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Abstract: In this paper we consider approximation of the Capacitated Arc Routing Problem, which is the problem of serv-

icing a set of edges in a graph using a fleet of capacity constrained vehicles. We present a 7    3 

  2  W  approximation algorithm 

for the problem and prove that this algorithm outperforms the only existing approximation algorithm for the problem. Fur-

thermore, we give computational results showing that the new algorithm performs very well in practice. 

1. INTRODUCTION  

 When solving an optimization problem to suboptimality, 

two goals are followed. The first goal is to obtain a solution 

that is as close to the optimal as possible, which leads to the 

construction of problem specific heuristics and meta heuris-

tics, where the latter often outperforms the former. The sec-

ond goal is to obtain a solution, which is guaranteed to be 

within a certain factor of the optimal. This goal leads to the 

construction of approximation algorithms.  

 In this paper we will present an algorithm for the Capaci-

tated Arc Routing Problem (CARP) with the triangle ine-

quality preserved by the cost matrix, which is an approxima-

tion algorithm with at most the same approximation factor as 

the only existing approximation algorithm for the problem, 

and which performs very well in practice, in that it is highly 

competitive to the existing problem-specific heuristics for 

the problem on the set of 143 benchmark instances. We refer 

to the algorithm as A-ALG. 

 The CARP is the problem of servicing a set of demand 

edges in a graph using a fleet of capacity constrained vehi-

cles. CARP occurs in practice in problems such as street 

sweeping and refuse collection. The problem was first sug-

gested by Golden and Wong in 1981 [1] and has since been 

the target for heuristics and lower bounding procedures. 

Among the best performing heuristics are a Tabu Search 

algorithm by Hertz et al. [2], a Genetic Algorithm, [3], and a 

Memetic Algorithm, [4], both by Lacomme et al. and a Vari-

able Neighborhood Descent Algorithm by Hertz and Mittaz 

[5]. More recently, the problem has also been considered 

from an LP based point of view. We refer the reader to [6-8] 

for a survey of the literature regarding CARP. 

 Formally, the CARP is stated as follows: Given a con-

nected undirected graph G = (N,E,C,Q), where N is the set of 

nodes, E is the set of edges, C is a cost matrix, and Q is a 

demand matrix, and given a number of identical vehicles 

each with capacity W, find a number of tours such that 1) 

Each edge with positive demand is serviced by exactly one 

vehicle, 2) The sum of demands of those edges serviced by  
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each vehicle does not exceed W, and 3) The total cost of the 

tours is minimized. Throughout this text we assume that 

edge demands and W are integral and W  3. 

 The CARP has been proved to be NP-hard by Golden 

and Wong 1981 [1]. 

 Definition 1. Let  > 1 be a constant. A polynomial time 

algorithm, A is an  -approximation algorithm if c(A( ))   · 

c(OPT ( )) for all instances, , of the problem, where c(A( )) 

is the cost of the solution returned by A, and c(OPT ( )) is the 

cost of an optimal solution. 

 If the cost matrix does not respect the triangle inequality, 

the CARP is even hard to approximate. This can easily be 

proved by noting that the TSP is a special case of the VRP, 

which was proved to be a special case of the CARP by 

Golden and Wong 1981 [1]. By noting that the general TSP 

has been proved not to be in APX, the following theorem 

follows. 

 Theorem 2. If C does not satisfy the triangle inequality, 

finding an  -approximation of the CARP is NP-hard for all 

 > 0. 

 Problems are often easier to approximate when the cost 

matrix respects the triangle inequality. This is, for instance, 

true for the Traveling Salesman Problem (TSP), where ap-

proximation of the general problem is NP-hard as proved by 

Gonzales and Sahni 1976 [9], but where instances respecting 

the triangle inequality can be approximated in polynomial 

time using, for example, the algorithm by Christofides 1976 

[10]. This is also the case for the CARP, where approxima-

tion is hard for the problem in general, but an approximation 

algorithm can be constructed for the case where the triangle 

inequality is respected as we shall see next. However the 

following result by Golden and Wong 1981 [1] shows that 

even in this case there is a limit as to how tight the CARP 

can be approximated if P  NP. 

 Theorem 3. Finding a 3
2 -approximation of the CARP 

with C satisfying the triangle inequality is NP-hard. 

 There is a one-to-one correspondence between the class 

of CARP problems and the class of General Capacitated 

Routing Problems (GCRP). This results from the fact that 

demand nodes can be transformed into demand edges and 
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vice versa, as proved by Golden and Wong 1981 [1] and 

Assad et al. 1987 [11], respectively. An approximation algo-

rithm, Shortest Optimal Tour Partitioning (SOTP), has pre-

viously been suggested for the GCRP by Jansen 1993 [12]. 

This algorithm is based on a similar algorithm for the Ca-

pacitated Vehicle Routing Problem (CVRP) by Beasley 1983 

[13] and has an approximation factor of 7/2  3/W, where W 

is the vehicle capacity. Due to the above mentioned equiva-

lence relation, the SOTP algorithm has the same approxima-

tion factor when applied to the CARP. Many other routing 

problems have been considered from an approximation point 

of view. See for example [14-16]. 

 The idea of A-ALG is first to construct a giant tour that 

passes through all demand edges, and then use dynamic pro-

gramming to optimally partition this tour into smaller tours 

that respect the vehicle capacity. The details of the algorithm 

are given in Section 2. 

 In Section 3 we show that A-ALG has an approximation 

factor of 7/2  3/W, and prove that it always performs at 

least as well as SOTP, which is the only existing approxima-

tion algorithm for the problem. 

 Finally, in Section 4 we show that, in practice, AALG 

performs significantly better than SOTP since for the 

benchmark instances, the result obtained by A-ALG is 

strictly better than the one obtained by SOTP. Furthermore, 

we show that A-ALG is highly competitive to the existing 

problem-specific heuristics. 

2. THE ALGORITHM 

 The first step in the algorithm is to construct a giant 

tour, i.e. a tour that passes through all demand edges in the 

cheapest possible way. This problem is known as the Rural 

Postman Problem (RPP), and was proved to be NP-hard by 

Rinnooy Kan and Lenstra 1976 [17]. Frederickson 1979 [18] 

stated that a 32 -approximation algorithm for RPP “is obtain-

able by using an algorithm similar to the traveling salesman 

algorithm by Christofides” (He refers to Christofides 1976 

[10]). Jansen 1992 [19] presented a 32 -approximation algo-

rithm for the General Routing Problem (GRP). Following 

these results, a giant tour of cost at most 3/2 times the opti-

mal is obtained for the RPP when the cost structure respects 

the triangle inequality, in the following way. 

 If the graph induced by the required edges is connected, 

the RPP can be solved in polynomial time by the CPP algo-

rithm (Adding the edges of a minimum cost perfect matching 

of the odd degree nodes and making an Euler Tour). If this is 

not the case, let ER be the set of required edges and let GR = 

(NR,ER) be the graph induced by ER. If the Depot node is not 

included in NR, the Depot node is split into two nodes which 

are connected with a zero demand required edge. This edge 

will be contained in a separate component. The algorithm is 

outlined as follows: 

1. Calculate shortest paths between the connected com-

ponents. Let k be the number of connected compo-

nents in GR. Let G  be a complete graph with k nodes, 

one for each component in GR. The cost of an edge (i, 

j) in G  equals the shortest path length between any 

node in component Ci and any node in component Cj in 

GR. I.e. cij = minv Ci,w Cj SPL(v, w), where SPL(·, ·) 

is the shortest path cost between the nodes indicated. 

2. Construct a minimum spanning tree between the 

nodes in G  and let MST be the set of edges on the 

tree. 

3. Identify the set, , of odd degree nodes with respect 

to ER  MST.  

4. Construct a minimum cost perfect matching between 

the nodes in  and let M be the set of matching edges. 

5. Construct an Euler tour in G  = (N,ER  MST  M). 

The cost of this tour is c(ER) + c(MST) + c(M). 

6. Shorten the tour in the following way: Let the con-

structed Euler Tour, containing s edges, be v1v2v3 . . . 

vSv1. Some of these edges, (vi, vi+1), are in ER and may 

not be removed. All other edges on the tour may be 

replaced without violating the feasibility of the tour. 

Now, scan through the tour until two consecutive 

edges (vi, vi+1) and (vi+1, vi+2) that are not in ER are 

identified, and replace these two edges with one edge 

(vi, vi+2) with cost equal to the shortest path in G be-

tween vi and vi+2. Because of the triangle inequality, 

we have ci,i+2  ci,i+1+ ci+1,i+2. When this is done for 

the whole tour, at least one of any two adjacent edges 

is an ER-edge. 

 Theorem 4. The above algorithm is a 32 -approximation 

algorithm for the RPP. 

 The proof mimics the similar proof for the GRP which 

can be found in Jansen 1992 [19] and will not be repeated 

here. 

 For the part of the algorithm that partitions the giant tour 

into vehicle tours, we consider the demand edges in the order 

in which they appear on the giant tour, and use two tables, 
 ~
T  

and T, each of size m x m, where m is the number of demand 

edges. Here 
 ~
T  (i, j) will contain the cost of servicing de-

mand edges i through j in the given order optimally using a 

single uncapacitated vehicle, and T (i, j) is the cost of servic-

ing demand edges i through j in the given order optimally, 

when capacity restrictions are respected. The values in table 
 ~
T  are needed to calculate those of table T, there the optimal 

partitioning is found. 

 

Fig. (1). Minimizing for each direction. 
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 Let the end points of edge i be denoted by ui and vi re-

spectively. To calculate the values in table 
 ~
T , we use the 

following observations: For each j > i, servicing demand 

edge j can be done in two directions, from vj to uj or from uj 

to vj . Assuming that we service edge j in direction from uj to 

vj, edge j 1 can be serviced in two directions. Repeatedly 

minimizing over the two directions for edge j 1 gives us the 

cost for servicing edges i through j, where edge j is serviced 

in the specified direction, which is illustrated in Fig. (1). 

This value is stored in variable U in the algorithm. The simi-

lar value with edge j serviced in the opposite direction is 

stored in variable V. Finally the algorithm minimizes over 

the two directions and iterates. To summarize, we have the 

following.  

 For i = 1 to m do: 

 

 

Fig. (2). Partitioning the tour. 

 To calculate the values in table T, we note that servicing 

edges i through j in that order using capacitated vehicles 

must be done using the following rule. If the edges can be 

serviced by a single vehicle, i.e. if their joined demand is 

small enough, due to the triangle inequality, it must be best 

to do so. In this case the cost can be obtained directly from 

table 
 ~
T . If this is not the case, there must be some index, r 

with i  r < j such that edges r and r + 1 are serviced by dif-

ferent vehicles as illustrated in Fig. (2). In this case the cost 

can be obtained as T(i, r) + T(r +1, j). Minimizing over all 

possible values of r gives the result. In conclusion, table T is 

filled in the order from i = m down to 1, and from j = i to m 

according to: 

 

 The value of an optimal partitioning of the giant tour is 

now given by T(1, m). 

3. THEORETICAL RESULTS 

 The goal of this section is to give some theoretical results 

about A-ALG and in particular to show that A-ALG is an 

approximation algorithm with approximation factor 

7/2 3/W. To this goal, we prove that A-ALG outperforms 

SOTP, which, to out knowledge, is the only existing ap-

proximation algorithm for the CARP.  

 As in A-ALG, the idea in SOTP is to construct a giant 

tour and to partition this tour into single vehicle tours. In 

SOTP, this is done by solving a shortest path problem in a 

directed graph where the costs of the arcs equals the cost of 

servicing a subset of the edges in the order and direction 

given by the giant tour.  

 As for our algorithm, the giant tour is constructed using 

the 3/2-approximation algorithm summarized in Section 2. 

Now, let m be the number of demand edges and let e
(1)

, e
(2)

, 

e
(3)

, . . ., e
(m)

 be these edges in the order by which they occur 

on the giant tour, where there may be a shortest path edge 

between any e
(k)

 and e
(k+1)

. 

 Let GD be a directed graph with m + 1 vertices denoted 

by 0, 1, 2, . . .m. The cost drs of an arc (r, s) in GD equals the 

cost of a tour starting in the depot node, servicing edges e
(r+1)

 

. . . e
(s)

 in the order and direction of the giant tour, and return-

ing to the depot. The cost drs is only defined for legal tours, 

i.e. when r < s and 
s

k=r+1  q(e
(k)

)  W, where q(e
(k)

) denotes 

the demand of edge e
(k)

. If we let v1
(k)

 v2
(k)

 denote the source 

(target) of e
(k)

, as we meet them when passing along the giant 

tour, then we have the following costs: 

 

 Next a shortest path problem is solved from node 0 to 

node m in GD. Since the cost of an arc (i  j) in GD equals 

the cost of servicing edges e
(i+1)

 through e
(j)

 in that order, a 

path from node 0 to node m must give the cost of servicing 

all the edges in the order specified. Each arc on the path cor-

responds to one vehicle tour. Since all legal tours are in-

cluded in GD, a shortest path from 0 to m will give us an op-

timal splitting of the initial tour with the corresponding 

minimum cost.  

 Jansen 1993 [12] proves the following approximation 

factor for the algorithm in terms of the GCRP. 

 Theorem 5. If the initial tour is an -approximate RPP 

tour, then SOTP for CARP has performance ratio 
c(SOTP)
c*(OPT)   2 

+  (1  2/W). 

 Using the 32 -approximation algorithm for RPP the per-

formance ratio of the SOTP algorithm for the CARP is 
7    3

  2  W . 

 It is not hard to see that the two algorithms, SOTP and A-

ALG are very similar. They start by constructing the same 

giant tour, and proceed by optimally partitioning this tour 

into vehicle tours. The proof that A-ALG outperforms SOTP 

is based on the fact that whenever the algorithms partition 
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the RPP tour into vehicle tours, A-ALG is allowed to split in 

any way that SOTP is, but because AALG is allowed to serv-

ice some of the edges in the opposite direction, A-ALG has 

many more possibilities when constructing the solution. In 

other words, the solution space for SOTP is strictly con-

tained in the solution space for A-ALG. This means that 

even if the RPP tour is split in the same places by the two 

algorithms, A-ALG may be able to make the resulting solu-

tion cheaper, and we have the following theorem.  

 Theorem 6. If the same initial RPP tour is used then A-

ALG outperforms SOTP, i.e. c(A-ALG)  c(SOTP). 

 It is not hard to see that the same result holds, if A-ALG 

is used for the General Capacitated Routing Problem 

(GCRP) as well. The ability for A-ALG to obtain strictly 

better results than SOTP is based on the option of servicing 

edges in the opposite direction. Therefore, the presence of 

demand nodes in GCRP does not favor one of the two algo-

rithms above the other. An immediate consequence of Theo-

rem 6 along with Theorems 4 and 5 is  

 Corollary 7. A-ALG is a (7/2  3/W)- approximation 

algorithm both for the CARP and for the GCRP, where C 

satisfies the triangle inequality.  

 

Fig. (3). Example. 

 We have proved the promised approximation factor for 

A-ALG and showed that it always performs at least as well 

as SOTP. In Fig. (3) we give an example of a graph where 

A-ALG performs strictly better than SOTP. Numbers on the 

edges indicate cost. Let the three solid edges be demand 

edges each with demand of 5 and let the vehicle capacity be 

10.  

 The graph has two connected components, and hence 

MST = {(1, 2)},  = {3, 4}, and M = {(3, 4)}. The con-

structed Euler tour becomes 0-1 2- 3 4-0, where a dash indi-

cates service. The total cost of this tour is 27. Partitioning the 

tour according to the two algorithms gives us the following 

solutions. For SOTP two tours are constructed: 0-1 2-3 0 and 

0 4-0 with total cost of 29. For A-ALG the tours become 0-1 

3-2 0 and 0 4-0, with total cost of 28.  

4. COMPUTATIONAL RESULTS AND CONCLUSION 

 In the previous section we proved that A-ALG performs 

at least as well as SOTP and we gave an example in which 

A-ALG is strictly better. In this section we show that A-

ALG performs significantly better than SOTP in practice and 

is indeed competitive to a set of well-known problem-

specific heuristics for the CARP.  

 We have tested A-ALG on the four standard sets of 

benchmark instances (the GDB, KSHS, Val, and Eglese in-

stances) and on two additional sets of instances. In total the 

algorithms are tested on 143 instances. The results of a com-

parison between A-ALG and SOTP are shown in Table 1, 

whereas Table 2 summarizes the results of a comparison 

between A-ALG and a set of problems-specific heuristics for 

the problem. Data for the instances and detailed computa-

tional results are available at http://www.hha.dk/˜sanw. 

 The results show that A-ALG performs strictly better 

than SOTP for all 143 instances. In 25 instances, A-ALG 

obtains the best known solution and in 8 instances A-ALG 

reaches a proved optimal solution. The results obtained re-

garding average performance also favour A-ALG. The aver-

age result obtained with SOTP was 22.4% above the best 

known lower bound, whereas the average result obtained 

with A-ALG was 15.4% above the best known lower bound
1
. 

 Besides giving the number of instances in each set, Table 

1 provides a comparison between SOTP and A-ALG. Col-

umn three gives the average percentage of the improvement 

obtained by using A-ALG instead of SOTP, and the next 

column gives the standard deviation of this improvement. 

Column 5 (6) provides the smallest (largest) percentage-wise 

                                                
1It should be noted that for many instances in set A and set B, the optimal 

solution is not known. 

Table 1.  Comparison between SOTP and A-ALG for the 143 Instances 

 

Set 
Number of  

Instances 
Average %  

Better 
Std. Deviation  

of % Better 
Min  

% Better 
Max  

% Better 
SOTP %  

Above  
LBA-ALG %  

Above LB 

GDB 23 5.7 3.9 1.2 14.4 15.2 8.5 

KSHS 6 8.3 3.9 4.2 14.5 20.9 10.8 

Val 34 2.9 1.8 0.4 7.9 16.3 12.8 

Eglese 24 6.8 6.5 0.6 20.4 23.6 14.7 

A 32 4.8 2.4 0.8 10.4 24.0 18.0 

B 24 8.0 2.4 2.6 13.1 34.8 24.2 

Total 143 5.5 4.0 0.4 20.4 22.4 15.4 
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improvement observed. The final two columns give the av-

erage percent above the best known lower bound of the re-

sults obtained with each of the two algorithms. 

 In Table 2 we provide a summary of a comparison of A-

ALG to a set of well-known problem-specific heuristics for 

the CARP. In addition to SOTP, these include three widely 

used classical problem-specific heuristics (Augment-Insert, 

Augment-Merge, and Path Scanning) and three recent algo-

rithms presented in Wøhlk 2005 [20] (Modified Path Scan-

ning, Double Outer-Scan, and Node Duplication Heuristic). 

The first row gives the average rank of the results obtained 

for the 143 instances, where rank 1 is given to the algorithm 

which obtained the best result. The second row gives the 

average percentage above the best known lower bound ob-

tained with each algorithm. These results indicate that 

AALG is highly competitive to a large set of problem-

specific heuristics for the problem. It should be noted that all 

of the algorithms mentioned are often outperformed by meta 

heuristic approaches. 

 We conclude that the approximation algorithm, A-ALG 

is interesting both from a theoretical point of view with a 

proven approximation factor that is at most equal to the best 

one previously known, and from a practical point of view 

since, as justified above, A-ALG is highly competitive to the 

set of existing problem-specific heuristics. 
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Table 2. Comparison of the Problem-Specific Heuristics for the 143 Test Instances 

 

Classical Heuristics Resent Heuristics  

Augment Insert Augment Merge Path Scanning SOTP Mod Path Scanning DB O. Scan ND Heu A ALG 

Average Rank 7.8 4.2 4.2 5.2 4.1 4.9 2.4 2.2 

Average % above LB 21.2 24.2 22.4 20.2 26.7 15.4 15.4 62.2 


