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Abstract:

BACKGROUND

Statistical reports show that every year around the world approximately 15 million bone fractures occur; of which up to 10% fail to
heal completely and hence lead to complications of non-union healing. In the past, autografts or allografts were used as the “gold
standard” of treating such defects. However, due to various limitations and risks associated with these sources of bone grafts, other
avenues have been extensively investigated through which bone tissue engineering; in particular engineering of synthetic bone graft
substitutes, has been recognised as a promising alternative to the traditional methods.

METHODS

A selective literature search was performed.

RESULTS

Bone tissue engineering offers unlimited supply, eliminated risk of disease transmission and relatively low cost. It could also lead to
patient specific design and manufacture of implants, prosthesis and bone related devices. A potentially promising building block for a
suitable scaffold is synthetic nanohydroxyapatite incorporated into synthetic polymers. Incorporation of nanohydroxyapatite into
synthetic polymers has shown promising bioactivity, osteoconductivity, mechanical properties and degradation profile compared to
other techniques previously considered.

CONCLUSION

Scientific  research,  through extensive physiochemical  characterisation,  in  vitro  and in  vivo  assessment has brought  together  the
optimum characteristics  of  nanohydroxyapatite  and  various  types  of  synthetic  polymers  in  order  to  develop  nanocomposites  of
suitable  nature  for  bone  tissue  engineering.  The  aim  of  the  present  article  is  to  review  and  update  various  aspects  involved  in
incorporation of  synthetic  nanohydroxyapatite  into synthetic  polymers,  in terms of  their  potentials  to promote bone growth and
regeneration in vitro, in vivo and consequently in clinical applications.
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INTRODUCTION

The ever  increasing  worldwide  statistics  of  bone  disorders  and  related  diseases,  in  particular  in  aging  or  obese
populations as well as those with poor physical activity, have raised alarming concerns as studies suggest the incidence
of bone disorder to more than double up by 2020 globally [1, 2]. The current approach towards treating bone defects,
with  the  aim  of  repairing  or  regenerating  bone,  is  the  use  of  bone  grafts  (autografts  or  allografts)  [3  -  5].  So  far,
autografts have been considered as the “gold standard” for the repair of bone defects due to their many characteristics
including their histocompatibility, non-immunogenicity and osteoinductive/osteocunductive potentials [2, 3]. However,
harvesting autografts from patient’s iliac crest, as a second procedure, is considered expensive and risky (leading to
bleeding,  inflammation,  infection  and/or  chronic  pain  in  some  cases)  [6  -  8].  There  are  also  extensive  reports  on
significant donor site injury and morbidity following this procedure [9, 10]. To overcome such obstacles, bone tissue
engineering; in particular engineering of synthetic bone graft substitutes, has been recognised as an alternative to the
traditional  methods.  This  is  mostly  because  of  their  unlimited  supply,  eliminated  risk  of  disease  transmission  and
relatively low cost [2, 11, 12]. Bone tissue engineering could also lead to patient specific design and manufacture of
implants, prosthesis and bone related devices [12, 13].

The principal of bone tissue engineering is based on using natural or synthetic scaffolds that are biocompatible and
similar (mechanically, chemically and biologically) to the native extracellular matrix (ECM) of human bone. In order
for bone to be repaired or regenerated, depending on the design, such scaffolds are seeded with cells with osteogenic
lineages and in some cases incorporated with osteogenic and/or vasculogenic growth factors, or inorganic biomaterials
such as calcium phosphate, hydroxyapatite or bioglasses, to promote bone growth. An ideal scaffold, depending on its
application, should be biocompatible, bioactive, non-thrombogenic and anti-inflammatory. It should also be porous with
interconnected  open  pores  of  suitable  sizes  (macro-pore  size  >100  mm,  micro-pore  size  <20  mm),  to  promote  the
ingrowth of osteogenic cells in vivo [12, 14, 15]. Furthermore, it should have compatible mechanical and controlled
degradation kinetics (if necessary) with the specific application of bone tissue engineering [2, 12]. These characteristics
are normally compared to those of either cortical or trabecular bone, depending on the type of bone defect (Table 1). In
addition  to  the  above  characteristics,  ideal  bone  tissue  engineering  scaffolds,  as  already  mentioned,  should  closely
resemble  the  composition  of  bone  ECM,  which  naturally  consist  of  collagen  (predominantly  type-1  collagen),
carbonated  apatite  mineralites,  and  nanohydroxyapatite  (nHA).

Table 1. Structure and mechanical properties of natural bone.

Structure of the bulk 70% calcium phosphate crystal & 20-30% collagen matrix with some water
Mechanical properties of the collagen matrix E = 1-2 GPa, UTS = 50-1000 MPa
Mechanical properties of the calcium phosphate mineral E = 130 GPa, UTS = 100 MPa
Compressive strength of cortical bone 100-230 MPa
Compressive strength of cancellous bone 2-12 MPa
Young’s modulus of cortical bone 7-30 GPa
Young’s modulus of cancellous bone 0.5-0.005 GPa

In  the  search  for  the  ideal  substitute  material  for  natural  bone,  various  materials  including;  metals,  ceramics,
polymers (natural and synthetic) have been investigated. The main disadvantages of metals and ceramics are that they
lack  degradability  under  biological  conditions  and  that  their  processability  is  extensively  limited  as  opposed  to
polymers, which offer wide design flexibility [16, 17]. Hence, biopolymer composites and nanocomposites have been
investigated as the best approach to mimic natural bone properties and create an ideal artificial scaffolding for bone
regeneration and repair. Chitson (a linear polysaccharide produced by the deacetylation of chitin, a naturally occurring
polymer) based composite biomaterials have been one group of such materials that have attracted considerable attention
for bone tissue engineering purposes, owing to their pore forming ability, binding capacity with anionic molecules,
antibacterial activity and biodegradation [18]. However, on their own, they generally lack the necessary mechanical
properties for bone tissue engineering application. Collagen based nanocomposites have also been greatly investigated
for bone tissue engineering applications. Collagen nanofibrous structure (50-500 nm) can have improving effect on cell
attachment, proliferation and differentiation for bone regeneration. However, the natural and rapid degradability of this
family of materials limits their applications [19]. Other naturally occurring materials used for bone tissue engineering
include gelatine- and fibroin-based nanocomposites. Like the collagen family, these natural polymers also have limited
applications due to the nature and rate of their degradation. Therefore, a thorough search of the literature reveals that
synthetic polymers have been extensively studied as the basic materials for the purpose of fabricating tissue engineered
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scaffolds  with  potentials  to  promote  in  vivo  bone  ingrowth  and  subsequently  repair  or  regenerate  bone  to  replace
missing tissue, as they come in various types including degradable and non-degradable, can be easily modified and also
mass-produced [20 - 23]. Examples of synthetic polymers include, but are not limited to, polycaprolactone (PCL) [24,
25], poly (lactic-co-glycolic) acid (PLGA) [26, 27], polyamide, polyvinyl alcohol (PVA) [28, 29], polyurethane (PU)
[30,  31]  and  polyetheretherketone  (PEEK) [32,  33].  In  detail  investigation  of  these  polymers  and  others  of  similar
nature is beyond the scope of this article. However, Liu and Ma (2004) have done a comprehensive review on this topic
[17].

Although  synthetic  polymers  can  offer  wide  advantages,  including  controlled  degradation,  biocompatibility,
mechanical stability and many more, they lack osteoconductivity or osteoinductivity. Synthetic nHA, due to its close
chemical similarities to that of the natural bone, has attracted extensive research focus as a potentially suitable filler for
synthetic polymers to create nanocomposite materials for bone tissue engineering [20, 34, 35]. Creating nanocomposite
materials from incorporation of nHA into synthetic polymers could combine the advantages inherited by each of these
components. Therefore, the aim of the present article is to review and update various aspects involved in incorporation
of synthetic nHA into synthetic polymers, in terms of their potentials to promote bone growth and regeneration both in
vitro, in vivo and consequently in clinical applications. To this end, the most recent findings and research on this topic
have been investigated and discussed.

NANOHYDROXYAPATITE

nHA is the main inorganic compound of the natural bone, which exhibits a hexagonal crystal structure, and has a
chemical formula of Ca10(PO4)6(OH)2. nHA is produced using various methods such as mechanochemical synthesis,
combustion preparation and various wet chemistry techniques [20] and comes in variety of forms and shapes including
nanofibers, nanorods and nanoflakes [36, 37]. However, for the first time, nHA (nanocrystalline HA; particle size ~ 20
nm) was synthesised using calcium nitrate and diammonium hydrogen orthophosphate as precursors by solution spray
dry method [38].

nHA has been used in various aspects of bone tissue engineering research due to its stablished biocompatibility,
osteoconductivity, bone integration abilities, slow degradation, and non-cytotoxicity [18, 39, 40]. Furthermore it has
been stablished that, nHA, due to the size of its nanoparticles and consequently increased surface area as well as its
improved sinterability and enhanced densification (compared to HA powder), has increased fracture toughness and a
stronger ability to bond with proteins [41]. Other physiochemical characteristics of nHA such as its high melting point
(does not melt in human body), its hard and wear resistance as well as its ability to resists surface reaction with certain
fluids  in  the body,  render  nHA an interesting bioceramic material  for  bone tissue engineering (Table  2).  However,
properties such as its lack of flexibility and its brittleness make it difficult to form nHA into specific shapes for bone
tissue  engineering  on  its  own  [20].  These  limitations  could  be  overcome  by  incorporation  of  nHA  into  a  suitable
polymeric scaffold [42].

Table 2. Physiochemical characteristics of synthetic nanohydroxyapatite.

Melting temperature 1100-1650 ºC
Molecular weight 1004
Specific gravity 3.16 g/cm

Solubility at 25 ºC, -log(Ks) 116.8
Solubility at 25 ºC, g/L ~0.0003

pH stability range in aqueous solutions at 25 ºC 9.5-12
Ca/P ratio 1.67

Hydrophilicity/hydrophobicity Highly hydrophilic

nHA/SYNTHETIC POLYMERS INCORPORATION

In theory, most types of polymers can be incorporated with nHA. However, not all of them are suitable matrixes for
this purpose. In order to achieve a well dispersed nHA/polymer nanocomposite, various factors should be considered. A
critical issue to pay attention to in developing nHA/polymer nanocomposites is the interfacial strength between the filler
(nHA nanoparticles) and the polymer. A suitable polymer should have a chemical bonding composition that supports
adhesion between its particles and those of nHA [43]. Otherwise, the lack of adhesion can lead to early failure of the
two incorporated phases and hence affect the mechanical properties (in particular tensile strength) of the construct.
Furthermore, the wettability of a polymer can play a crucial role in successful incorporation of nHA by affecting the
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type and strength of bonding and adherence of the nHA surface and the polymer [44]. This phenomenon is determined
by the polarity and available polar groups of the polymer, which can render the polymer hydrophobic or hydrophilic.

In addition, the method of incorporation of nHA into the polymer could have great impact on the properties of the
final construct. The methods of delivering nHA into a polymer matrix can be divided into two main categories; thermo-
mechanical methods and physico-chemical methods [45, 46]. The former methods use conventional plastics processing
techniques  to  impregnate  a  porous  polymeric  matrix  with  nHA.  Examples  of  such  methods  are  compounding,
compression or injection moulding. Physico-chemical methods, on the other hand, use either co-precipitation of nHA
crystals in situ into the polymeric matrix or use a solvent as a dispersion solution for nHA before being added to the
polymer.  Both  thermo-mechanical  methods  and  physico-chemical  methods  have  been  shown  effective  for  nHA
incorporation  into  polymers,  however,  various  limitations  such as  thermal  degradability  of  heat-sensitive  polymers
caused by moulding temperature and pressure, solvent toxicity, and gelation rate exist [43].

nHA/SYNTHETIC POLYMERS DEGRADATION

Ideally the rate of scaffold degradation should be compatible with the rate of replacement of bone produced from
cells. This is a crucial factor to be noted when selecting or designing a suitable scaffold for bone tissue engineering
purposes as well as to ensure long-term success of the tissue engineered scaffold. Scaffold degradation can have great
impact on three-dimensional cell growth and angiogenesis; two crucial factors involved in bone tissue regeneration
[47]. Furthermore, the rate of degradation of construct could affect the mechanical properties of reconstructed bone
negatively, an event that could consequently lead to failure of bone regeneration and its integrity, especially in the cases
of load-bearing bone tissue engineering applications such as spinal fusion implants [48].

Depending on the nature of the selected polymer (i.e. slow degrading or fast degrading polymer), nHA/synthetic
polymer scaffolds would have different degradation profiles and hence different ability to allow for bone regeneration
and  remodelling.  Generally,  the  process  of  nHA/synthetic  polymer  scaffolds  degradation  takes  places  either  by
dissolution of the scaffold and subsequent the take up of the fragments by phagocytosis or macrophages or through
osteoclasts which are multinucleated monocyte-macrophage derivatives that degrade bone and use the fragments to
manage extracellular calcium activity [48 - 50].

A part from the nature of the synthetic polymer various other characteristics of the scaffold including the crystal size
of nHA, the surface roughness and topography of the scaffold could also impact the rate of degradation [48, 51 - 53].
The  size  of  nHA  crystals  could  determine  the  specific  surface  area  (SSA)  to  volume  ratio  of  the  scaffold  and
consequently  effect  the  scaffold  solubility  and  resorbability  [54].  A  higher  surface  area  to  volume  ratio  may
significantly increase solubility of the construct  and render it  more resorabable [55].  Furthermore,  degradation rate
could be affected by the Ca/P ratio by which solubility and degradation rate of the scaffold decreases with an increase in
the Ca/P molar ratio of nHA [54, 56].

Vast number of studies have been conducted and published on the process and rate of degradation as well as the
cytotoxicity of degraded micro- and nano-particles of nHA/synthetic polymers both in vitro and in vivo. Dong et al.
investigated porous nHA/PU (30:70 wt%) scaffolds from castor oil, for their degradation rate and biocompatibility and
reported that their scaffolds were non-cytotoxic and degradable [57]. In this study, scaffolds were seeded with bone
marrow stromal cells (BMSCs) after soaking in simulated body fluid (SBF) for 4 weeks. In vivo study was conducted
on healthy SD female mice for a 12 week period. Infrared spectroscopy of n-HA/PU scaffold and scaffold soaking in
SBF for 4 weeks showed that the long carbon chains of castor oil break into shorter chains, therefore, indicating that
urethanes degrade through chemical breakage of castor oil followed by the hydrolysis of urethane bonds joining the
hard  and  soft  segment.  Authors  further  investigation  of  nHA/PU  scaffold  revealed  that  in  vivo  degradation  of  the
construct  was  mainly  due  to  the  enzyme  digestion  of  n-HA  from  monocyte-derived  macrophage  (MDM)  and  the
hydrolysis of PU (Fig. 1). Han et al. also investigated the difference in degradation rate, affected by specific surface
area,  of  a  biomimetic  nanofibrous  poly(L-lactide)  scaffold  strengthened  by  nHA  particles  and  reported  that  the
nanofibrous poly(L-lactide) (NF-PLLA) had a significantly higher SSA (34.06 m2 g-1) compared to that of poly(L-lactide)
(PLLA) scaffolds (2.70 m2 g-1) with platelet structure [58]. Furthermore, incorporation of nHA increased the SSA of the
scaffold. Their research revealed that both NF-PLLA and nHA/NF-PLLA had a faster significantly degradation rate,
due to their much larger SSA, compared to poly(L-lactide). Similarly, Diaz and Puerto (2015) examined the effect of
bioactive nanoparticles on the in vitro degradation of nHA/poly(L-lactide-co-ε-caprolactone) (nHA/PLCL) composite
scaffolds and found that the rate of degradation was significantly dependent on the concentration of nHA [59]. At 10%,
30% and 50% of total polymer mass the authors incorporated nHA into PLCL and observed that the rate of degradation
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of the scaffolds was significantly slower with the increase of nHA content compared to lower nHA concentrations and
that of pure PLCL (Fig. 2A & C). The authors also observed higher water absorption capability of the nHA particles at
higher  nHA  concentrations  and  consequently  affecting  the  degradation  rate  (Fig.  2B).  This  phenomenon  can  be
explained by the ability of nHA nanoparticles to absorb water molecules penetrating the solid structure of the scaffold
and hence slowing the degradation.

Fig.  (1).  Degradation  profile  of  nHA/PU scaffolds:  A)  Photo  macrograph image of  the  porous  n-HA/PU scaffold;  B)  Scanning
electron microscopy imaging of the porous n-HA/PU scaffold (1) and after 4 weeks of soaking in SBF (2, 3); C) Inferred spectra of
n-HA/PU scaffold (1) and after 4 weeks of soaking in SBF (2); D) Histological imaging of n-HA/PU scaffold (denoted as P) 12
weeks after in vivo implantation (R denotes muscle tissue, H&E stained). (1) x 40, (2) x 400 [57].

ENHANCED OSTEOCONDUCTIVITY OF nHA/SYNTHETIC POLYMERS

One of the most interesting characteristics of nHA is its osteoconductivity; the ability to facilitate bone repair and
bone growth on a surface (scaffold) or in other words to promote osteoconduction. This interest is mainly due to the fact
that most synthetic polymers, on their own, have low surface wettability (i.e. they are highly hydrophobic) [60] and on
their own are not favourable for bone tissue engineer application as they lack the ability to promote osteogenic cells
adhesion, proliferation and differentiation [60 - 62]. Furthermore, osteogenic cells have a higher apoptotic rate on such
hydrophobic surfaces than on those with higher surface wettability. This is where incorporation of nHA into synthetic
polymers  can  play  a  crucial  role,  in  facilitating  bone  growth,  by  rendering  the  scaffold  surface  more  or  highly
hydrophilic (depending on nHA concentration). Another factor critical in bone formation is the ability of the scaffold to
evoke tissue response. However, as most synthetic polymers have a bioinert surface they do not provide the necessary
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(PPG) = Polypropylene glycol

(PU) = Polyurethane

(SBF) = Simulated body fluid

(SSA) = Specific surface area

(TPU) = Thermoplastic polyurethane
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