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1. INTRODUCTION 

 The applications of game-theoretic ideas are quite 

extensive and have recently been enjoying increased 

popularity in various human activities, as it provides a new 

perspective on optimization, networking and control problems. 

So the search for elegant methods for solving a general 

strategic game is very natural. Charnes [1] established that 

every matrix game is equivalent to linear programming. The 

results in [1] imply that every two-person, zero-sum can be 

solved by simplex method of linear programming. The 

advantage of linear programming techniques is that it provides 

solution to a mixed strategy game of any size. Motivated with 

this observation, many researchers studied equivalence 

between a scalar-valued game and a certain mathematical 

programming problem. Cottle [2] was the first to establish the 

equivalence between an unconstrained game having a non-

linear convex-concave payoff function and the corresponding 

symmetric dual programming problems. Since then several 

authors, notably, Chandra et al. [3] Corley [4] and Prasad and 

Sreenivas [5] extended partially the results of constrained 

scalar-valued game to a certain vector-valued game. Later 

Mond et al. [6] extended the results of Kawaguchi and 

Maruyama [7] to the nonlinear setting and proved that a 

constrained game is equivalent to a pair of Symmetric dual 

nonlinear programming problems, appearing similar to those 

of Mond-Weir [8]. 

 The dynamic games are basically concerned with the 

modeling of large scale systems which have independent 
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decision makers with individual payoff (or reward) 

functions. Applications of dynamic games can be 

experienced in solving some important problems relating to 

environment resources, aerospace and energy managements. 

So their domain of applications is naturally wider than those 

of static games. In order to extend the results of Mond et al. 

[6] to dynamic setting involving variational problems, 

recently Husain and Ahmad [9] have constructed a scalar-

valued game and shown it to be equivalent to pair of 

symmetric dual variational problems general formulations 

whose formulations are more general then that of [10]. They 

established various duality results under convexity and 

generalized convexity assumptions on the appropriate 

functionals. 

 The purpose of this research is to extend the results of 

Husain and Ahmad [9] to multiobjective setting by 

formulating a constrained vector-valued dynamic game and 

established its equivalence to a pair of multiobjective 

symmetric dual variational problems. For this pair of 

variational problems, duality results are derived under suitable 

generalized convexity hypotheses. A pair of selfdual 

multiobjective variational problems reflecting its equivalence 

to symmetric multiobjective dynamic game, is formulated. 

Finally game equivalent problems with natural boundary 

values are constructed and their relationship with their static 

counterparts [11] is indicated. In order to understand the 

multiobjective setting of dynamic game one may be referred 

to go through “Zhukovskii and Salukvadze” [12]. 

2. FORMULATION OF VECTOR-VALUED DYNAMIC 
GAMES 

 In a game, if the process is controlled by p-players whose 

interested suffer from conflicts, then the objectives of an 

individual player cannot be expressed in terms of one index 
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and hence results into multiobjective functions. Such specific 

characteristics constitute vector-valued game problems 

where each player wishes to optimize his own multiple 

criteria (pay- off function) or games with two player of 

which one wishes to maximize and the other wishes to 

minimize the same vector function. These situations provide 

motivation to study vector-valued constrained dynamic 

games. 

 To establish the equivalence of a constrained vector-

valued dynamic game to a pair of symmetric variational 

problems, we associate the vector-valued game 

G = X,Y ,F(x, y)( )  to the game G ' = X,Y , T F(x, y)( ) , 

where 

(i) 

 

X =
x : I Rn x(a) = 0, x(b) = 0, pi (t, x, x)>0,

t I , i = 1,2,....,k and I = [a,b] R
 and 

(ii) 

 

Y =
y : I Rm y(a) = 0, y(b) = 0,qj (t, y, y)>0, t I ,

j = 1,2,...., l
 

 with 

 
pi : I Rn Rn R, i = 1,2,....,k

qj : I Rn Rn R, j = 1,2,...., l
 

 have continuous derivative up to and including 

second order with respect to each of their arguments x 

and y and x : I Rn , y : I Rm
 with derivatives 

 x and y  with respect to t. 

(iii)   F : X Y R
p
,  defined by 

 F(x, y) =

f 1(t,x,x, y, y)dt,.....,
a

b

f p (t,x,x, y, y)dt
a

b , 

 where f i : I Rn Rn Rm Rm R  is assumed to 

be continuously differentiable function f , i = 1,2,..., p  

(iv) X and Y represent the strategy spaces for the players I 

and II respectively and 
T F(x, y)  with 

= ( 1,......., p ) Rp
represents the payoff to the 

player II from the player I. The player I is assumed to 

be a minimizing player and player II a maximizing 

player. Thus the player I wishes to solve 

minx X maxy Y
T F(x, y)  and the player II wishes to 

solve maxy Y minx X
T F(x, y) . 

 This is to be noted here that throughout the analysis of 

this research, the following convention for the inequalities 

will be used: 

 

 If , Rn
 with  

 = ( 1, 2 ,..., n ) and = ( 1, 2 ,..., n ) , then 

>
i
>

i , (i = 1,2,...,n)

> and

>
i
>

i , (i = 1,2,...,n).

 

 Now min
x X

max
y Y

T
F(x, y)  and 

  
max

y Y
min

x X

T
F(x, y)    

are equivalent to the following problem (P) and(D): 

(P): Minimize 
T F(t, x, x, y, y)dt

a

b

 

subject to 

  

x(a) = 0 = x(b)

y(a) = 0 = y(b)
 

T fy (t, x, x, y, y) μ(t)T qy (t, y, y)

D T fy (t, x, x, y, y) μ(t)T qy (t, y, y)( )
< 0, t I  

   

y(t)T

a

b
T f

y
(t, x, x, y, y) μ(t)T q

y
(t, y, y)

D T f
y
(t, x, x, y, y) μ(t)T q

y
(t, y, y)( )

dt > 0  

 

μ(t)T q(t, y, y)dt
a

b

> 0
 

 
p(t, x, x) > 0, t I

 

x(t)>0,μ(t)>0, t I , 

> 0.  

(D): Maximize 

 

T F(t,u,u,v,v)dt
a

b

 

subject to 

u(a) = 0 = u(b)

v(a) = 0 = v(b)
 

T fu (t,u,u,v,v) (t)T pu (t,u,u)

D T fu (t,u,u,v,v) (t)T pu (t,u,u)( )
> 0, t I  

 

u(t)T

a

b T fu (t,u,u,v,v) (t)T pu (t,u,u)

D T fu (t,u,u,v,v) (t)T pu (t,u,u)( )
dt < 0  

 

(t)T p(t,u,u)dt
a

b

<0
 

 
q(t,v,v)<0, t I  

v(t)>0, (t)>0, t I , 
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> 0 . 

 Corresponding to the above variational problems (P) and 

(D), we have the following multiobjective variational 

problems: 

(VP): Minimize 

 

f 1(t, x, x, y, y)dt,..., f p (t, x, x, y, y)dt
a

b

a

b

 

subject to  

  
x(a) = 0 = x(b)  (1) 

y(a) = 0 = y(b)  (2) 

   

T f
y
(t, x, x, y, y) μ(t)T q

y
(t, y, y)

D T f
y
(t, x, x, y, y) μ(t)T q

y
(t, y, y)( )

< 0,t I   (3) 

y(t)T

a

b T fy (t, x, x, y, y) μ(t)T qy (t,u,u)

D T fy (t, x, x, y, y) μ(t)T qy (t,u,u)( )
dt > 0   (4) 

   

μ(t)T q(t, y, y) dt > 0
a

b

  (5) 

   
p(t, x, x) > 0,t I   (6) 

  
x(t)> 0,μ(t)> 0, t I   (7) 

> 0   (8) 

(VD): Maximize 

   

f 1(t,u,u,v,v) dt,......., f p (t,u,u,v,v) dt
a

b

a

b

 

subject to  

  
u(a) = 0 = u(b)

  (9) 

  
v(a) = 0 = v(b)

  (10) 

   

T f
u
(t,u,u,v,v) (t)T p

u
(t,u,u)

D T f
u
(t,u,u,v,v) (t)T p

u
(t,u,u)( )

> 0,t I   (11) 

u(t)T

a

b T fu (t,u,u,v,v) (t)T pu (t,u,u)

D T fu (t,u,u,v,v) (t)T pu (t,u,u)( )
dt < 0   (12) 

(t)T p(t,u,u)dt <0
a

b

  (13) 

 
q(t,v,v)<0, t I   (14) 

v(t)>0, (t)>0, t I   (15) 

> 0   (16) 

3. MULTIOBJECTIVE SECOND-ORDER SYMMETRIC 
DUALITY 

 In this section, we shall prove duality relationship 

between the problems (VP) and (VD). For this following 

definitions are needed: 

 Consider the following multiobjective variational 

problem studied by Bector and Husain [13]: 

 
P( )  Minimize  

 

1(t, x(t), x(t))dt,......., p (t, x(t), x(t))dt
a

b

a

b

 

subject to 

x(a) = , x(b) =  

g(t, x(t), x(t)) 0, t I .  

 Let L denote the set of all feasible solutions of ( P ), i.e. 

   
L = x C(I , Rn ) : x(a) = , x(b) = , g(t, x(t), x(t)) 0,t I{ },

where C(I ,Rn ) denote the space of piecewise smooth 

functions x with norm x = x + Dx ,  where the 

differentiation operator D is given by 

u = Ds x(t) = + u(s)ds
0

t

 where is a given boundary 

value. Therefore 
d

dt
D except at discontinuities. 

 Definition 1. A point x0 L is said to be an efficient 

solution of 
 
P( ) if for all x L,  

 

i

a

b

(t, x0 (t), x0 (t))dt i

a

b

(t, x(t), x(t))dt  for all  

i 1,2,..., p{ }  

i

a

b

(t, x0 (t), x0 (t))dt = i

a

b

(t, x(t), x(t))dt
 

for all  

i 1,2,..., p{ } . 

 The point xo is said to be a properly efficient solution of 

P( ) , if there exists a scalar M > 0 such that, for all 

i 1,2,..., p{ } , 

 

i

a

b

(t, x0 (t), x0 (t))dt i

a

b

(t, x(t), x(t))dt
 

 

M j

a

b

(t, x(t), x(t))dt j

a

b

(t, x0 (t), x0 (t))dt , 

for some j, such that  

 

j

a

b

(t, x(t), x(t))dt > j

a

b

(t, x0 (t), x0 (t))dt
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whenever x X , and an i 1,2,..., p{ } such that 

i

a

b

(t, x(t), x(t))dt > i

a

b

(t, x0 (t), x0 (t))dt .  

 An efficient solution that is not properly efficient is said 

to be improperly efficient. Thus for x0  to be improperly 

efficient means that to every sufficiently large M > 0, there is 

an 

 

i

a

b

(t, x(t), x(t))dt > i

a

b

(t, x0 (t), x0 (t))dt

 

and 

i

a

b

(t, x0 (t), x0 (t))dt i

a

b

(t, x(t), x(t))dt   

 

> M j

a

b

(t, x(t), x(t))dt j

a

b

(t, x0 (t), x0 (t))dt .  

for all i 1,2,..., p{ }   

satisfying 
j

a

b

(t, x(t), x(t))dt > j

a

b

(t, x0 (t), x0 (t))dt . 

 Definition 2. A point x0 L  is said to be an weak 

minimum for 
 
P( ) if there exists no other x L for which 

 a

b

(t, x0 (t), x0 (t))dt >
a

b

(t, x(t), x(t))dt
. 

 From this, it follows that if x0 L  is efficient 
 
P( ) , then 

it is also a weak minimum for 
 
P( ) . 

 We shall use F and G for the sets of feasible solutions for 

the primal and dual multiobjective variational problems (VP) 

and (VD) respectively. 

 Theorem 1. (Weak Duality). Let 

(A 1): x(t), y(t),μ(t),( ) F and u(t),v(t), (t),( ) G , 

(A2): 
T f (t,.,., y(t), y(t)) (t)T p(t,.,.){ }

a

b

dt   

be pseudo-convex in
 
x, x( ) , and 

(A3): 
T f (t, x(t), x(t),.,.) μ(t)T q(t,.,.){ }

a

b

dt  

be pseudo-convex in 
 
y, y( )  

 Then  

 

 

f (t, x(t), x(t), y(t), y(t))dt
a

b

/ f (t,u(t),u(t),v(t),v(t))dt
a

b

.  

 

 Proof: For x(t), y(t),μ(t),( ) F   

and 

u(t),v(t), (t),( ) G ,  

inequalities (7), (11) and (12), 

 

0< x(t) u(t)( )
T

a

b

T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t))

D
T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t))

dt  

=

x(t) u(t)( )
T

T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t))

+ x(t) u(t)( )
T

T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t))

a

b

dt  

 

x(t) u(t)( )
T

T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t)) t=a

t=b

 

 Using (1) and (9), we have 

 

x(t) u(t)( )
T

T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t))

+ x(t) u(t)( )
T

T fu (t,u(t),u(t),v(t),v(t))

(t)T pu (t,u(t),u(t))

a

b

dt>0  

which, because of (A1) yields 

 

T f (t, x(t), x(t),v(t),v(t)) (t)T pu (t, x(t), x(t))( )
a

b

dt

>
T f (t,u(t),u(t),v(t),v(t)) (t)T pu (t,u(t),u(t))( )

a

b

dt

 

 In view of  

 

(t)T pu (t, x(t), x(t))
a

b

dt>0, t I   

and 

 (t)T pu (t,u(t),u(t))
a

b

dt>0,   

this inequality implies
 

 

T f (t, x(t), x(t),v(t),v(t))( )
a

b

dt>

T f (t,u(t),u(t),v(t),v(t))( )
a

b

dt

  (17) 

 From (3), (4) and (15), we have 
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0> v(t) y(t)( )
T

a

b

T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))

D
T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))

dt
 

 

=

v(t) y(t)( )
T

T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))

+ v(t) y(t)( )
T

T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))

a

b

dt  

 

v(t) y(t)( )
T

T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))
t=a

t=b

 

(By integration by parts) 

 Using (2) and (10), we have 

 

=

v(t) y(t)( )
T

T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))

+ v(t) y(t)( )
T

T fy (t, x(t), x(t), y(t), y(t))

μ(t)T qy (t, y(t), y(t))

a

b

dt<0  

 By pseudoconcavity of 

 

T f t, x(t), x(t),.,.( ) μ(t)T q(t,.,.){ }
a

b

dt  

this yields, 

T f (t, x(t), x(t),v(t),v(t)) μ(t)T q(t,v(t),v(t)){ }
a

b

dt

<
T f (t, x(t), x(t), y(t), y(t)) μ(t)T q(t, y(t), y(t)){ }

a

b

dt

 

which, in view of  

μ(t)T q(t, y(t), y(t)
a

b

)dt>0  

and 

 

 

μ(t)T q(t,v(t),v(t)
a

b

)dt>0  implies 

 

T f (t, x(t), x(t),v(t),v(t)){ }
a

b

dt<

T f (t, x(t), x(t), y(t), y(t)){ }
a

b

dt

  (18) 

 Combining (17) and (18), we have 

T f (t, x(t), x(t), y(t), y(t))dt
a

b

>
T f (t,u(t),u(t),v(t),v(t))dt

a

b

 

 Hence 

 

f (t, x(t), x(t), y(t), y(t))dt
a

b

/ f (t,u(t),u(t),v(t),v(t))dt
a

b

 

 For the validation of strong and converse duality 

theorems we will need to fix = in the problems (VP) and 

(VD) respectively and the corresponding problems will be 

denoted by VP( )  and VD( ) . 

 Theorem 2. (Strong duality). Assume that the 

hypotheses of Theorem 1 are satisfied. 

 Let 

(C1): , x(t), y(t),μ(t)( )  be properly efficient for VP( )
 

(C2):
 

 

1(t)
T

T fyy μ(t)T qyy

D T fyy μ(t)T qyy( )
+D 1(t)

T D( T fyy μ(t)T qyy ){ }+

D2
1(t)

T ( T fyy μ(t)T qyy{ }
1(t)dt = 0

a

b

 

1(t) = 0, t I  

(C3): 
fy
1 Dfy

1( ), fy2 Dfy
2( ),........., fyp Dfy

p( );

μ(t)T qy Dμ(t)T qy( )
  

be linearly independent. 

(C4): 
 

t( )
T
px D t( )

T
px 0, (t) 0 (t) = 0, t I   

and 

(C5): μ(a) = 0 = μ(b) . 

 Then there exists (t) Rp , t I  such that 

, x(t), y(t), (t)( )  is properly efficient for VD( )  

 Proof: Since
  

, x(t), y(t),μ(t)( )  is a properly efficient 

solution, it is also a weak minimum. Hence, applying the 

results of Craven [14] along with the analysis in [15], there  

exist 
  

R
p
,r R, R

p
, z R and piecewise smooth 

: I Rn , : I Rk and : I Rl
such that 

 

H = f + (t) ry(t)( )
T T fy μ(t)T qy( ) D T fy μ(t)T qy( )

zμ(t)q (t)T p(t) (t)T x(t) (t)T μ(t) T
 

 Satisfying 

Hx DHx + D
2Hx = 0, t I  (19) 

 
Hy DHy + D

2Hy = 0, t I  (20) 

 
Hμ DHμ = 0, t I  (21) 

H = 0, t I  (22) 



6    The Open Operational Research Journal, 2013, Volume 7 Husain and Jain 

 

(t)T T fy μ(t)T qy( ) D fy Dμ(t)T qy( ) = 0, t I (23) 

r y(t)T T fy μ(t)T qy( ) D fy Dμ(t)T qy( )
a

b

= 0, t I

 (24) 

 
(t)T p(t, x, x) = 0, t I  (25) 

z μ(t)T qdt = 0
a

b

 (26) 

(t)T x(t) = 0, t I  (27) 

(t)T μ(t) = 0, t I  (28) 

T
= 0  (29) 

, (t),r, z, (t), , (t)( ) 0, t I  (30) 

, (t),r, z, (t), , (t)( ) 0, t I  (31) 

 The relation (19) gives, 

 

fx Dfx( ) + (t) ry(t)( )
T T fyx D T fyx( )

+D (t) ry(t)( )
T T fyx D T fyx

T fyx( )

D2 (t) ry(t)( )
T T fyx( )

(t)T px D (t)px( ) = (t), t I

 (32) 

 The relation (20) implies,

  

 

r( )
T
fy Dfy( ) + r z( ) μ(t)T qy Dμ(t)T qy( )

+ (t) ry(t)( )
T

T fyy μ(t)T qyy( )
D T fyy μ(t)T qyy( )

+D (t) ry(t)( )
T
D T fyy μ(t)T qyy( ) +

D2 (t) ry(t)( )
T T fyy μ(t)T qyy( ) = 0, t I

 (33) 

 From (21), we have  

 

(t) ry(t)( )
T
qy + (t) ry(t)( )

T
Dqy

D (t) ry(t)( )qy zq (t)T = 0
 (34) 

 From (22), we have 

 
(t) ry(t)( )

T
fy Dfy( ) = 0  (35)

 

 Since >0 and > 0,  the equation (20) implies = 0.  

Consequently, (33) implies 

(t) ry(t)( )
T
fy Dfy( ) = 0

 (36) 

 Multiplying (34) by (t)
T
 then integrating along with 

using (26) and (28), we have 

0 =
(t) ry(t)( )

T
μ(t)T qy( ) + (t) ry(t)( )

T
μ(t)T Dqy

μ(t)T D (t) ry(t)( )
T
qya

b

dt  

 This, on using 
 
μ(t)T Dqy = Dμ(t)

T Dqy μ(t)T Dqy  gives 

 

0 =

(t) ry(t)( )
T

μ(t)T qy( ) + (t) ry(t)( )
T

Dμ(t)T qy μ(t)qy( )
μ(t)T D (t) ry(t)( )

T
qy

a

b

dt

 

 

0 =

(t) ry(t)( )
T

μ(t)T qy Dμ(t)T qy( )
(t) ry(t)( )

T
μ(t)qy( )

μ(t)T D (t) ry(t)( )
T
qy

a

b

dt  

= (t) ry(t)( )
T

μ(t)T qy Dμ(t)T qy( )
a

b

dt

μ(t)T (t) ry(t)( )
T
qy

t=a

t=b

+ μ(t)T D
a

b

(t) ry(t)( )dt

μ(t)T D
a

b

(t) ry(t)( )dt

 

(By integrating by parts) 

 Using μ(a) = 0 = μ(b) , we have 

 

(t) ry(t)( )
T

μ(t)T qy Dμ(t)T qy( )
a

b

dt = 0  (37) 

 Multiplying (33) by (t) ry(t)( ) and using (36) and 

(37), we have 

 

(t) ry(t)( )
T

T fyy μ(t)T qyy( )
D T fyy μ(t)T qyy( )

+D
(t) ry(t)( )

T

D T fyy μ(t)T qyy( )

+D2
(t) ry(t)( )

T

D T fyy μ(t)T qyy( )

(t) ry(t)( )dt = 0
a

b

 

 Which, because of the hypothesis (C2) gives 

(t) ry(t) = 0, t I
 (38) 

 Using (38) in (33), we have 

r( )
T
fy Dfy( ) + r z( ) μ(t)T qy Dμ(t)T qy( ) = 0  

 This, because of linear independence hypothesis, yields 

r( ) = 0,r = z  (39) 

 Assume that r = 0 . Then (39) and (38) imply = 0 = z  

and (t) = 0, t I  

 The relation (32) implies 

(t)T px D (t)T px( ) = (t)<0, (t)>0, t I  

which because of hypotheses (C4) gives 
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(t) = 0, t I
 

 Consequently , (t), , (t), z( ) = 0,  contradicting (31) 

 Hence > 0, z > 0 = r > 0.  

fx Dfx( ) (t)T px + D (t)T px = (t), t I  

 
r fx Dfx( ) (t)T px + D (t)px = (t), t I  (40) 

 

T fx
(t)

r
px D T fx

(t)

r
px 0, t I

 

and  

x(t)T T fx
(t)

r
px D T fx

(t)

r
px = 0, t I

 (41) 

from (14) 

q 0, t I  (42) 

(t) ry(t) = 0  

(t) =
(t)

r
0  (43) 

(t)T p = 0  (44) 

 From (40), (41), (42) and (43), it follows that 

x, , y,
(t)

r
 is feasible for the dual and the objective 

functional are equal there. 

 If , x , y,
(t)

r
 is not efficient for (VD) with = ,  

then there exists a point ,u ,v ,
(t)

r
 such that 

 

f
a

b
t,u,u,v,v( )dt f

a

b
t, x , x , y, y( )dt

 

which contradicts the conclusion of Theorem 1. Now, it 

remains to show that , x , y,
(t)

r
 is properly efficient. If 

it is not so, then for some ,u ,v ,
(t)

r
G  and some i , 

 

f i
a

b
t,u,u,v,v( )dt > f i

a

b
t, x , x , y, y( )dt

 

and 

 

f i t,u,u,v,v( )dt f i
a

b
t, x , x , y, y( ){ }dta

b
>

M f j t, x , x , y, y( )dt f j
a

b
t,u,u,v,v( )dt{ }a

b
 

 For any M > 0 and all j satisfying 

 

f j
a

b
t, x , x , y, y( )dt > f j

a

b
t,u,u,v,v( )dt .  

 This means that 

f i t,u,u,v,v( ) f i t, x , x , y, y( ){ }
a

b
dt  

can be made arbitrary large whereas 

f j t, x , x , y, y( ) f j t,u,u,v,v( ){ }
a

b
dt  

Is finite for all j i Since =
1 , 2 ........ p( ) > 0, we get 

 

i f i t,u,u,v,v( ) f i t, x , x , y, y( ){ }
a

b
dt >

j f j t, x , x , y, y( ) f j t,u,u,v,v( ){ }
a

b
dt

j i

 

or 

 

T f t,u,u,v,v( )
a

b
dt > T

a

b
f t, x , x , y, y( )dt.  

 This contradicts Theorem 1 and hence theorem is 

completely established. 

 A converse duality theorem whose proof is be similar to 

that of Theorem 2 is merely stated below: 

 Theorem 3 (Converse duality) : Assume that the 

hypotheses of Theorem 1 hold. 

 (H1): , x(t), y(t), (t)( ) be a properly efficient solution 

of VD( ) . 

(H2): 

2 (t)
T

T fxx (t)T pxx

D T fxx (t)T pxx( )

D 2 (t)
T D fxx (t)T pxx( ){ }+

D2
2 (t)

T D fxx (t)T pxx( ){ }
a

b

2 (t)dt = 0 . 

2 (t) = 0, t I .  

 (H3):
 

fx
1 Dfx

1( ), fx
2 Dfx

2( ),........, fx
p Dfx

p( ); (t)T px D (t)T px( ){ }
 be linearly independent, 

 (H4): (a) = 0 = (b) . 

 (H5):
  
(t)T qy D (t)T qy 0   

and (t) 0 (t) = 0, t I  

 Then there exists μ(t) Rl , t I  such that 

, x t( ), y(t),μ(t)( ) is properly efficient for VP( ) .  

4. SELF DUALITY 

 A mathematical programming problem is said to be self 

dual, if it is formally identical with its dual, i.e. if the dual is 

recast in the form of primal, the new problem obtained is the 

same as the primal. In general the problems (VP) and (VD) 

are not self dual without an additional condition. 
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 Suppose that x(t) and y(t) are of the same dimension. 

The vector function
 
t, x(t), x(t), y(t), y(t)( )  is said to be skew 

symmetric if 

f t, x(t), x(t), y(t), y(t)( ) = f t, y(t), y(t), x(t), x(t)( ) , 

for all x and y in the domain of f. That is, 

f i t, x(t), x(t), y(t), y(t)( ) = f i t, y(t), y(t), x(t), x(t)( ), i = 1,2,..., p.  

 It is remarked here that the study of self duality for the 

problems of preceding section is significant in the sense that 

a pair of multiobjective symmetric selfdual multiobjective 

variational problem represent a symmetric vector-valued 

dynamic game. 

 Theorem 4. (Self duality). Let 

(i) f be skew-symmetric, 

(ii) p t, x(t), x(t)( ) + q t, y(t), y(t)( ) = 0, t I  

(iii) px t, x(t), x(t)( ) + qy t, y(t), y(t)( ) = 0, t I  

 px t, x(t), x(t)( ) + qy t, y(t), y(t)( ) = 0, t I ,  and 

(iv) μ(t) = (t), t I  

 Then (VP) is self dual. Also if (VP) and (VD) are dual 

variational problem and x , y, ,μ( )  is a joint properly 

efficient solution of the problem (VD), then so is y, x , ,( )  

and the common objective functional value is zero, i.e., 

f i t, x(t), x(t), y(t), y(t)( )
a

b

dt = 0, i 1,2,..., p{ }  

 Proof: The problem (VD) may be re-written as 

minimization problem: 

 Minimize 

 

f 1 t,u(t),u(t),v(t),v(t)( )dt,...., f p t,u(t),u(t),v(t),v(t)( )dt
a

b

a

b

( )
subject to 

u(a) = 0 = u(b),

v(a) = 0 = v(b).
 

 

T fu t,u(t),u(t),v(t),v(t)( ) + (t)T pu t,u,u( )

< D T fu t,u(t),u(t),v(t),v(t)( ) + (t)T pu t,u,u( )( ), t I
 

u(t)T

T fu t,u(t),u(t),v(t),v(t)( )

+ (t)T pu t,u,u( )

D
T fu t,u(t),u(t),v(t),v(t)( ) +

(t)T pu t,u,u( )

a

b

dt 0.  

 

(t)T p(t,u(t),u(t)
a

b
)dt 0

 

 
q t,v(t),v(t)( ) 0, t I  

v(t) 0, (t) 0, t I

> 0.
 

with skew symmetry of f, we have for t I , 

 

T fu t,u(t),u(t),v(t),v(t)( ) = T fv t,v(t),v(t),u(t),u(t)( )
T fv t,u(t),u(t),v(t),v(t)( ) = T fu t,v(t),v(t),u(t),u(t)( )
T fu t,u(t),u(t),v(t),v(t)( ) = T fv t,v(t),v(t),u(t),u(t)( )

 

 In view of these relations along with the hypotheses (i) 

and (ii), the above minimization problem takes the following 

form: 

 Minimize 

 

f 1 t,v(t),v(t),u(t),u(t)( )dt,...., f p t,v(t),v(t),u(t),u(t)( )dt
a

b

a

b

( )  

subject to 

u(a) = 0 = u(b)

v(a) = 0 = v(b)
 

 

T fv t,v(t),v(t),u(t),u(t)( ) μ(t)T qv t,v(t),v(t)( )

D T fv t,v(t),v(t),u(t),u(t)( ) μ(t)T qv t,v(t),v(t)( )( ), t I
 

u(t)T
a

b

T fv t,v(t),v(t),u(t),u(t)( )

μ(t)T qv t,v(t),v(t)( )

D
T fv t,v(t),v(t),u(t),u(t)( )

μ(t)T qv t,v(t),v(t)( )

dt 0.  

 

μ(t)T
a

b
q t,v(t),v(t)( )dt 0

p t,u(t),u(t)( ) 0, t I
 

v(t) 0,μ(t) 0, t I

> 0.  

which is just the problem (VP). Hence (VP) is self dual. 

 Since u ,v , ,μ( ) is properly efficient to the problem (VP) 

and (VD), the objective functional value are equal to 

 

f t,u (t),u (t),v (t),v (t)( )dt
a

b
 

 From symmetric duality, the proper efficiency for (VP) 

implies the proper efficiency of v ,u , ,μ( )  for (VD). By 

similar arguments,
 
v ,u , ,μ( )  is the solution for (VP). Also, 

the two objective values are equal to  

 

f t,v (t),v (t),u (t),u (t)( )dt
a

b
 but 

 

f t,v (t),v (t),u (t),u (t)( )dt
a

b
=

f t,u (t),u (t),v (t),v (t)( )dt
a

b
 

 By skew symmetry of f 
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f t ,u( t ),u( t ),v ( t ),v ( t )( )dt
a

b

=

f t ,u( t ),u( t ),v ( t ),v ( t )( )dt
a

b
 

 This implies 

f i t ,u( t ),u( t ),v ( t ),v ( t )( )dt
a

b

= 0,i 1,2...., p{ } .  

 This accomplishes the proof of the theorem. 

5. PROBLEMS WITH NATURAL BOUNDARY 
VALUES 

 It is possible to formulate a pair symmetric dual 

multiobjective variational problem with natural boundary 

values rather than fixed end points. 

(VP0): Minimize 
  

f t ,x( t ),x( t ),y( t ),y( t )( )
a

b

dt  

subject to 

 

T fy t, x(t), x(t), y(t), y(t)( )

μ(t)T qy t, y(t), y(t)( )

D
T fy t, x(t), x(t), y(t), y(t)( )

μ(t)T qy t, x(t), x(t), y(t), y(t)( )
0, t I

 

 

y(t)T

a

b

T fy t, x(t), x(t), y(t), y(t)( )

μ(t)T qy t, y(t), y(t)( )

D
T fy t, x(t), x(t), y(t), y(t)( )

μ(t)T qy t, x(t), x(t), y(t), y(t)( )

dt 0  

 

μ(t)T q(t, y(t), y(t))
a

b
0, t I

 

 
> 0, x(t) 0,μ(t) 0, p(t, x(t), x(t)) 0, t I

 

 

T fy t, x(t), x(t), y(t), y(t)( ) μ(t)T qy t, y(t), y(t)( )
t = a

= 0  

 

T fy t, x(t), x(t), y(t), y(t)( ) μ(t)T qy t, y(t), y(t)( )
t = b

= 0  

(VD0): Maximize 
 

f t,u(t),u(t),v(t),v(t)( )
a

b
dt  

subject to 

 

T fu t,u(t),u(t),v(t),v(t)( ) (t)T pu t,u(t),u(t)( )

D T fu t,u(t),u(t),v(t),v(t)( ) (t)T pu t,u(t),u(t)( )( )>0, t I
 

 

u(t)T
a

b
T fu t,u(t),u(t),v(t),v(t)( ) (t)T pu t,u(t),u(t)( )

D T fu t,u(t),u(t),v(t),v(t)( ) (t)T pu t,u(t),u(t)( )( )
dt 0  

 

(t)T
a

b
p(t,u(t),u(t))dt 0.  

 
> 0,v(t) 0, (t) 0,q(t,v(t),v(t))<0, t I  

T fu t,u(t),u(t),v(t),v(t)( ) (t)T pu t,u(t),u(t)( )
t = a

= 0  

T fu t,u(t),u(t),v(t),v(t)( ) (t)T pu t,u(t),u(t)( )
t = b

= 0  

6. NONLINEAR MULTIOBJECTIVE PROGRAMMING 
PROBLEMS 

 If all the functions in the problem (VP0) and (VD0) are 

independent of t, then the problems reduce to the following 

problem treated by Chandra and Prasad [11] 

NP1( )  Minimize f (x, y)  

subject to 
T fy x, y( ) μT qy (y) 0  

yT T fy x, y( ) μT qy (y)( ) 0  

μT q(y) 0  

> 0, x 0,μ 0, p(x) 0
 

NP2( ) :  Maximize f (u,v)  

subject to 
T fu u,v( ) T pu (u) 0  

uT T fu u,v( ) T pu (u)( ) 0  

T p(u) 0  

> 0,v 0, (t) 0,q(v) 0.  

7. CONCLUSION 

 In this research equivalence between a certain 

Constraints vector-valued dynamic game and a pair of 

multiobjective symmetric dual variational problem is 

established. A number of duality results for this pair of 

variational problems are derived under appropriate 

generalized convexity assumptions. Selfduality reflecting 

symmetric dynamic games is studied. The linkage between 

our results and those of the static case is pointed out. The 

results validated in this research can be revisited in the 

context of optimal control. 
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