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Abstract: We present the mean value cross decomposition algorithm and its simple enhancement for the two-stage 

stochastic linear programming problem with complete recourse. The mean value cross decomposition algorithm employs 

the Benders (primal) subproblems as in the so-called “L-shaped” method but eliminates the Benders master problem for 

generating the next trial first-stage solution, relying instead upon Lagrangian (dual) subproblems. The Lagrangian 

multipliers used in defining the dual subproblems are in turn obtained from the primal subproblems. The primal 

subproblem separates into subproblems, one for each scenario, each containing only the second-stage variables. The dual 

subproblem also separates into subproblems, one for each scenario which contains both first- and second-stage variables, 

and additionally a subproblem containing only the first-stage variables. We then show that the substantial computational 

savings may be obtained by solving at most iterations only the dual subproblem with the first-stage variables and 

bypassing the termination test. Computational results are highly encouraging. 
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1. INTRODUCTION 

 Uncertainty is the key factor in many decision problems 

and stochastic programming represents a powerful tool to 

treat decision problems under uncertainty. In this paper we 

focus our attention on a specific class of stochastic 

programming models: two-stage stochastic linear 

programming problem with recourse (2-SLPwR). This 

problem has been successfully applied to a wide range of 

problems such as fleet management (Powell [1]), 

asset/liability (Kusy and Ziemba [2], Bertocchi et al. [3]), 

air-traffic control (Richetta and Odoni [4]), scheduling 

(Birge and Dempster [5]), water resource management 

(Watkins Jr. and McKinney [6]), investment (Dupacova et 

al. [7]), supply chain (Tomasgard and Hoeg [8]), and so on. 

For real world two-stage stochastic linear programming 

problems, however, the number of scenarios is generally 

very large, so a straightforward usage of conventional 

optimization tools may require an excessive amount of 

computational effort. Fortunately, two-stage stochastic linear 

programming problem has a specific structure which can be 

exploited by decomposition. The key characteristic of 

decomposition methods is their ability to iteratively split a 

large, unwieldy problem into a sequence of smaller, more 

tractable subproblems. As well, the development of efficient 
solution algorithm captures significant relationships between 

primal and dual decomposition. In this short paper, therefore,  
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we present the mean value cross decomposition algorithm 

(Holmberg [9]) which is a modification of cross 
decomposition (Van Roy [10]), and its simple enhancement 

for the 2-SLPwR. The cross decomposition enables us to 

explicitly couple both primal and dual decomposition into a 

single decomposition procedure so that tight lower and upper 

bounds are achieved simultaneously. Our purpose of this 

paper is not competing with the most advanced method 

(Ruszczynski [11], Ruszcynski [12]) for the problem class 

under consideration, but rather to implement a variation of 

the mean value cross decomposition, which is a simple yet 

powerful new saving criterion of wide applicability. The rest 

of this paper is organized as follows. In section 2 the 
classical two-stage stochastic programming problem with 

recourse is presented. The applications of the classical cross 

decomposition and its simple enhancement to solve the 

addressed problem are illustrated in section 3. In Section 4 a 

numerical example is described. In Section 5, the 

computational results based on randomly generated data are 

reported. Finally, some concluding remarks are presented in 

Section 6. 

2. PROBLEM FORMULATION 

 Let us consider the two-stage stochastic linear 

programming problem with recourse (2-SLPwR): 

minimize cx + pkQk x( )
k=1

K

  (1) 

subject to x X  

where, for example, the feasible set of first-stage decisions is 

defined by 
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X = x Rn : Ax = b, x 0{ }   (2) 

and the cost of the second stage is 

Qk x( ) = Minimum qk y :Wky = hk Tk x,  y 0{ }   (3) 

 Here k indexes the finitely-many possible realizations of 

a random vector , with pk the probability of realization k. 

The set of variables x are the vector of the first-stage 

variables, i.e., they are to be selected before uncertain 

parameter value  is observed. Then the set of second-stage 

decision variables yk (the recourses) are to be selected once x 

has been selected and the k
th realization of  is observed. 

Note that in general, the coefficient matrices T and W, the 

right-hand-side vector h, and the second-stage cost vector q 

are all random. We assume that recourse is complete, i.e., for 

any choice of x and realization , the set 

y :Wky = hk Tk x,  y 0{ }  is nonempty. This may require 

the introduction of artificial variables with large costs. The 

objective is to minimize the expected total costs of first and 

second stages. The deterministic equivalent form is a large-

scale problem P which simultaneously selects the first-stage 

variables x and the second-stage recourse variables yk for 

every realization k: 

P: Find Z = Minimize cx + pkqk yk
k=1

K

  (4) 

subject to 
 
Tkx +Wyk = hk , k = 1,…,K;  

x X  

yk 0, k = 1,…,K  

3. MEAN VALUE CROSS DECOMPOSITION OF THE 
PROBLEM 

 The 2-SLPwR has very large dimension and specific 

structures that can be handled by decomposition technique 

and it has stimulated a large amount of researches (Abaffy 
and Allevi [13], Beraldi et al. [14], Birge [15], Birge et al. 

[16], Birge and Louveaux [17], Chen and Powell [18], 

Dantzig and Madansky [19], Donohue [20], Frauendorfer 

[21], Gassmann [22], Glassey [23], Higle and Sen [24], 

Infanger and Morton [25], Linderoth and Wright [26], 

Mulvey and Ruszczynski [27], Nielsen and Zenios [28], 

Ruszczynski [11], Ruszczynski [29], Ruszczynski and 

Swietanowski [12], Sen [30], Van Slyke and Wets [31], 

Vladimirou [32], Wets [33]). The technique presented in this 

paper is based on the mean value cross decomposition 

algorithm (Holmberg [9]) which is a modification of cross 
decomposition algorithm (Van Roy [10]). The cross 

decomposition unifies Lagrangian (dual) decomposition and 

Benders’ (primal) decomposition technique into a single 

framework that involves successive solutions to Lagrangian 

(dual) subproblem and Benders’ (primal) subproblem. This 

approach makes it possible to exploit simultaneously the 

dual and the primal structure of the problem so that the 

computational effort is significantly reduced. As well, the 

proposed technique consists in creating a redundant set of 

the first-stage variables, and adding a number of coupling 

constraints, which brings forth a tightening effect on the 

Lagrangian bounds (Guignard and Kim [34]). Before 

describing Lagrangian decomposition, we define a vector 

variable x0 as well as a vector xk for each scenario k, k =1,…, 

K. The variable xk represents what one wishes in hindsight 

that he had decided in the first stage after the realization k 

has been observed. The variable x0 represents the decisions 

to be implemented in the first stage before  has been 

realized. We will require that x0 = xk for each scenario k since 

the first-stage decision should not depend upon the scenario 

which will be controlled in the second-stage. This condition 

is known as a nonanticipativity constraint defined by 

Rockafellar and Wets [35]. An equivalent formulation of the 

problem P is then given by: 

Z = Minimize cx0 + pkqk yk
k=1

K

  (5) 

subject to xk X,    k = 0,1, ...,K  

Tkxk +Wyk = hk , k = 1, ...,K  

 
x0 = xk , k = 1,…,K  

 
yk 0, k = 1,…,K  

 Now given a family of Lagrangian multiplier vectors k, 

k =1,…, K, the Lagrangian relaxation with respect to the 

nonanticipativity constraints is the problem of finding x0, xk, 

and yk such that: 

D ( )= Minimize cx0 + pkqk yk
k=1

K

+ k xk x0( )
k=1

K

  (6) 

= Minimize c k
k=1

K

x0 + k xk + pkqk yk[ ]
k=1

K

 

subject to xk X,    k = 0,1, ...,K  

Tkxk +Wyk = hk , k = 1, ...,K  

 
yk 0, k = 1,…,K  

 This problem then becomes separable in a subproblem 

with variable x0 as well as the K subproblems corresponding 

to the individual scenarios k, which is our purpose in 

variable splitting. It is well known that, for any choice of , 

the value D( ) provides a lower bound on the optimal value 

Z. The Lagrangian dual problem is to find the tightest such 

lower bound: 

 

D = Maximize  D ( )  (7) 

 The function D( ) is generally not differentiable 

everywhere. One common procedure that has been used to 

search for the optimal Lagrangian multipliers  has been 

subgradient optimization (Held et al. [36]). This technique 

adjusts k based upon the magnitude of the violation of the 

constraint x0 = xk. While the subgradient optimization 

method can be guaranteed to converge, the rate of 

convergence is often slow. 
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 Benders' partitioning, known also in stochastic 

programming as the L-Shaped Method, achieves separability 

of the second stage decisions, but in a different manner. 

Given a first-stage decision x0, if, as before, we introduce the 

variables xk with the nonanticipativity constraints, we obtain 

the second-stage problem for each scenario k : 

Qk x0( ) = Minimize  qk yk   (8) 

subject to Tkxk +Wyk = hk , 

xk = x0 , 

yk 0  

 It is well known that P x0( ) = cx0 + pkQk x0( )
k=1

K

 

provides us with an upper bound on the optimal value Z. The 

linear programming dual of the second-stage problem is the 

linear program: 

Qk x0( ) = Maximize hk Tk x0( ) k   (9) 

subject to kW qk  

in which the dual variables k for the constraint x0 = xk has 

been eliminated since k = – k Tk, and the given assumption 

that polyhedrons kW qk  for k=1,…, K are bounded. Note 

that the polyhedral feasible region of the second-stage 

problem for scenario k is denoted by 

k = k :W
T

k qk{ } , and the i
th extreme point of 

k by ˆ k
i , i=1,2,…, Ik. By enumerating the generally large 

but finite set of extreme points we can write 

Qk x0( ) = Maximize
i=1,...,Ik

 ˆ
k
i hk Tk x0( ){ } = Maximize

i=1,...,Ik
 ˆ

k
i x0 + ˆ

k
i{ }   (10) 

where k
i
= ˆ

k
i Tk  and ˆ

k
i
= ˆ k

i hk . Note that this 

demonstrates that Qk(x0) is a piecewise-linear convex 

function. Benders' complete master problem then uses this 

representation of Qk(x0) to provide an alternate method for 

evaluating Z, namely 

Z  =  Minimize  cx0 + pk k
k=1

K

  (11) 

subject to x0 X  

k k

i
x0 + k

i
,  i = 1,..., I;  k = 1,...,K  

 While it is possible in principle to solve the problem 

using Benders' complete master problem, in practice the 

magnitude of the number of dual extreme points makes it 

prohibitively expensive. However, if a subset of the dual 

extreme points of k  are available, e.g., ˆ k
i , i = 1, 2, …, Mk 

where Mk < Ik, then we obtain an underestimate of Qk(x0), 

which we denote by 

Q
k
x0( ) = Maximize

i=1,…,Mk

 ˆ
k
i x0 + ˆ

k
i{ }   (12) 

 Thus, by making use of dual information obtained after 

M evaluations of Qk(x0), we obtain a Partial Master Problem, 

M = Minimize  cx0 + pk k
k=1

K

  (13) 

subject to x0 X  

k
ˆ
k
i x0 +

ˆ
k
i ,  i = 1, ...,M ;  k = 1, ...,K  

which provides a lower bound on the solution of Z. Benders' 

algorithm solves the current Partial Master Problem, 

obtaining x0 (a "trial solution") and an underestimate 

pkQk
x0( )

k=1

K

of the associated expected second-stage cost. 

The actual expected second-stage cost, i.e., pkQk x0( )
k=1

K

, is 

then evaluated by solving the second-stage problem for each 

scenario. Additional constraints are added to the Partial 

Master Problem to complete the iteration. At each iteration, 

then, the subproblem solution P x0( ) = cx0 + pkQk x0( )
k=1

K

 

provides an upper bound for Z and the Partial Master 

Solution M = P x0( )  = cx0 + pkQk
x0( )

k=1

K

 provides a 

lower bound. 

 The cross decomposition combines the advantages of 

Benders’ (primal) decomposition and Lagrangian (dual) 

decomposition. It consists mainly of a subproblem phase, 

where one iterates between primal subproblem and dual 

subproblem as below: 

 Step 0. Initialization. Let the initial values of the upper 

bound Z = + , lower bound Z = . The algorithm can 

start with either the dual subproblem or the primal 

subproblem. After solving any of the subproblems, the 

following tasks are to be performed. Note that, for the 

purpose of illustration, we start with solving the dual 

subproblem 

 Step 1a. Solve the dual subproblem to evaluate D( ) with 

the given initial values of the dual variables k = 0 for k =1, 

…, K. This separates into K+1 subproblems, i.e., Dk ( ), k = 

0, 1, …, K. 

 1b. From the solution of D0 ( ) determine the next 

proposed first-stage decision x0. 

 1c. Update the lower bound, i.e., Z = max Z,D ( ){ } . 

 1d. Check for optimality: if Z Z , i.e., the upper and 

the lower bounds on the objective function are close enough, 

then STOP; else continue to Step 2. 

 Step 2a. Solve the primal subproblem to evaluate P(x0) 

with the given values of the first-stage decisions x0. This 

separates into K subproblems for each scenario k =1, …, K. 

 2b. Construct a Lagrangian multiplier vector  = [ 1,…, 

k]. 



Two-Stage Stochastic Linear Programming with Recourse The Open Operational Research Journal, 2011, Volume 5    33 

 2c. Generate an optimality cut to be added to the primal 

(or Benders') master problem. 

 2d. Update the upper bound, i.e., Z = min Z,P x0( ){ } . 

 2e. Check for optimality: if Z Z , STOP; else 

continue to Step 1. 

 At each iteration, upper and lower bounds on the optimal 

value Z may be updated. However, the convergence of the 

bounds cannot be assured, as "stalling" can occur, e.g., Step 

1b may generate the same first-stage decisions x0 in 

successive iterations. In this case, we must rely on a solution 

of the standard Benders' master problem to restore 

convergence before continuing. The need to use master 

problem is a serious disadvantage of the cross decomposition 

method, since the master problem usually are much harder to 

solve than the subproblems. This reliance on the master 
problem may be avoided when using a variation by K. 

Holmberg (Holmberg [9], Holmberg [37]) called mean value 

cross decomposition. The base for mean value cross 

decomposition algorithm is a subproblem phase in the cross 

decomposition, where the algorithm iterates between the 

dual subproblem and the primal subproblem. However, it 

eliminates completely the need for using master problems so 

that step 2c may be omitted. This variation of cross 

decomposition maintains the mean values of all previously-

generated first-stage decisions x0 and Lagrangian multipliers 

. The current mean values of x0 and  are then used in the 

primal and dual subproblems, respectively. At each iteration, 

then, for both the Lagrangian and Benders' subproblems, one 

solves a set of linear programming problems, one for each 

realization k. The Lagrangian subproblem includes additional 

variables, xk, reflecting the first-stage decisions that, after  

has been realized, we wish in hindsight that we had made. In 
the Lagrangian subproblem, an additional linear 

programming must be solved at each iteration in order to 

determine the first-stage decisions, x0. 

 It is worth noting that, in practice, we could omit solution 

of the dual subproblems Dk( ) for each realization k in most 

iterations. This is because the information to be returned by 

the dual subproblem consists of both lower bound Z on the 

optimum, used in the termination test and first-stage 

decisions, x0, and solution of dual subproblem 0, i.e., D0( ), 

is sufficient to determine x0. However, the termination test 

must be bypassed, since no new lower bound will have been 

computed. Hence, we might iterate between D0( ) and Pk(x0) 

for each realization k for several iterations if it is expected 

that the termination criterion would not be satisfied, and only 

occasionally test the termination criterion by solving the dual 

subproblems Dk( ) for each realization k. As a result, the 

computational effort will be substantially reduced by solving 
only one of the K+1 subproblems, especially since for each 

realization k, the subproblems Dk( ) include both first and 

second stage variables. It should be noted that the dual 

subproblem D0( ) includes only first-stage variables (see 

Fig. 1). 

4. EXAMPLE 

 To illustrate the algorithm discussed in the earlier 

section, we use the farmer’s problem in Birge and 

Louveaux’s book (Birge and Louveaux [38]). A farmer 

raises wheat, corn, and sugar beets on 500 acres of land. 
Before the planting season he wants to decide how much 

land to devote to each crop. At least 200 tons of wheat and 

240 tons of corn are needed for cattle feed, which can be 

purchased from a wholesaler if not raised on the farm. Any 

grain in excess of the cattle feed requirement can be sold at 

$170 and $150 per ton of wheat and corn, respectively. If 

additional wheat or corn is required to supplement that 

which is raised on the farm, the cost is 40% more, namely 

$238 and $210 per ton, respectively. Up to 6000 tons of 

sugar beets can be sold at a subsidized price of $36 per ton. 

However, any additional amounts can be sold for only $10 

per ton. Crop yields are uncertain, depending upon weather 
conditions during the growing season, and three scenarios 

 

Fig. (1). Information exchanges in the mean value cross decomposition. 
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have been identified, each equally likely. That is, it is 

assumed that years are good, fair, or bad for all crops, 

resulting in above average, average, or below average yields 

for all crops. The average yield on his land is roughly 2.5, 3, 

and 20 tons per acre for wheat, corn, and sugar beets, 

respectively. The above and below average indicate a yield 

20% above or below the mean yield. 

 Decision variables xi is the first-stage decision which 

represents acres of land planted in each crop whereas 

decision variables wi and yj are the second-stage decisions 

that represent tons of each crop sold and purchased, 

respectively. The stochastic decision problem then becomes 

as follows: 

minimize 150x1 + 230x2 + 260x3 +
1

3
Qk x( )

k=1

3

  (14) 

subject to x1 + x2 + x3 500  

x j 0, j=1,2,3  

where 
Q1 x( ) = Minimum 170w1 +150w2

+ 36w3 +10w4 238y1 210y2

  (15) 

s.t. y1 w1 200 3x1  

y2 w2 240 3.6x2  

w3 + w4 24x3  

y1 0, y2 0  

w1 0, w2 0,  0 w3 6000,w4 0 , 

Q2 x( ) = Minimum 170w1 +150w2

+ 36w3 +10w4 238y1 210y2

  (16) 

s.t. y1 w1 200 2.5x1  

y2 w2 240 3x2  

w3 + w4 20x3  

y1 0, y2 0  

w1 0, w2 0,  0 w3 6000,w4 0  

and 

Q3 x( ) = Minimum 170w1 +150w2 + 36w3 +10w4 238y1 210y2   (17) 

s.t. y1 w1 200 2x1  

y2 w2 240 2.4x2  

w3 + w4 16x3  

y1 0, y2 0  

w1 0, w2 0,  0 w3 6000,w4 0  

 The mean value cross decomposition algorithm described 
in the previous section was implemented in Mosel language 

for Xpress-MP and was compared to Benders’ 

decomposition algorithm and the ordinary cross 

decomposition algorithm. The problem was not solved to 

completion this time, but was terminated after 100 iterations. 

Table 1 summarizes the results obtained by these four 

algorithms. 

 Both Benders’ decomposition and the ordinary cross 

decomposition can find the optimal solution within 10 

iterations and the optimal first-stage decisions are to plant 
170, 80, and 250 acres of wheat, corn, and beets, 

respectively, which will yield a minimum expected cost of 

$108,390, i.e., a profit of $108,390. The mean value cross 

decomposition presented finds an incumbent solution at 

iteration #85 with a total cost of $108,177 which yields 

approximately 0.197% of duality gap. The behaviors of the 

mean values of x passed to the primal subproblems as well as 

the total expected cost computed by the primal subproblems 

are shown in Figs. (2, 3). From these figures, we may say 

that the mean value cross decomposition algorithm 

converges asymptotically without solving master problems. 
Therefore, the algorithm requires much less memory than 

both Benders’ decomposition and the ordinary cross 

decomposition, and can solve much larger problems. At the 

risk of over-generalizing based upon the computational 

results obtained for this relatively small example, it suffices 

to demonstrate the use of the mean value cross 

decomposition for generating solution of the addressed 

problem and suggests that the results are comparable to those 

obtained by Benders’ original algorithm and the ordinary 

cross decomposition algorithm. 

5. COMPUTATIONAL STUDY 

 In order to compare the performance of the mean value 

cross decomposition presented with ones of Benders’ 

decomposition, the ordinary cross decomposition, and the 

implemented algorithms were coded in the APL language 

using APL+Win 3.6 and run on an Intel Pentium IV CPU 

3GHz with 1GB of RAM. The test problems are generated 

according to the following scheme: 

 

Table 1. Summary of Results from Four Different Algorithms 

 

 Benders’ Decomposition  Ordinary Cross Decomposition  Mean Value Cross Decomposition 

# of iteration 5 7 94 

# of Master Problem 5 1 0 

CPU time (sec) 1.435 1.420 1.096 

Duality Gap (%) 0 0 0.197 
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1. A set of five random problems were generated for 

each of the dimensions: K  n4, for n = 2, 3, …, 15. 

Therefore, 70 test problems were obtained. Here, K 

represents the number of scenario to be considered. 

2. The last first-stage constraint is a generalized upper 

bound constraint in order to bound the feasible region 

of the first-stage problem so that the Benders' master 

problem does not have an unbounded solution. 

3. The second-stage variables include simple recourse 

variables with relatively high costs, so that recourse is 

complete, i.e., the second stage is feasible for every 

scenario for every first-stage decision. 

4. The coefficient matrices T and W of both first- and 

second-stage variables in the second stage constraints 

are fixed, i.e., only the right-hand-sides and the 

second-stage costs are random. 

 The APL program stops when the gap between the upper 

and lower bound is either less than 0.001%, or after the 

computing time exceeds two hours. The outcome of the 

computational experience is reported in Tables 2-4, and they 

report on the average results taken over five random 

problems for each problem size. 

 First, Benders’ decomposition algorithm was 

implemented and the corresponding results are summarized 

in Table 2. We list the problem name (ID), the number of 
scenario (K), the number of second-stage constraints (m2), 

the running time when the optimal solutions were found 

(CPU time), and the number of Benders master problems 

solved (NBM). As can be seen in Table 2, the mean 

computing times increase dramatically in keeping with the 

dimension of the test instances. Even though only about 13 

iterations on the average were needed for the Benders’ 

decomposition procedure, it was unable to optimally solve 

the largest two instances within a specified time. This is 

mainly because the Bender’s decomposition algorithm uses 

traditional search methods for the master problem, where the 
majority of computing time is spent. 

 

Fig. (2). Convergence of total expected cost vs iteration. 

 

Fig. (3). Convergence of first-stage variables xi vs iteration. 
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Table 2. Computational Results from Benders’ Decomposition 

 

ID K m2 CPU time NBM 

s2p4 16 64 1.4166 7 

s3p4 81 324 1.9218 7.6 

s4p4 256 1,024 2.4272 12 

s5p4 625 2,500 3.2636 8.8 

s6p4 1,296 5,184 6.2946 8.4 

s7p4 2,401 9,604 21.4294 17 

s8p4 4,096 16,384 45.2732 15.8 

s9p4 6,561 26,244 73.3376 9.2 

s10p4 10,000 40,000 257.3592 16.2 

s11p4 14,641 58,564 470.5700 16.6 

s12p4 20,736 82,944 1,028.1780 15.6 

s13p4 28,561 114,244 1,861.1640 17.4 

s14p4 38,416 153,664 -- 16.4 

s15p4 50,625 202,500 -- 17.4 

 

 Secondly, the ordinary cross decomposition algorithm 
was used. That is, the algorithm was restarted but the 

Benders’ cuts were modified by the algorithm of Van Roy. 

The results presented in Table 3 show the efficiency of this 

variation of the original Benders’ decomposition. For all test 

instances, less iterations were needed for the cross 

decomposition for strengthening the Benders’ cuts than for 

the original Benders’ decomposition. As well, on the average 

much less computational times were required and the cross 

decomposition algorithm was able to solve the second largest 

 

Table 3. Computational Results from Ordinary Cross 

Decomposition 

 

ID K m2 CPU time NBM RTBD-CD 

s2p4 16 64 1.263 2.8 10.84 

s3p4 81 324 1.6692 3.6 13.14 

s4p4 256 1,024 2.1245 5.4 12.47 

s5p4 625 2,500 2.7454 4.8 15.88 

s6p4 1,296 5,184 4.2791 4.8 32.02 

s7p4 2,401 9,604 13.8620 9.2 35.31 

s8p4 4,096 16,384 32.3513 6.4 28.54 

s9p4 6,561 26,244 58.6054 4.4 20.09 

s10p4 10,000 40,000 155.3484 7.2 39.64 

s11p4 14,641 58,564 348.9646 10.4 25.84 

s12p4 20,736 82,944 704.3740 8.4 31.49 

s13p4 28,561 114,244 1,344.6710 11.6 27.75 

s14p4 38,416 153,664 3,234.9670 9.2 34.10 

s15p4 50,625 202,500 -- 7 41.66 

instance optimally within two hours. Compare to the 

Benders’ original algorithm, the cross decomposition 

requires only about 50% of the number of master problem to 

generate the optimal solution, which results in about 26% of 

savings in computational time on the average. This is not 

surprising since the ordinary cross decomposition makes it 

possible to couple explicitly both primal and dual  

subproblems into a single decomposition procedure which 

enables us to achieve tight lower and upper bounds 
simultaneously. Note that RTBD-CD refers the percentage of 

time’s reduction when Benders’ decomposition algorithm is 

replaced by the ordinary cross decomposition algorithm. 

 Finally, the mean value cross decomposition algorithm 

was implemented by restarting the subproblem phase in the 

ordinary cross decomposition, and we take the mean values 

of all the previously obtained solutions and proceed with the 

cross decomposition. In most iteration, however, only the 

dual subproblem with the first-stage variables is solved. 

Table 4 gives the results, and we list RTBD-SCD and RTOCD-

SCD as the percentage reduction in time if the cross 

decomposition replaces the Benders’ decomposition and the 

ordinary cross decomposition, respectively. As the problem 

size becomes larger, the mean value cross decomposition 

algorithm performs better than both Benders’ decomposition 

and the ordinary cross decomposition algorithms. Compare 

to these two decomposition schemes, on the average, the 

mean value cross decomposition algorithm can save about 

36% and 16 % of its total consuming time to find the optimal 

solution. As a result, the algorithm can find the optimal 

solution for all test instances within a specified time. These 
results indicate that the mean value cross decomposition 

presented outperforms both Benders’ decomposition and the 

ordinary cross decomposition in terms of the computing 

times while no degradation of solution quality. The results 

 

Table 4. Computational Results from Mean Value Cross 

Decomposition Presented 

 

ID K m2 CPU Time RTBD-SCD RTOCD-SCD 

s2p4 16 64 1.5320 -8.15 -21.30 

s3p4 81 324 2.4927 -29.71 -49.34 

s4p4 256 1,024 3.2082 -32.18 -51.01 

s5p4 625 2,500 2.13495 34.58 22.24 

s6p4 1,296 5,184 2.81225 55.32 34.28 

s7p4 2,401 9,604 8.07055 62.34 41.78 

s8p4 4,096 16,384 22.9067 49.40 29.19 

s9p4 6,561 26,244 44.9784 38.67 23.25 

s10p4 10,000 40,000 105.9769 58.82 31.78 

s11p4 14,641 58,564 242.1565 48.54 30.61 

s12p4 20,736 82,944 506.6693 50.72 28.07 

s13p4 28,561 114,244 924.5226 50.33 31.25 

s14p4 38,416 153,664 2,239.8190 54.37 30.76 

s15p4 50,625 202,500 4,217.2160 69.52 47.76 
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also demonstrate that the mean value cross decomposition 

algorithm and its simple enhancement presented are very 

effective for the addressed two-stage stochastic linear 

programming problem. 

6. CONCLUSION 

 In this paper, we have presented mean value cross 

decomposition algorithm and its simple enhancement for the 

two-stage stochastic linear programming problem with 
recourse. Unlike Benders’ decomposition algorithm or L-

shaped method, in which primal and dual variables are 

exchanged between a primal master problem and primal 

subproblem, the cross decomposition algorithm obtains the 

primal variables from a Lagrangian relaxation, thus unifying 

Benders’ decomposition and Lagrangian relaxation into a 

single framework which makes it possible to exploit both 

primal and dual structures of the problem simultaneously. In 

order to avoid stalling, in which case the algorithm must 

occasionally rely upon a master problem, mean values of the 

primal and dual variables may be exchanged. While 

constructing the Lagrangian dual subproblem for the mean 
value cross decomposition method, we introduce extra 

variables for each scenario, and use them, together with the 

nonanticipativity constraints, to replace the first-stage 

variable in each of the second-stage constraints. With this, 

the Lagrangian dual subproblem decomposes into a series of 

smaller problems. Furthermore, the first-stage variables only 

appear in one of these smaller problems. The mean value 

cross decomposition with the saving criterion, therefore, is 

able to achieve the substantial computational savings by 

solving at most iterations only the dual subproblem with the 

first-stage variables and bypassing the termination test. The 
computational results show that quite large problems can be 

solved fairly quickly by the proposed algorithm. The results 

also reveal that the proposed algorithm is quite easily 

implemented. Our purpose in developing the proposed  

algorithm was not to compete with the most advanced 

method for the problem class under consideration, but rather 

to implement a simple yet powerful new saving criterion of 

wide applicability. Future work could extend the proposed 

algorithm to other stochastic programming problems. 

7. AVAILABILITY 

 All the tested instances used in this report as well as the 
optimal solution for each instances are available at the web 

page http://ie.nmsu.edu/sohn_stage2/2SLPwR.htm. Further 

enquiries regarding this test instances may be made to the 

corresponding author at hsohn@nmsu.edu. 
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