0 = x0 ,� = �[ ] , and � = �[ ] , respectively), then: 

( ) ( )�� whxwh =,
0

,            (5) 

forw �� ,
 

x0 = x1, x2 ,…, xn( )��n
 and � �P . 

 Our interest is not restricted to propose point estimation 

procedures, but also to assess the precision of the point esti-

mators through an asymptotic confidence interval [14]. 

 It is worth mentioning that in the case where no sample 

data is available, the performance measure (4) incorporates 

only information from a prior on the parameter � . 

 According to Bayes Theorem, the posterior density func-

tion for the parameter �1  is: 

p�1(�1 x0 ) =
p�1

(�1 ) fn (x0 �1 )

p�1
(�1 ) fn (x0 �1 )d�1

P1
�

,          (6) 

where fn x0 �( )  is defined in (1). Also from (2) and (3), the 

(joint) posterior density function for � = �1,�2( )  is: 

p� (� x0 ) = p�2
(�2 )p�1

(�1 x0 ) ,          (7) 

for any � = �1,�2( )�P , where p�1
(�1 x0 )  is defined in (6). 

The next proposition is required in section 3 and shows how 

r x0( )  explicitly depends upon the posterior density function 

p� (� x0 ) . 

 Proposition 1. If p� � x0( )  is the posterior distribution 

defined in (7), then: 
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r x0( ) = r1 �( ) p� (� x0 )d�
P� , 

where r1 �( ) = E W � = ��� ��  and r x0( )  is defined in (4). 

 Proof. It follows from (5) that: 

E W X = x0 ,� = ��� �� = E W � = ��� �� , 

for P�� , so that: 

r x0( ) = E W X = x0�� �� = E E W X = x0 ,��� �� X = x0
�� ��

= E E W ��� �� X = x0
�� �� = E r1 �( ) X = x0�� ��

= r1 �( ) p� (� x0 )d�
P� .

 

 The variability of the estimators that we will propose in 

section 3 rely both on the variance of r1 �( )  as well as the 

variance of W with given � . For this reason, we introduce 

the following notation: 

� p

2 = E r1
2 �( )�� �� � E r1 �( )�� ��( )

2

,           (8) 

and 

� s

2 = E � 2 �( )�� �� ,           (9) 

where: 

� 2 �0( ) = E W 2 � = �0�� �	 � E W � = �0�� �	( )
2

, 

for �0 �P , and r1 �( ) = E W � = ��� �� . 

 Example 1. In order to illustrate our notation we present 

an inventory example that attracted our interest in the estima-

tion of (4). Suppose that a retailer makes periodical orders 

(every N  days) to satisfy its sales on the Internet (if there is 

no available inventory, the sale is lost). At the beginning of 

each period, the company has an initial inventory ( I0 ) and 

makes an order of size Q . Let Ui  be the lead time for an 

order set at the beginning of period i. The random compo-

nents in this model will be the time between customer arri-

vals and the number of items a customer orders. We assume 

that the time between customer arrivals are i.i.d. according to 

an exponential distribution: 

g x �2( ) =
1 /�2( )e� x /�2 , x > 0,

0,        otherwise,

�
�
�

��
 

where �2 �P2 = 0,�( ) , in addition, every customer orders j 

items (independently of each other) with probability �1 j  

(
 

j = 1,…, k ). In this case we have 
 

�1 = �11,…,�1k( ) , 

 

f x �1( ) = �1x , x = 1, 2,…, k , and  

 

P1 = �11,…,�1k( ) : �1i
i=1

k

� = 1;�1i � 0; i = 1, 2,…, k
�
�
�

�
�



. 

 In a particular application �2  can be used to model a 

future scenario, for which sample data may not be available. 

However, sample data for parameter �1  may be available 

from past sales (assuming the same pattern), the sample data 

is 
 

x0 = x1,…, xn( ) , where xi  is the number of items ordered 

by customer i , then we can compute 
 

u = u1,…,uk( ) , where 

uj  is the number of customers that ordered j  items. Note 

that given � = �1[ ] , u  follows a multinomial distribution, 

and as is well known [12], the conjugate family of a multi-

nomial distribution is a Dirichlet distribution, which means 

that if p�1
(�1 )  corresponds to a Dirichlet(k,� 0 )  distribution, 

where 
 

� 0 = �1,…,� k( ) , then p�1
(�1 x0 )  corresponds to a 

Dirichlet(k,�F )  distribution, where: 

 

�F = �1 + u1,…,� k + uk( ) . 

 Note also that 
 

� 0 = 1,…,1( )  corresponds to a uniform 

distribution ( p�1
(�1 )  is constant on P1

). 

 Performance measures of interest in this model are the 

type-I service level and the type-II service level [15]. For a 

type-I service level we have that  

r1 �( ) = P D 	 I1 +Q � = ��� �� ,  

where D  is the demand from clients that arrived between 

t =U1  and t = N +U2 , I1 = max 0, I0 � D1{ } , and D1  is the 

demand from clients that arrived between t = 0  and t =U1 . 

It is also worth mentioning that in this case: 

W =
1, if D � I1 +Q,

0, otherwise.

�
�
�

 

 Analytical expressions for E W X = x0�� ��  in both cases 

(type-I or type-II service levels), are not easy to obtain even 

for unrealistic assumptions (e.g., 1=k ). 

 Example 2. The next example is a Markovian model that 

was used in [16] to forecast the demand for educational sup-

port material in an adult education program, and has an ana-

lytical solution that can be used to test the methodologies 

discussed in section 3. Let 
 

U = Ui : i = 0,1,…{ }  be a Markov 

chain with finite state space 
 

E = 0,1, 2,…, k{ } , and suppose 

that there are q  potential clients at time t , and the state of 

every client is known. State transitions for every client will 

occur independently and according to the Markov chain U . 

When potential client l  is in state Xt+1

l
 at time t +1 , his 

demand for certain item is a function f Xt+1

l( )  of its state, 

and although in a general case it suffices that f  be non-

negative, we assume that: 

f i( ) =
1, if  i �A,

0, otherwise,

�
�
�

 

where A � E  is the set of states where an individual de-

mands one unit of the item. We are interested in the total 

demand at time 1+t : 
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W = f Xt+1

l( )
l=1

n

� .          (10) 

 Since the state of each individual at time t  is known, W  

can be simulated from the knowledge of: 

pi = P f Xt+1

l( ) = 1 Xt

l = i�� �� = P Xt+1

l = j Xt

l = i�� ��
j�A
� ,        (11) 

i �E ,
 

t = 1, 2,… ,
 

l = 1, 2,…,n . 

 This model can be incorporated into our framework if we 

consider Y  in discrete time with T = 1 , since we wish to 

forecast the response for the next period ( t +1 ) based on 

information for the initial period ( t ). In order to simulate W  

we let 
 

�1 = p1,…, pk( ) , � = �1,�2( ) ,  

and 
 

Y i( ) = Ut+i

1 ,…Ut+i

n Xt+i

1 ,…, Xt+i

n( ) , for i = 0,1 , since the 

knowledge of Y (0)  and � = �1,�2( )  is sufficient to generate 

W  using simulation. 

 Information on �  comes from recording the behavior of 

potential clients in past periods, and can be summarized in a 

data vector 
 

x0 = n1, r1,n2 , r2 ,…,nk , rk( )  that indicates that 

ni + ri  observed clients were in state i , from which ni  or-

dered one unit of the item (and ri  did not order). State 0  

corresponds to new clients, for which there is no sample 

data. The likelihood function becomes: 

fn x0 �( ) = pi
ni 1� pi( )

ri

i=1

k

� , 

where �  y 
0

x  are as before. When p� �( )  is uniform on 

[0,1], we can verify from (6) and (7) that: 

p � x0( ) =
pi

ni 1� pi( )
ri

i=1

k

�

B 1+ ni ,1+ ri( )
i=1

k

�
,         (12) 

for 0 < pi < 1,  
 

i = 0,1,…, k , where: 

B �,�( ) = � �( )� �( ) / � � + �( ) , 

for 0, >�� . In other words, the posterior distribution for 

parameters kpppp ,,,,
210

…  corresponds to k +1  independ-

ent random variables, where pi  is distributed as 

Beta 1+ ni ,1+ ri( )  (where n0 = r0 = 0 ). It follows from (10)-

(11) that r1 �( ) = nit pi
i=0

k

� , where nit  is the number of poten-

tial clients that are in state i  at time t , and r1 �( )  is as in 

Proposition 1. Therefore using (12) and Proposition 1 we can 

verify that the parameter proposed in (4) is: 

r x0( ) = nit p̂i
i=0

k

� ,                        (13) 

where p̂i = 1+ ni( ) / 2 + ni + ri( ) . 

 

3. METHODOLOGY 

 In this section, we present estimators for the performance 

measure (4), and for each of these a Law of Large Numbers 

(LLN) and a Central Limit Theorem (CLT) [17] is obtained. 

A LLN for an estimator will ensure that the estimator is con-

sistent, which means that it approaches the parameter as we 

increase the number of replications of the simulation ex-

periment. A CLT allows us to establish an asymptotic confi-

dence interval to assess the precision of the estimation pro-

cedure. 

 In section 3.1 and section 3.2 we present two different 

methodologies for the estimation of r x0( ) , respectively. The 

methodology presented in section 3.1 is a particular case of 

the one proposed in [3] adapted to our notation (in the men-

tioned article, inherent uncertainty in the model is also con-

sidered). Although the methodology described in section 3.1 

produces a consistent estimator for r x0( ) , it requires a valid 

method to generate samples from the posterior distribution 

p� � x0( ) , which is usually too difficult to obtain. In view of 

this limitation, in section 3.2 we propose a methodology for 

the estimation of r x0( )  that does not require to sample from 

p� � x0( ) . 

3.1. Estimation of ( )
0

xr  by Sampling from the Posterior 

Distribution 

 In Fig. (1) we describe a first procedure for the estima-

tion of r x0( ) . This methodology is similar to the classical 

method of replications, with the sole difference that on repli-

cation j  a value of j�  for the unknown parameter is sam-

pled from the posterior distribution p� � x0( )  defined in (7). 

1. For  j = 1 to the number of replications m: 

a. Generate (independently) a value � j
 

by sampling from p� � x0( ) .  

b. Run (independently) a simulation  

experiment with � = � j
 to obtain: 

Wj = g Y s( ), 0 � s � T( )  

 End Loop 

2. Compute: 

r̂m x0( ) =
1

m
Wj

j=1

m

� ,  Sm
2 =

1

m �1
Wj � r̂m x0( )�� ��

2

j=1

m

�  

 

Fig. (1). Estimation of r x0( )  using the posterior distribution. 

 To apply the methodology described in Fig. (1), it is nec-

essary to apply a valid method for the generation of random 

variables from the posterior density p� � x0( ) ; which can be 

available, for example, when the corresponding distribution 

has been identified from an analytical expression. 
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 Note that the variables Wj  in the algorithm of Fig. (1) are 

i.i.d. with E W1[ ] = r xo( ),  and variance �W

2 = � p

2 +� s

2 ,  so 

that the next proposition follows from the classical LLN and 

CLT (“� ” denotes convergence in probability and “� ” 

denotes weak convergence). 

 Proposition 2. If 0 < � p

2 +� s

2 < � , then: 

r̂m x0( )� r x0( ),  

as m� � , and: 

m r̂m x0( ) � r x0( )�� ��
Sm

� N 0,1( ),  

as m� � , where � p

2
 and � s

2
 are defined in (8) and (9) 

respectively, and r̂m x0( ) , Sm
2

 are defined in Fig. (1). 

Corollary 1. An asymptotic 1��( )100%  confidence inter-

val for r x0( )  is given by: 

�

rm x0( ) � z�
Sm
m

,
�

r21
m x0( ) + z�

Sm
m

�

�
�

�

	
� . 

3.2. Estimation of r x0( )  by Using Ratio Estimation 

 In many cases an analytical expression for p � x0( )  can-

not be found or is very difficult to obtain, and sampling from 

p� � x0( )  is not feasible because the corresponding family 

of distributions has not been identified. The methodology we 

will propose in this section can be used in this case, and is 

explained as follows. 

 From (6) and Proposition 1, r x0( ) can be viewed as a 

ratio of the form: 

r x0( ) = r1 �( ) p� (� x0 )d�
P� =

r1 �( ) p� �( ) fn (x0 � )d�
P�

p� �( ) fn (x0 � )d�
P�

,  

which allows us to apply the ratio estimation procedure used 

in the regenerative method of simulation [18]. In addition, 

we may try to reduce the variance of the point estimator by 

using importance sampling [19], i.e., we can sample from 

another density q �( )  that is positive whenever p� �( )  is 

positive, so that: 

r x0( ) =
r1 �( ) p� �( )q �( )�1

fn (x0 � )q �( )d�
P�

p� �( )q �( )�1
fn (x0 � )q �( )d�

P�

=
Eq r1 �( )L �( )�� �	
Eq L �( )�� �	

,

        (14) 

where L �( ) = p� �( )q �( )�1
fn x0 �( ) . 

 The resulting point and variability estimation procedure 

is described in Fig. (2). Note that when importance sampling 

is not applied, then we sample from p� �( )  and 

L �( ) = fn x0 �( )  in Fig. (2). 

1. For  j = 1 to the number of replications m: 

a. Generate (independently) a value � j
 

by sampling from q �( ) .  

b. Run (independently) a simulation  

experiment with � = � j
 to obtain: 

Wj = g Y s( ), 0 � s � T( )  

c. Compute: 

Z j = p� � j( )q � j( )
�1
fn x0 � j( ) ,  Yj =WjZ j  

End Loop 

2. Compute: 

Y m =
1

m
Yj

j=1

m

� , Zm =
1

m
Z j

j=1

m

�  

3. Compute: 

r̂m
r x0( ) =

Y m

Zm
,  SYZ =

1

m �1
Yj �Y m( ) Z j � Zm( )

j=1

m

�  

SY
2 =

1

m �1
Yj �Y m( )2

j=1

m

� , SZ
2 =

1

m �1
Z j � Zm( )2

j=1

m

�  

Srm
2 = SY

2 � 2r̂m
r x0( )SYZ + r̂m

r x0( )2 SZ2
 

 

Fig. (2). Estimation of r x0( )  using Ratio Estimation. 

 In order to formulate a LLN and a CLT for the estimator 

proposed in Fig. (2), we introduce the following notation: 

� r

2 = �Y1

2 � 2r x0( )�Y1Z1
+ r x0( )

2
� Z1

2
,       (15) 

where�Y1

2 = E Y1 � E Y1[ ]( )
2�

�
�
�

, � Z1

2 = E Z1 � E Z1[ ]( )
2�

�
�
�

, 

�Y1Z1
= E Y1 � E Y1[ ]( ) Z1 � E Z1[ ]( )�� �� , r x0( )  is defined in (4), 

and 
1

Y , 
1

Z  are defined in Fig. (2). 

 The following Proposition follows directly from (1.9) of 

Shedler (1993), we only need to consider Yk f( ) = Yk  and 

� k = Zk  in Theorem 1.4 of [14]. 

 Proposition 3. If �<<
2

0 r� , then: 

r̂m
r x0( )� r x0( ),  

as ��m , and: 

Zm m r̂m
r x0( ) � r x0( )�� ��
Srm

� N 0,1( ),  

as m� � , where � rm

2
 and r x0( )  are defined in (11) and 

(4) respectively, and r̂m
r x0( ) , Zm , Srm

2
 are defined in Fig. 

(2). 

Corollary 2. An asymptotic 1��( )100%  confidence inter-

val for r x0( )  is given by: 
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r̂22

m x0( ) �
z�Srm
Zm m

, r̂22

m x0( ) +
z�Srm
Zm m

�

�
�

�

	
� . 

4. EXPERIMENTAL RESULTS 

 In this section we present the results obtained from simu-

lation experiments that we performed in order to verify the 

theoretical results presented in the previous section, as well 

as to test the performance of the proposed methodologies. 

We considered the Markovian model presented in Example 2 

because the analytical expression obtained for the perform-

ance measurement (4) will allow us to verify the validity of 

our theoretical results. 

 In all the experiments reported in this section we pro-

duced 95% confidence intervals, and for 1000=M inde-

pendent replications per confidence interval estimation, we 

computed different performance measurements for the set of 

experiments (see Fig. 3). We considered the model of Exam-

ple 2 with k = 5 , nit = 10 , ni = i , ri = 10 � i , 
 

i = 1,…, 5 . 

Under these assumptions we can verify from (13) that 

r x0( ) � 21.667 . This value was considered as the true parame-

ter value in order to compute the empirical coverage, mean 

square error and bias for each set of experiments. 

 In Table 1 we present the results of three sets of experi-

ments with =m  100, 500 and 1000 replications per experi-

ment, respectively. For each set of experiments we consid-

ered M = 1000 independent replications of the corresponding 

estimation procedure. The results reported under “Posterior 

Sampling” correspond to the method of Fig. (1), and the re-

sults reported under “Ratio using q �( ) ” correspond to the 

method of Fig. (2), where using the same notation as in Ex-

ample 2, q �( ) = p�2
�2( )q1 �1 x0( ) , p�2

�2( )  is uniform on 

0,1[ ] , and q1 �1 x0( )  corresponds to the limiting distribution 

(as n� � ) for p�1
�1 x0( ) , i.e., a N m,V �1( )  distribution 

(negative values or greater than 1 were  rejected), where m  

is the maximum likelihood estimator for �1 , and V  is the 

influence matrix (see [12]). It can be verified that the i-th 

element of m  is mi = ni / ni + ri( ) , and  

V  is a diagonal matrix with Vi = ni + ri( ) / mi 1� mi( )  as its 

i-th diagonal element. The results reported under “Ratio us-

ing Prior” correspond to the method of Fig. (2) when no im-

portance sampling is applied (we sample from p� �( )  and 

L �( ) = fn x0 �( ) ). 

 As we can see from Table 1, sampling from the posterior 

distribution provided very good coverages (close to the 

nominal 0.95) even for a relatively small number of replica-

tions. This method exhibited also the best performance from 

the point of view of halfwidth, mean square error and bias. 

When sampling from the prior distribution, the ratio estima-

tion method had the worst performance from the point of  

view of coverage, halfwidth, mean square error and bias, and 

although the coverage was poor, it gets close to the nominal 

0.95 as the number of replication increases, which shows 

that the method is valid but needs a larger number of replica-

tions to provide reliable confidence intervals. 

Halfwidth 

For 
 

i = 1, 2,…,M , let hi  be the halfwidth  

obtained in experiment i : 

 

h =
1

M
hi

i=1

M

� , Sh =

hi � h( )2
i=1

M

�

M �1
 

 

Empirical Mean Square Error 

For 
 

i = 1, 2,…,M , let ri  be the true  

(analytical) value for a performance  

measure and let r̂i  be the point  

estimator obtained in experiment i : 

MSE =

r̂i � ri( )2
i=1

M

�

M
 

 

Empirical Coverage 

                   EC =
1

M
Ci

i=1

M

� , 

      where:       Ci =
1, if r̂i � ri < hi ,

0, otherwise.

�
�
�

��
 

 

Fig. (3). Performance measures for a set of experiments. 

 When applying importance sampling, the ratio estimation 

method performed better, providing a reasonable coverage 

even for a small number of replications. Although it per-

formed worse than posterior sampling, its performance was 

very close, with the advantage that this method can be ap-

plied in a very general setting without sampling from the 

posterior distribution. 

Table 1. Performance of 95% Confidence Intervals from 

1000 Replications 

 

Halfwidth 

Method EC 
h  Sh  

MSE Bias 

m = 100      

Posterior Sampling .934 1.026 .065 0.296 .028 

Ratio using Prior .641 3.297 1.849 9.867 .614 

Ratio using q �( )  .915 1.389 .546 0.818 .001 

m = 500      

Posterior Sampling .950 .460 .014 0.057 .006 

Ratio using Prior .846 2.608 .929 2.861 .045 

Ratio using q �( )  .937 .777 .464 0.351 .091 

m = 1000      

Posterior Sampling .950 .325 .007 0.027 -.008 

Ratio using Prior .898 2.092 .594 1.429 .102 

Ratio using q �( )  .942 .616 .392 0.215 .104 
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5. CONCLUSIONS AND DIRECTIONS FOR FUTURE 

WORK 

 Our main objective in the development of the theoretical 

framework presented in section 2 has been to propose a per-

formance measure that is able to incorporate both priors and 

sample data in the analysis of simulation experiments. This 

performance measure allows the incorporation of priors 

and/or sample data only as special cases. We discussed two 

estimation methodologies (posterior sampling and ratio esti-

mation) that allows to assess the precision of the point esti-

mations (through asymptotic confidence intervals). On the 

other hand, it is important to note that both methodologies 

are easy to implement since the main difference with the 

classical method of replications is the generation of an addi-

tional sample for the parameter in each replication. 

 Our experimental results show that, when using impor-

tance sampling, the ratio estimation method may perform 

well. It should be mentioned that we applied a very general  

methodology (using the limiting distribution) when applying 

importance sampling, and the results were close to the poste-

rior sampling method. Although further research is required, 

it is expected that a good choice of a sampling distribution 

may provide an even better performance (variance reduction) 

for the ratio estimation method. 

 A direction for future research could be the incorporation 

of the proposed methodologies in the development of deci-

sion support systems by considering forecasts provided by 

the decision makers. However, the usefulness of the decision 

making support systems is very closely related to its capacity 

to model the real system, which depends on an adequate se-

lection of the parameters that model the different scenarios 

and the probability models for the random components that 

incorporate the stochastic uncertainty. In our opinion, it is 

precisely in this area, the search of models and their particu-

lar applications, in which the greatest research potential of 

these methodologies can be found. 

ACKNOWLEDGMENTS 

 We are grateful to Manuel Medina Pegram from Indus-

trias Peñoles for challenging us with such an interesting 

problem. This research was supported by the Asociación 

Mexicana de Cultura A.C. 

REFERENCES 

[1] Kraan B, Bedford T. Probability inversion of expert judgment in 

the quantification of model uncertainty. Manag Sci 2005; 51(6): 

995-1006. 

[2] Fisher ML, Raman A, McClelland AS. Rocket science retailing is 

almost here. Harv Bus Rev 2000; 78(4): 115-24. 

[3] Chick SE. Input distribution selection for simulation experiments: 

accounting for input uncertainty. Oper Res 2001; 49(5): 744-58. 

[4] Chick SE. Bayesian methods for discrete event simulation, Pro-

ceedings of the 2004 Winter Simulation Conference. Ingalls RG, 

Rossetti MD, Smith JS, Peters BA, Eds. 2004; 89-100. 

[5] Zouaoui F, Wilson JR. Accounting for parameter uncertainty in 

simulation input modeling. IIE Trans 2003; 35(9): 781-792. 

[6] Law AM, Kelton WD. Simulation modeling and analysis, 3
rd

 ed. 

New York: McGraw-Hill 2000. 

[7] Cheng RCH, Holland W. Two-point methods for assessing vari-

ability in simulation output. J Stat Comp Simul 1998; 60: 183-205. 

[8] Cheng RCH, Holland W. Calculation of confidence intervals for 

simulation output. ACM Trans Model Comput Simul 2004; 14: 

344-62. 

[9] Lee SH, Glynn PW. Computing the distribution function of a con-

ditional expectation via monte carlo: discrete conditioning spaces. 

In: Farrington PA, Nembhard HB, Sturrock DT, Evans GW, Eds. 

Proceedings of the 1999 Winter Simulation Conference, 1999; 

1654-63. 

[10] Muñoz DF. A Bayesian framework for modeling demand in supply 

chain simulation experiments. In: Chick LS, Sanchez PJ, Ferrin D, 

Morrice DJ, Eds. Proceedings of the 2003 Winter Simulation Con-

ference, 2003; 1319-25. 

[11] Berger JO. Statistical decision theory and Bayesian analysis, 2
nd

 ed. 

New York: Springer-Verlag 1985. 

[12] Bernardo JM, Smith AFM. Bayesian theory. Chichester: John 

Wiley & Sons 2000. 

[13] Asmussen S. Applied probability and queues. New York: Springer-

Verlag 2003. 

[14] Shedler GS. Regenerative stochastic simulation. San Diego: Aca-

demic Press 1993. 

[15] Anupindi R, Chopra S, Deshmukh SD, Van Mieghem JA, Zemel E. 

Managing business process flows, 2
nd

 ed. New Jersey: Pearson-

Prentice Hall 2006. 

[16] Detta JE. Estudio de un caso comparativo de pronósticos basados 

en regresión con pronósticos basados en simulación. Eng. diss., 

Department of Industrial & Operations Engineering, Instituto 

Tecnológico Autónomo de México 2006. 

[17] Chung KL. A course in probability theory, 2
nd

 ed. San Diego: Aca-

demic Press 1974. 

[18] Iglehart DL. The regenerative method for simulation analysis. In: 

Chandy KM, Yeh RT, Eds. Current trends in programming meth-

odology vol. III software engineering, Prentice Hall 1978; pp. 52-

71. 

[19] Glynn PW, Iglehart DL. Importance sampling for stochastic simu-

lations. Manag Sci 1989; 35(11): 1367-92. 

 

 

Received: March 3, 2008 Revised: July 30, 2008 Accepted: July 31, 2008 

 

© Muñoz and Muñoz; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 


