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Abstract: Pedestrian’s studies are applied benefit and deployed in many areas; including public trip planning, and human 

factors analysis for building evacuation, or other situations where masses of people gather such as sporting events, etc. In 

this paper we describe a simulation system for virtual pedestrians. We mix the concept of fuzzy ant given by Ant Colony 

paradigm and associated cellular automaton model. We have adopted a fuzzy model for its particular ability to better 

represent uncertainty and imprecision about space perception. In our model we use it to represent virtual pedestrian’s 

fuzzy pedestrian’s desirability or visibility. A software solution was developed for this purpose. The Simulation results 

confirm predictions given by the first-order traffic flow theory. The proposed fuzzification is a preliminary step to 

consider other factors. The given system in its deployment phase will be integrated for pedestrians’ accidents analysis in 

urban transportation networks. The strength of our model takes advantage in using explicit Ant Colony model and on 

projecting fuzzy theory to apprehend pedestrians’ perceptions. 
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INTRODUCTION 

 Pedestrian’s studies have attracted considerable 

researchers’ attention. The reason for such study is that 

pedestrians movement and how it is affected by the design 

around, is an important component in design of 

transportation facilities, pedestrians walkways, building 

architectures, and other public buildings. Architects and 

designers have to take into consideration the characteristics 

of pedestrian flows in order to design the infrastructure as 

well as to assess its efficiency and safety [1]. In particular, a 

good understanding of the emergent patterns is required to 

predict how the flow will behave under different 

circumstances. 

 In real world, pedestrians move in two-dimensional 

spaces, and their complex behavior is easily affected by 

architectures surroundings. Scientific researchers focused on 

studying the characteristics of unidirectional and 

bidirectional counter pedestrian flows [2-6]. Their studies 

were conducted either by using models [2, 3, 7-11]; or by 

using empirical or experimental investigations with video 

analysis [4, 5, 12-15]. 

 Pedestrians flow models are grouped in three approaches: 

macroscopic, microscopic, and mesoscopic, which is the 

combination of two others. Generally pedestrians flow 

modeling can be performed by two first approaches. 

Macroscopic models treat the crowd as a whole, like a fluid 

or continuum [11, 16]. Microscopic models consider 

pedestrians as discrete particles in a computer simulation.  
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Those models can be grouped into two categories: discrete, 

and continuous. Discrete models include cellular automaton 

[3, 10, 17, 18] and lattice gas [13, 17, 19] models. Space and 

time are discretized to approximate the real movement of 

pedestrians. However, Most of those models, cannot 

compute precisely the distance and speed of pedestrian 

movement [17], and are ill suited for simulating two streams 

of populations obliquely intersecting because space is 

discretized into square lattices. 

 In continuous models, differential equation systems are 

used to describe the continuous movement of pedestrians in 

space and time. Those models introduce a concept of social 

force [8] and optimal control theory models [9]. 

 Researchers discovered in nature a variety of interesting 

insects or animal behavior. A flock of birds’ seeps across the 

sky, a group of ants’ forages for food, a group of fish swims 

turns [20, 21]. In spite of the simplicity of their individuals, 

present a highly structured social organization. This kind of 

aggregate motion is called “swarm behavior”. To understand 

how these animals interact, achieve goals and evolve, 

biologists and computer scientists have studied how to model 

biology swarms. Furthermore, the engineers are more 

interested in this kind of swarm behavior, since the resulting 

“swarms intelligence” can be applied in optimization [22], in 

transportation systems engineering [23], in network 

development [24] and in robotics studies [20]. 

 The N agents in the swarm cooperate to elaborate a part 

of a constant behavior and achieve certain purpose. This 

noticeable “collective intelligence” emerges from large 

groups of simple agents. The agents use simple local rules to 

perform their actions, and the swarm achieves its goals via 

the interaction of the entire group. 

 Swarm intelligence is the emergent collective 

intelligence of group of subsystem, which interacts relatively 
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independently from all other subsystems. The autonomous 

subsystem doesn’t follow commands from a leader or have 

some global plan [15]. For example, a bird in a flock has 

only to adjust its movement to coordinate with movements 

of its flock mates, particularly its “neighbors” which are 

close to it. The bird tries simply to stay close to its neighbors 

while avoiding collisions with them. 

MATERIALS AND METHODOLOGY 

 In this work, we propose results of our research 

conducted in Mohammedia Computer Lab. These concern 

work for the PhD project of Meriem Mandar under the 

supervision of Professor Boulmakoul during the period 

2008-2010. 

 This paper is structured as follows, after a short 

introduction, in section II, we recall some biological basis 

and foundation of artificial life; in section III, we introduce 

the concept of swarm intelligence. In section IV we present a 

state of the art about pedestrian simulation, followed by a 

new pedestrian fuzzy modeling. Section VI describes and 

completes our proposal model, and presents obtained results 

given by simulation. 

SWARM INTELLIGENCE 

 Swarm intelligence is relatively new discipline, dealing 

with the study of self-organization processes, both in nature 

and artificial systems. Researchers in animal behavior have 

developed many models to explain interesting social insects’ 

behavior, such as self-organization and shape formation. 

Algorithms and methods inspired by these models have been 

proposed to solve complex problems in many domains. An 

example of a particularly successful research direction in 

swarm intelligence is Ant Colony Optimization (ACO). It 

has been applied successfully to a large number of complex 

discrete optimization problems, including the travelling 

salesman problem (TSP), the quadratic assignment problem, 

and scheduling, vehicle routing, etc. Another interesting 

approach is focused on continuous optimization problems. 

Swarm robotics is another relevant field, where swarm 

intelligence techniques are applying to the control of large 

groups of cooperating autonomous robots. 

 Swarm intelligence describes a system of spatially 

distributed individuals coordinating their actions in a 

decentralized and self-organized way, to exhibit complex 

collective behavior. Such systems have a large number of 

individual’s agents which interact with each other simply. 

This allows swarm intelligence systems to be robust and 

flexible. Moreover systems with those properties can range 

in size from nano to macro scale. Swarm intelligence 

systems are common throughout nature; samples are 

bacteria’s colonies, and social insects. In addition human 

have developed a variety of artificial swarm systems ranging 

from swarm based optimization algorithms to sensor 

networks. 

 Since swarm intelligence involves the study of collective 

behavior in decentralized system, local interactions among 

the agents often cause global emergent patterns. Swarm 

intelligence models have many features in common with 

Evolutionary Algorithms: they are population based; the 

system is initialized with a population of individuals, which 

are manipulated over many iteration steps. Unlike 

Evolutionary Algorithms, swarm intelligence models don’t 

explicitly use evolutionary operators. An agent moves 

through the search space, by modifying itself according to its 

past experiences and to its relationship with other entities in 

the population and in the environment. 

PEDESTRIAN SIMULATION 

 Both, inside public building and open areas, prediction of 

infrastructure influences planning on people behavior, 

comfort and mobility, become very important presses. Many 

studies have been carried out to evaluate these influences, 

either by traditional simulation tools or by developing 

modern pedestrian’s simulation. Most of these models 

attempt to understand how space will affect crowd pedestrian 

flow, and how to improve space designing particularly in 

public transport. The ability of predicting pedestrian 

behavior is valuable in many urban planning contexts: 

architecture [26], marketing [27], and land use [28]. 

Especially, in panic situation [8-30] pedestrians behaviors’ 

are dictated by a unique objective, saving their own life, 

consequently many of them become irrational [31]. 

 Pedestrian simulation state of the art can be discussed 

around three types of models: (a) queuing models [32], in 

such models waiting times are introduced to deal with 

congestion phenomenon caused by traffic supply higher than 

infrastructure capacity. Works published by Christakos [32] 

using Helbing et al. simulation model [29] were used to 

precisely model these traffic problems. These models serve 

to describe pedestrian evacuation. (b) Cellular automata 

models divide space into similar cells, each cell has a set of 

rules, which defines its state at each time step. 

 Nagel and Schreckenberg introduced a model [33] to 

describe vehicles dynamics using a set of dynamics rules: 

 Acceleration i min( i +1, max )  

 Bracking i min( i , gi 1)  

 Randomization i max( i 1, 0)with probability p 

 Movement xi xi + i  

 Blue and Alderb model [2] define three fundamentals 

elements for pedestrian movement: (a) side stepping, (b) 

desired movement (acceleration or braking), (c) conflict 

mitigation. In [34] a conception of “stop point” is introduced 

to deal with traffic obstacles and resolve conflicts among 

pedestrians or between pedestrians and other vehicles on the 

crosswalk. Discrete choice models in general and random 

utility models [35], in particular are disaggregating 

behavioral models designed to forecast behavior of 

individuals in choice situations. In these models each 

alternative in a choice experiment can be associated with a 

value, called utility. The alternative with the highest utility is 

selected. The utility is modeled as a random variable 

depending on the attributes of alternatives and socio-

economic characteristics of the decision-maker. 



Fuzzy Ant Colony Paradigm for Virtual Pedestrian Simulation The Open Operational Research Journal, 2011, Volume 5    21 

 In his thesis, Mauron [36] has developed two approaches 

to simulate pedestrian behavior, the first one, uses the basic 

ideas given in [37]. This approach considers that the cells 

type is different (obstacle, link…); forces and walk 

directions are calculated at the start of simulation. The 

second one uses an environment with a set of point link. The 

agents use these links to find their path to destination. 

Continuous models are based on differential equations, the 

social force model [8] describes the pedestrian movement by 

the sum of acceleration, repulsive effect of others 

pedestrians, obstacles and attractive effects. Developed in 

context of artificial intelligence, agent based simulation of 

pedestrian behavior has been widely used in traffic 

simulation [38]. It provides a great deal of flexibility, as the 

behavior of each agent can be modeled independently, as a 

sequence of specific choices. 

 Complex dynamic and phenomena at an aggregate level 

of observation may emerge from interactions that occur at a 

local level. The multi-agent systems (MAS) offer the 

possibility to directly represent behaviors and interactions 

between individuals to explain and predict the evolution of 

complex phenomena. For instance, the simulation developed 

by Cavens et al. model [39] use multi-agents based 

simulation. Simulation software is divided into distinct 

modules, which interact with each other via network 

messages. The work presented by [40] presents a simulation 

of the hajj crowd based on the development on intelligent 

agent. Agents are able to recognize their environment and to 

adapt a rational behavior. 

 In real world, almost everything is relative and has a 

matter of degree. Human have a notable potential to 

accomplish a wide variety of mental and physical tasks 

without any prior measurements or computations. This 

ability is based on its perception. The probability theory, 

based on bivalent logic, shows an inability to operate on 

perception-based information. The bivalence of the 

conceptual structure of probability theory [41, 42] is in 

fundamental conflict with reality, in which almost everything 

has a degree of truth. It is this reality that is the point of 

departure in fuzzy theory. 

Fuzzy Numbers 

 Non random impreciseness or vagueness occurs 

associated with numeric quantities in many human activities. 

This impreciseness may have different origins. For example, 

it is usual to say “he is about forty” or “I expect to make 

more than two million on this deal”. The natural modeling 

tool for this kind of situation is the Theory of Fuzzy Sets. 

Given that precise numeric quantities are represented by real 

numbers, it should be thought that imprecise or vague 

quantities may be represented by “real fuzzy numbers”. 

 Zadeh introduced the concept of an infinite valued logic 

[41] where he described fuzzy set theory mathematics and by 

extension fuzzy logic. The fuzzy concept can’t be 

represented by the conventional approaches. Consequently 

the theory of the classic probability don’t supply an abstract 

frame suited to represent the knowledge, because such a 

concept is lexically indistinct. Fuzzy set theory suggested 

making operate the values true and False on real numbers the 

interval [0,1]. New operations for the logic calculations were 

proposed as a generalization of the classic one. The work 

presented in [43] proposes the following definitions and 

perform a ranking method for fuzzy number. 

 Definition 1. (Fuzzy Set) Let X be a nonempty set. A 

fuzzy set A in X is characterized by its membership function 

μA : X [0,1] . 

 
μA (u)  is interpreted as the degree of membership of 

element x in fuzzy set A for each u X . The set A is 

completely determined by the set of tuples 

A = u,μA u( )( ) / u X{ } . 

 Definition 2. The membership function
 
f
A
(x) of 

trapezoidal fuzzy number (TNF) 
 
A(a,b, c,d)  is defined by: 

f
A
(x) =

f
A
L (x), a x b,

b x c,

f
A
R (x), c x d,

0 otherwise

           (1) 

where 0 1  is a constant 
 
f
A
R :[c,d] [0, ]  and 

 
f
A
L :[a,b] [0, ]  are two application strictly monotonous 

and continuous from R to a closed interval [0, ] . If 

= 1 then  A  is called a normal fuzzy number. If the 

membership function 
 
f
A
(x)  is linear piecewise then  A  is 

called trapezoidal fuzzy number, denoted by 
 
A(a,b, c,d; )  

or 
 
A(a,b, c,d)  if = 1 . 

 Particularly, if b=c, the trapezoidal fuzzy number is 

reduced to a triangular fuzzy number denoted by 

A(a,b,d; )  or A(a,b,d)  if = 1 . 

 Because of 
 
f
A
L

 and 
 
f
A
R

are two application strictly 

monotonous continuous, then their reverse exist and must be 

also strictly monotonous continuous. Let g
A
L :[0, ] [a,b]  

and 
 
g
A
R :[0, ] [c,d]be the inverse application of 

 
f
A
L

 and 

 
f
A
R

 respectively. Then 
 
g
A
L (y)  and 

 
g
A
R (y)must be integrals on 

closed interval [0, ] . In the case of trapezoidal fuzzy 

number, the reverse functions 
 
g
A
L (y)  and 

 
g
A
R (y)may be 

analytically expressed by: 

g
A
L (y) = a + (b a)y / , 0 y  

 
g
A
R (y) = d (d c)y / , 0 y  

 In the following, Figs. (1, 2) give respectively 

membership function and reciprocal member function of a 

trapezoidal fuzzy number. 
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Fig. (1). Membership function of a trapezoidal fuzzy number. 

 

Fig. (2). Reciprocal member function of a trapezoidal fuzzy 
number. 

 The center point of a fuzzy number is given by: 

 

x0 (A) =

xf
A
(x)dx

+

f
A
(x)dx

+

=

xf
A
L (x)dx

a

b

+ (x )dx
b

c

+ xf
A
R (x)dx

c

d

f
A
L (x)dx

a

b

+ ( )dx
b

c

+ f
A
R (x)dx

c

d

 

y0 (A) =

y(g
A
L (y) g

A
R (y))dy

0

(g
A
L (y) g

A
R (y))dy

0

 

 So we can obtain 

 

x0 (A) =
1

3
a + b + c + d

dc ab

(d + c) (a + b)
 

 

y0 (A) =
1

3
1+

c b

(d + c) (a + b)
 

 For a normal trapezoidal fuzzy number
 
A(a,b, c,d) , we 

have y0 (A) =
1

3
1+

c b

(d + c) (a + b)
 

 Or for a triangular fuzzy number 

 

x0 (A) =
1

3
a + b + d[ ]  

y0 (A) =
1

3
 

 Particularly for a normal triangular fuzzy number 

 

y0 (A) =
1

3
 

 The ordering function of fuzzy number [45] is defines by 

R(A) = (x0 )
2
+ (y0 )

2

 

 So, let A  et B  two fuzzy numbers 

A B R(A) R(B)  

Fuzzy Arithmetic 

 Let 
 
A(aA ,bA , cA ,dA; A ) , 

 
B(aB ,bB , cB ,dB; B )  and 

C(aC ,bC , cC ,dC ; C ) be three fuzzy numbers, fuzzy operators 

can be expressed as follow: 

A B = C(aA + aB ,bA + bB , cA + cB ,dA + dB;min( A , B ))

 
A B = C(aA aB ,bA bB , cA cB ,dA dB;min( A , B ))

A B = C(aA *aB ,bA *bB , cA * cB ,dA *dB;min( A , B ))

A / B = C(aA *dB ,bA * cB , cA *bB ,dA *aB;min( A , B ))  

 We recall some properties about operations of trapezoidal 

fuzzy number: Addition and subtraction between fuzzy 

numbers become trapezoidal fuzzy number; Multiplication, 

division, and inverse need not be trapezoidal fuzzy number 

Max and Min of fuzzy number is not always in the form of 

trapezoidal fuzzy number. But in many cases, the operation 

results from multiplication or division are approximated 

trapezoidal shape. For computational aspects, this is not 

limiting our approach 

PROPOSED MODEL 

Cellular Automata 

 Cellular automata is an artificial life approach to 

simulation modeling and is named after the principle of 

automata (entities) occupying cells according to localized 

neighborhood rules of occupancy. Each cell can have one of 

a finite number of states. Time and state variables are 

discrete which makes it ideally suited for efficient computer 

simulations of complex traffic phenomena. Cellular 

automata for pedestrian dynamics have been proposed for 

instance in [3, 18, 21, 44, 45]. These models can be 

considered as generalizations of the Biham-Middleton-

Levine model for city traffic [46]. Almost all models have 

only nearest-neighbor interactions, except for the 

generalization proposed in [18] which is used for analyzing 

evacuation processes on-board passenger ships. The other 
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models use a kind of “sub-lattice-dynamics” which 

distinguishes between different types of pedestrians 

according to their preferred walking direction. Such an 

update is not easy to generalize to more complex situations 

where the walking direction can change. 

Ant Colony Optimization 

 Ant colony optimization is one of the most successful 

techniques in swarm intelligence. It is inspired by the 

pheromone trail laying and following behavior of ants. Such 

behaviors allow ant colonies and find shortest paths between 

their colonies and food sources. Ants communicate indirectly 

by the mine of chemical pheromone trials. In nature, ants 

usually walk randomly while laying down pheromone trials. 

If other ants find such a path, they don’t keep walking 

randomly, but follow the trail and reinforcing it if they find 

food. However the pheromone evaporates with time passing. 

More ants will visit a shorter path and consequently the 

pheromone density remains high for a longer time. ACO 

algorithm requires defining the following [22, 47]: 

• The problem needs to be represented appropriately, 

which would allow the ants to incrementally update 

the solutions through the use of a probabilistic 

transition rules, based on the amount of pheromone in 

the trail. 

• A problem-dependent heuristic function  that 

measures the quality of components that can be added 

to the current partial solution. 

• A rule set for pheromone updating, which specifies 

how to modify the pheromone value . 

 A probabilistic transition rule based on the value of the 

heuristic function  and on the pheromone value  is used to 

iteratively construct a solution. 

 Starting from its start node, an ant iteratively moves from 

one node to another. When being at a node, an ant chooses to 

go to an unvisited node at time t with a probability given by 

Pij
k (t) =

ij (t) ij (t)

il (t)[ ] il (t)[ ]
l Jl

Tk

If j Ji
Tk

0 otherwise

        (1) 

where Ni
k
 is the neighborhood of the ant k, that is; ij (t)  is 

the pheromone value on the edge (i, j) at the time t,  is the 

weight of pheromone; ij (t)  is a priori available heuristic 

information on the edge (i, j) at the time t,  is the weight of 

heuristic information. Parameters  and , determine the 

relative influence of pheromone trail. Heuristic information. 

i, j (t)  is determined by: 

ij (t) = ij (t 1) + ij
k (t)

k=1

m

(i, j)           (2) 

ij
k 

= Q/Lk(t) iIf the edge is (i, j) is choosen by the antk, and 

is equal to zero otherwise 

where  is the pheromone trail evaporation rate 0< <1, m is 

the number of ants, Q is a constant for pheromone updating. 

 A generalized version of the pseudo-code for the ACO 

algorithm with reference to the TSP is illustrated in the 

following Algorithm. 

Ant Colony Optimization Algorithm 

1. Initialize the number m of ants, and other parameters. 

2. While (the end criterion is not met) do 

3. t = t +1 ; 

4. For k = 1 to n  

5. antk is positioned on a starting node; 

6. For m=2 to problem_size 

7. Choose the state to move into 

8. According to the probabilistic transition rules; 

9. Append the chosen move into tabuk (t) antk ; 

10. Next m 

11. Compute the length Lk (t) of the tour Tk (t) chosen by 
the antk ; 

12. Compute ij (t) for every edge (i, j) inTk (t)  
according to Equation (1); 

13. Next k 

14. Update the trail pheromone intensity for every edge 
(i, j) according to Equation (2) 

15. Compare and update the best solution; 

16. End While. 

Model Rules 

 Each pedestrian has a preferred movement direction, a 

preferences matrix 3x3 contains movement preferences for 8 

neighbors cells (Fig. 3), central element define pedestrian 

position, at each time step, a new fuzzy preference matrix is 

assigned to each pedestrian. Preference matrix is firstly 

proposed in [3]. 

 

Fig. (3). Moore neighbor for Pedestrian with possible transitions. 

 For every pedestrian in cell (i): 

1. A fuzzy matrix 
 
Pij of preference is assigned, which 

reflect movement desirability to one of eight 

neighbors cells 

2. A fuzzy static influence Sj of fix object on grid 

(obstacles), while j is the destination cell; 

3. The movement possibility toward a cell depend o its 
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occupation state (Oj = 1or O
j
= 0 ). We have chosen 

to not represent this parameter as a fuzzy number 

because it doesn’t require a degree of correctness. 

Each cell can hold just one person per time, and its 

size is set to fit this matter. 

4. A fuzzy general utility of movement from a cell (i) to 

a cell (j) is given by: 

 

Uij
k (t) =

ij (t) ij (t)

il (t)[ ] il (t)[ ]
l Jl

Tk

If j Ji
Tk

0 otherwise

 

 while ij : pheromone quantity ; 

  : influence control parameter of 
 
ij  

 The pedestrian desirability or visibility is given by: 

 
ij = Pij Sj (1 Oj )  

 where : influence control parameter of ij  

 JTk : set of eight cells neighboring cell (i). 

5. Pheromone update rule is given by: 

 ij = ij + j  

 where  is pheromone vaporization rate. 

 
j = j

k (t)
k=1

m
 is the sum of pheromone layed 

down by all pedestrians at time step t. in a time step 

only one pedestrian occupy a cell, so j
k (t) = Oj (t)  

6. Pedestrians move to cell (j) where the fuzzy general 

utility obtains its maximum value : 

 

Uij
k (t) = max Uik

k (t)( )
k

 

Conflicts Mitigation 

 Pedestrian collision means two pedestrian will move into 

a same cell in time step (t + 1) (Fig. 4). A solution is 

proposed to avoid this problem is based on general utility 

toward destination cell. Pedestrian having higher general 

utility is able to execute his step. 

 

Fig. (4). Proposed solution for a conflict situation. 

 
R1= fuzzy general utility value for pedestrian 1 for 

shared destination cell. 

  
R2  = fuzzy general utility value for pedestrian 2 for 

shared destination cell. 

 If 
 
R1 > R2  then it’s pedestrian who will move, else it’s 

pedestrian 2. 

 In the following figure (Fig. 5) we represent our model 

algorithm. 

 In this model, the fuzzification of pedestrians’ utility 

concerns only spatial perception (obstacles, preferred 

direction, amount of pheromone for dynamic floor, etc.). Our 

goal in this first approach is to have a simple model 

integrating fuzzy modeling and the Ant Colony paradigm. 

Certainly, other cognitive and behavioral factors will be 

considered in our future work. This work is scheduled to 

consider dangerousness of crossing intersections by 

pedestrians. Perception of vehicle speed by pedestrians and 

other psychological factors can be integrated. The software 

architecture of the simulator allows this extension. For 

theoretical foundation, the fuzzy general utility proposed 

here, may be interpreted as a fuzzy probability, extending the 

crisp probability transition given by Ant Colony paradigm. 

Comparison of Pedestrian Simulation Models 

 Generally in microscopic pedestrian simulation models, 

the pedestrian’s movement is directed by the use of two 

terms. The first express the goals attractivity, and the other is 

used for expressing a repulsive effect to avoid collision with 

obstacles and others pedestrians. To classify the different 

modeling approach, several way of classification could be 

given: macroscopic versus microscopic description, rules 

based versus force-based interactions, stochastic versus 

deterministic dynamics, and discrete versus continuous 

variables. We adopt this last criterion to classify some major 

microscopic pedestrian’s simulation models in comparison 

with ours (see Table 1). 

 The fuzzy modeling method presented in this paper 

exploits explicitly the Ant Colony paradigm (ACP). Our 

contribution is offered for the first time in this work. First we 

confirm the validity of the model to capture physical 

phenomenon of traffic theory and secondly it give first 

attempt to ACP fuzzification for modeling pedestrians’ 

behavior. Obviously other factors or cognitive perceptions 

variables will be considered for model extension. We have 

used preference matrix as in work given in [3], to allow 

partial integration of the motivations of pedestrians. This 

preference will be modeled by a scheme of rules based on 

other cognitive and behavioral factors. 

RESULTS AND DISCUSSION 

Physical Characteristics 

 Pedestrian flow: The flow is usually defined as the 

number N(x, t) of pedestrians passing a measurement point x 

between times t and t + t  
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(x, t, t + t) =
N(x, t, t + t)

t
 

 The supply is a term that is connected to the flow, it 

represents the flow of pedestrians, in the absence of 

congestion, arriving to a section of a path and wanting to be 

served. In the ideal case of traffic, the flow is maximum and 

it is equal to the capacity of the used path. The pedestrian 

flow on a fixed site i, is given by: 

=
1

T
ni,i+1(t)t=t0+1

t0+T
 

where ni,i+1(t) = 1  if and only if a motion of a pedestrian was 

detected between sites i and i +1 (0 otherwise). 

 Pedestrian density: The density is the number of 

pedestrians existing between x and x + x at time t 

(t, x, x + t) =
N(t, x, x + t)

x
 

 Since virtual pedestrians moves through a lattice’s sites, 

their density in a given one i (= occupation of this site), is the 

sum of its occupations during a period of time T. The 

pedestrian density is given by: =
1

T
ni (t)

t=t0+1

t0+T

 

 

 

where ni (t) = 0  if and only if the site is empty (1 if 

occupied) per unit time. T defines the period of time, and 

ni the occupation of the site i. 

 Fundamental diagram: Several experimental studies of 

the flow of traffic have confirmed the existence of a 

significant effect, which is the reduction of average speed 

with increasing pedestrian density. The first relationship of 

the fundamental diagram q( )was based on this effect [49]. 

The relationship describing the fundamental diagram can be 

obtained from the relationship between the average velocity 

( ) and density .  

 For very low density, average speed tends to the 

maximum value max , and for a maximum density, pedestrian 

movement becomes impossible. So we can write 

( 0 ) = max  and 
( max ) = 0  

 The fundamental equation of flow, from which we can 

trace the fundamental diagram flow-density relationship is 

given by the hydrodynamics equation, which links flow q to 

velocity v: 

(t) =
q(t)

(t)
 

 

 

 

Fig. (5). Simulation’s algorithm. 
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 From this function we can trace the fundamental 

diagram q( ) . The flow becomes null if the density is null or 

maximum, and takes a maximum value at intermediate 

densities. It is often assumed that the fundamental diagram is 

composed of two isolated curves, which are separated by a 

threshold: a curve with a positive slope at low densities (it is 

the regime of free flow of traffic) and a curve with a negative 

slope to high densities (it is the regime of congested traffic 

flow) [50-52]. 

 We have chosen a triangular fuzzy number representation 

to represent model parameters. For the simulation parameters 

and for a fixed value of static and dynamic influence, we 

have changed in each run the alpha parameter value of a 

fuzzy number for the preferences matrix element. This 

allows us to vary preference matrix from a crisp number to a 

fuzzy interval. We also change the influence parameter for 

static and dynamic floor. Some curves illustrating the 

characteristics of pedestrian traffic are given in the 

following. Chosen Simulation scenario (Fig. 6) consists on a 

room with two entries and one exit, witch contains many 

obstacles. 

 

Simulation Results for Pedestrian Traffic Parameters 

Influence Parameters of floor field = 1 = 1  

 During simulation (Fig. 6), we noticed at room’s exit, 

that pedestrian’s density increases until it reaches a 

maximum value when traffic becomes congested (see Fig. 

7). While pedestrians flow decreases in the same phase (see 

Fig. 8). The fundamental diagram (see Fig. 9) illustrates the 

phases of the free and congested pedestrian’s traffic. 

Average evacuation time for pedestrians increases while the 

width of preference matrix increases (Fig. 10). Pedestrians 

move according to their preference matrix, and the fact of 

increasing the width of its components implies that the 

fuzzification threshold also increases. This does not allow 

pedestrians to find their way out quickly. As for a 

macroscopic traffic model, these results show that with 

fuzzyfication of the ant basic model, we can obtain results 

physically significant, such as the fundamental diagram 

which considers two phases: free flow and congestion (see 

Figs. 7-10). 

 

 

Table 1. Microscopic Pedestrians Models Comparison 

 

Discrete Models Continuous Models 

 
CA Models [2, 3, 34, 35, 37] 

Benefit Cost 

Cellular [48] 

Fuzzy Ant Model 

(Boulmakoul et al.) 
Magnetic Force [33] 

Social Force  

[8, 29] 

Space and time Discrete Discrete Discrete Continuous Continuous 

Variables State Discreet Discrete Discrete Continuous Continuous 

Movement to goal An objective function Gain score Fuzzy utility 
Positive and negative 

magnetic force 
Intended velocity 

Repulsive effect 
Conflict mitigation between 

pedestrians, plus cells state for 
obstacles 

Cost Score Static floor field 

Repulsive force plus 
force to avoid collision 

with other pedestrian or 
obstacles  

Interaction forces 

Attractive effect Cell state for obstacles Score value 
Fuzzy dynamic floor 

field 
Attractive force 
between goals 

Interaction 
Forces 

Pedestrian movement Discrete Discrete Discrete  Continuous Continuous 

Value of variables arbitrary arbitrary Bio-inspired meaning Physical meaning 
Physical 
meaning 

Interaction Rules based Rules based Rules based Force based Force based 

Phenomena explained 

Queuing, 

Way finding, 

Shortest path 

Self-organization 

evacuation 

queuing 

Queuing, 

Way finding, 

Shortest path 

Self-organization 

evacuation 

Queuing, 

Way finding, 

evacuation 

Queuing, 

Self-

organization, 

Oscillatory 
change 

Higher programming 

orientation 

Cellular based 

 

Cellular based 

 

Bio-inspired 

Cellular based 

Fuzzy Logic 

 

Heuristic mathematics 

Evacuation 

application 
possible possible possible possible Not possible 

Parameters 

calibration 
By inspection By inspection By inspection By inspection By inspection 
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Fig. (7). Pedestrian density diagram. 

 

Fig. (8). Pedestrian flow diagram. 

 While choosing a simulation scenario as closed corridor 

(Fig. 11), pedestrians move forward with the same speed 

until they are blocked either by the corridor or by other 

blocked pedestrians. They form therefore a spreading wave 

of chock as shown in Fig. (12). 

 

Fig. (9). Pedestrian traffic fundamental diagram. 

 

Fig. (10). Average evacuation time depending on the width of 
preference matrix. 

 

Fig. (6). Simulation scenario with two entries and an exit. 
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 In Fig. (13) an open corridor with two pedestrians’ 

generators with opposite motion direction, has been 

simulated. We notice that after some simulation time steps, 

pedestrians have been able to find their way by forming 

lanes with same direction. 

Scenario of Blocked Corridor 

 

Fig. (11). Simulation scenario as a blocked corridor. 

 

Fig. (12). Dissemination of a shock wave of pedestrians moving in 
time according to their positions. 

Scenario of Open Corridor 

 

Fig. (13). Two crossing pedestrians lanes, with opposite direction. 

CONCLUSION 

 In this paper, we present a simple fuzzy virtual pedestrian 

simulation model. Our model uses the basic ant model given 

by Ant Colony paradigm, to which we have integrated a 

fuzzy description to better represent, preferences matrix and 

chemical trace. Relation between density and velocity of 

pedestrian movement has so far mainly been analyzed using 

an empirical approach and fundamental relations found from 

the fitting of experimental measurements of the main 

quantities. Simulation results confirm predictions given by 

the fir-order traffic flow theory. Validation of the simulation 

model toward the real world data is recommended for further 

study. In our future work we plan to study the interactions 

between pedestrians and vehicles, to estimate the risk of 

crossing intersections. In our future work, fuzzification for 

other perception‘s factors of virtual pedestrian will be 

considered, such as: distance to an obstacle, crossing the 

road speed, etc. 
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