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Abstract: Purpose: Periosteum provides essential cellular and biological components necessary for fracture healing and 

bone repair. We hypothesized that augmenting allograft bone by adding fragmented autologous periosteum would 

improve fixation of grafted implants. 

Methods: In each of twelve dogs, we implanted two unloaded cylindrical (10 mm x 6 mm) titanium implants into the 

distal femur. The implants were surrounded by a 2.5-mm gap into which morselized allograft bone with or without 

addition of fragmented autologous periosteum was impacted. After four weeks, the animals were euthanized and the 

implants were evaluated by histomorphometric analysis and mechanical push-out test. 

Results: Although less new bone was found on the implant surface and increased volume of fibrous tissue was present in 

the gap around the implant, no difference was found between treatment groups regarding the mechanical parameters. 

Increased new bone formation was observed in the immediate vicinity of the periosteum fragments within the bone graft. 

Conclusion: The method for periosteal augmentation used in this study did not alter the mechanical fixation although 

osseointegration was impaired. The observed activity of new bone formation at the boundary of the periosteum fragments 

may indicate maintained bone stimulating properties of the transplanted cambium layer. Augmenting the bone graft by 

smaller fragments of periosteum, isolated cambium layer tissue or cultured periosteal cells could be studied in the future. 
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INTRODUCTION 

 Due to insufficient bone stock, extensive bone grafting is 
often required in revision of a failed arthroplasty. Impacted 
morselized allograft bone is a well-established method for 
improving bone-stock and thereby achieving sufficient 
stability and anchorage of the revision implants [1-3]. 
However, it has been shown that the incorporation of bone 
graft into the host bone is not always complete [4, 5]. This 
may be a contributing reason for the higher failure rates and 
poorer functional outcome among patients following revision 
surgery [6]. In addition, several clinical trials have shown 
increased early implant subsidence when using impaction 
grafting [7, 8]. Autograft bone is often regarded as the gold 
standard of bone grafts, but for the large quantities often 
needed in revision joint arthroplasty, this is not a realistic 
option. It has been proposed, that the difference in 
osseointegration could be due to the difference in the cellular  
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component in the graft material [9]. Whereas the cells in 
autograft bone are vital, freezing has largely destroyed the 
cellular components of allograft bone. 

 Periosteum covers nearly every bone in the body and 
plays a major role in promoting bone growth and bone repair 
[10]. It consists of two distinct layers, an outer fibrous layer 
and an inner cambium layer that has significant osteoblastic 
potential [11]. The cambium contains mesenchymal 
progenitor cells, osteoblasts and fibroblasts [12] and 
provides essential cellular and biological components 
necessary for fracture healing and bone repair [13, 14]. 

 The objective of this experiment is to investigate whether 
the bioactivity of allograft bone can be augmented by adding 
autologous tissue containing bone-competent cells. 
Specifically, we add fragmented, freshly harvested 
autologous periosteum, as this is often readily available 
during surgery and contains pluripotent cells with the 
potential of differentiation into bone-forming cells [15-18]. 
By enhancing the bioactivity of the bone graft, we hope to 
achieve a more complete and better initial bone graft 
incorporation, which may aid in increasing the longevity of a 
revision implant. Therefore, we hypothesized that 
augmenting the allograft bone by adding fragmented 
autologous periosteum would improve fixation of grafted 
implants (mechanically and histomorphometrically). 
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MATERIALS AND METHODOLOGY 

 We conducted a paired randomized controlled study in 
twelve skeletally mature female American hounds with a 
mean weight of 24 kg (22– 26 kg) and mean age of 16 
months (12-21 months). Each animal received a total of two 
porous-coated titanium implants in the metaphyseal 
cancellous bone of the distal femur (Fig. 1). All implants 
were surrounded by a 2.5 mm concentric gap into which 
allograft bone, with or without addition of fragmented 
periosteum, was impacted. The implantation site (left or right 
limb and medial/lateral epicondyle) of each treatment group 
was alternated systematically with random start. The 
observation period was four weeks. 

 

Fig. (1). Gap-implant in distal femur. Radiograph taken post 

mortem. The implant with dimensions is shown. 

 Sample-size was determined prior to the experiment and 
was based on previous studies using the same allograft 
implant model having a coefficient of variance of 35%. The 
minimal clinically relevant difference to be detected in this 
study was set to 30%. Two-sided  and  were set to 5% and 
20%, respectively. Two extra animals were added to the 
calculated sample size of ten to counteract a decrease in 
power if implants from one or two animals were lost to 
follow-up and subsequent analysis 

 The animals were raised for scientific purposes and were 
housed individually but socialized in groups with two hours 
of daily exercise. The animal experiment was approved and 
monitored by the Institutional Animal Care and Use 
Committee (Minneapolis Medical Research Foundation 
(MMRF), Minneapolis, MN, submission ID 08-08-02, 
protocol number 05-01). Surgery and observation were 
performed at the Animal Care facilities of the Minneapolis 
Medical Research Foundation at the Hennepin County 
Medical Center (Minneapolis, MN), according to the 
regulations of the National Institute of Health. Preparation of 
the bone samples, mechanical testing and histomorphometry 
were carried out at the Orthopaedic Research Laboratory of 
Aarhus University Hospital, Denmark. 

Implants 

 For the experiment, we used 24 porous-coated titanium 
alloy (Ti-6A1-4V) implants manufactured by DePuy Inc. 
(Warsaw, IN). The implants were custom-made, cylindrical, 
6 mm in diameter, 10 mm in height (Fig. 1). An end plate 
with a diameter of 11 mm was attached to one end of the 
implant and inserted into an 11-mm pre-drilled bone-defect. 
The end plate centered the implant, providing a uniform 
circumferential 2.5-mm peri-implant gap. After impaction of 
the variously prepared allograft, the gap was closed with 
another 11-mm end plate, which ensured implant stability 
and bone graft containment. 

Bone Graft 

 Bone graft was harvested immediately post mortem 
under sterile conditions from two dogs not included in the 
study. The proximal humerus, the proximal tibia and the 
distal femur were used. After removal of all soft tissues and 
cartilage, the remaining bone was morselized using a 
standard bone mill (Biomet®, Warsaw, Indiana, USA) on 
fine setting, creating bone chips of 1-3 mm. The bone graft 
from the two dogs was mixed together and divided into 24 
tightly compressed portions of 1 ml and stored in sterile 
double-containers at –80°C. The preparation of graft for the 
whole study was undertaken in one setting. 

Surgery 

 Under general anaesthesia and sterile conditions, the 
femoral epicondyles were exposed by a medial and lateral 
incision. The joint capsule was opened and the collateral 
ligament identified. A cylindrical bone defect with a depth of 
12 mm was drilled over a 2.5 mm guide wire using an 11-
mm cannulated drill bit. To avoid thermal damage, a drill 
speed of a maximum of two rotations per second was used. 
To ensure uniform central placement, the implants were 
inserted with a specially designed hollow cylinder impaction 
tool with an inner diameter of 7 mm and an outer diameter of 
11 mm. The same tool, which could slide over the implant, 
was used to impact the bone graft into the peri-implant gap. 
A circular periosteal flap of 1 cm in diameter was elevated 
from the anterior medial surface of the proximal tibia and 
fragmented with a scalpel (Fig. 2). This created small (< 
1mm

2
) fragments of periosteum, which was hereafter 

immediately mixed together with bone graft and impacted 
around the implant. Finally, the end plate was mounted, and 
the soft tissues closed in layers. Bupivacaine, 0.5% was 
delivered locally following closure. Prophylactic antibiotics 
were administered as follows. A 1g dose of Ceftriaxone was 
given intravenously to each animal before surgery. Post-
operatively, the animals were given Ceftriaxone 1g 
intramuscularly for three days. A Fentanyl transdermal patch 
(75 μg/h) lasting three days was given as postoperative 
analgesic treatment. After surgery, the animals were allowed 
unlimited activity 

Specimen Preparation 

 After the observation period of four weeks, the animals 
received sedation with Acepromazine, 0.5 mg/kg, 
anaesthetized using Propofol, 4 mg/kg, and euthanized with 
an overdose of hypersaturated barbiturate. The distal part of  
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the femurs was dissected and immediately frozen and stored 
at -80°C. Preparation of the specimens was performed 
blinded. Prior to dividing the bone into the mechanical and 
histomorphometric sections, the distal femora were thawed 
for one hour and the outermost 1 mm of the implant-bone 
sample below the 11-mm end plate was cut off and 
discarded. Two bone-implant sections were cut 
perpendicular to the long axis of each implant, using a water-
cooled diamond band saw (Exakt-Cutting Grinding System, 
Exakt Apparatebau, Norderstedt, Germany). The inner 5.5 
mm section of the implant was processed for 
histomorphometric evaluation by dehydration in graded 
ethanol (70– 100%) and embedded in methylmethacrylate 
(Art. 800590, Merck, Darmstadt, Germany) and the outer 
3.5-mm section was stored at -20°C and used for mechanical 
push-out testing. 

 To ensure uniformly randomized sectioning and thereby 
optimizing the stereological analysis, the embedded section 
was randomly rotated around its long axis before sectioning. 
Using vertical sectioning technique [19], four 30-μm-thick 
central histological sections were cut parallel to the implant 
axis. These techniques provide highly reliable results with 
negligible bias [20]. A hard-tissue microtome (KDG-95; 
MeProTech, Heerhugowaard, The Netherlands) was used to 
cut the sections and they were surface stained with 0.1% 
Toluidine Blue (pH=7) (Fluka, Sigma-Aldrich®, St. Louis, 
MO, USA) for 10-min, rinsed and mounted on glass. This 
preparation provided blue staining of non-calcified tissue 
and light blue staining of calcified tissue. The different types 
of calcified tissues such as newly formed bone (woven bone) 
and bone graft (lamellar bone) were categorized on the basis 
of their morphological characteristics [21]. 

Mechanical Testing 

 The thawed specimens were tested to failure by axial 
push-out test on an MTS Bionics Test Machine (MTS 858 
Mini Bionix, Software MTS Test Star 790.00 Version 4.0C) 
(Fig. 3). The testing was performed blinded and in one 
session. The specimens were placed with the cortical side 
facing up on a metal support jig with the 6-mm diameter 
implant centered over a 7.4-mm opening and under a 
cylindrical test probe of 5-mm diameter. A preload of 2N 
defined the contact position at the start of the test. The 
implant was pushed from the surrounding bone in the 

direction of the implant axis at a velocity of 5 mm/min. Load 
(N) versus implant displacement (mm) data were 
continuously recorded. From these data, the mechanical 
parameters: The ultimate shear strength (MPa), Apparent 
shear stiffness (MPa/mm) and Total energy absorption 
(KJ/m

2
) were calculated as earlier described [22]. 

 Blinded histomorphometry was performed using 
stereological software (newCAST-version 3.4.1.0; 
Visiopharm A/S, Horsholm, Denmark). We quantified the 
area fractions of new bone, fibrous tissue and graft bone in 
contact with the surface of the implant and the volume 
fractions of these tissues in the gap around it (Fig. 4). Tissue 
ongrowth was defined as tissue directly at the implant 
surface and estimated by a line intercept technique [19]. 
Volume of tissue fractions in the gap were estimated using 
point counting technique [23]. 

Statistical Analysis 

 All mechanical data followed a normal distribution as 
evaluated by q-norm plots of the residuals and Student’s 
paired t-test was used to evaluate differences between 
treatment groups. The mechanical data are presented as 
means with standard deviation and the absolute differences 
between treatment groups as means with 95% confidence 
intervals (CIs). Data from the histomorphometrical 
assessment were normally distributed for area fraction of 
new bone, and volume fraction of new bone and bone graft. 
Differences between treatment groups were determined 
using Students t-test. The area fraction of bone graft and 
fibrous tissue, and the volume fraction of fibrous tissue were 
not normally distributed manly due to many values close to 
zero and difference between treatment groups were 
determined using Wilcoxon sign-rank test. Estimates are 
presented as medians with inter-quartile ranges (IQR). 
Differences between medians or means were considered 
statistically significant for p-values less than 0.05. The 
analysis was performed using STATA statistical software 
(Stata 11.2, StataCorp, College Station, Texas). 

RESULTS 

 All twelve animals were fully weight bearing within 
three days after surgery. Eleven animals completed the 
observation period without any signs of infection or other 
complications. One animal died five days prior to 

 

Fig. (2). Left: Periosteum harvest from the anterior medial surface of the proximal tibia. Right: Enlarged picture of the fragmented 

periosteum. 
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completion of the four-week observation period. An autopsy 
was performed, and the cause of death was determined to 
result from intestinal invagination and not the surgery 
performed. The animal had been in normal health until that 
time and as the observation period almost completed the 
animal was not excluded, and the bones were harvested and 
included in the analysis. 

Mechanical Results 

 Periosteal augmentation of allograft bone revealed no 
statistically significant difference between treatment groups 

regarding the three mechanical parameters: Ultimate shear 
strength (p=0.79), Apparent shear stiffness (p=0.83) and 
Total energy absorption (p=0.62) (Fig. 5). 

Histological Results 

 Histology: New bone and graft bone filled the gap in 
both the control and periosteum groups. A common finding 
in the periosteum group was islands of fibrous tissue with 
high activity of new-bone-formation in its vicinty (Fig. 4). It 
could not be determined to which extent these islands were 
newly formed or were remnants of the implanted periosteum. 

 

Fig. (3). Mechanical testing. Left: Push-out test performed with the 3.5 mm thick specimen placed on metal support jig. In the corner, a 
picture of the implant/bone specimen after the implant has been pushed from the bone, demonstrating in-substance bone failure mode. 
Displacement velocity 5 mm/min. Right: Load (N) displacement (mm) curve enables calculation of ultimate shear strength (MPa), apparent 
shear stiffness (MPa/mm), and total energy absorption (KJ/m2) 

 

Fig. (4). Histology: Representative histologic sections of the control group (A: Allograft) and the intervention group (B: Allograft + 

periosteum). The sections are from two implants inserted in the same animal. Left side (allograft only): A-1: Overview of implant and bone 

graft; A-2: Thin fibrous tissue membrane in contact with implant; A-3: Allograft bone chip with ongrowth of new bone in contact with 

implant. Right side (Allograft + periosteum):  B-1: Overview of implant and bone graft. Large island of fibrous tissue is seen in the gap with 

activity of new bone formation in its vicinity. B-2: Allograft bone chip with ongrowth of new bone in contact with implant; B-3: 

Magnification of the island revealing solid fibrous tissue. A = Implant, B = New bone, C = Allograft bone, D = Marrow space, E = Fibrous 

tissue. (Stain, toluidine blue; magnification, x28 (A-1 and B-1), x230 (A-2, A-3, B-2 and B-3). 
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Histomorphometry 

 Compared to the untreated allograft controls, the 
periosteum-augmented implants had an 18% reduction in 
ongrowth of new-bone (Table 1a) while no difference was 
observed in new bone formation in the gap around the 
implant. The volume fraction of fibrous tissue was increased 
in the periosteum group and increased fibrous tissue 
ongrowth were observed, although not statistically 
significant (p=0,12) (Table 1b). 

 

Fig. (5). Mechanical testing - Scatter plots showing results from 

mechanical push-out test. Ultimate shear stiffness, apparent shear 

strength, and total energy absorption; n(control) = 12, 

n(periosteum) = 12; [mean (95% CI)]. 

DISCUSSION 

 Impacted allograft bone can provide sufficient initial 
mechanical support of a revision implant. But, to maintain 
good long-term implant fixation, adequate new bone 
formation is needed. The preparation of bone graft by 
freezing or radiation largely destroys its vital cellular 
components, rendering it with reduced osteogenic capacity 
[9]. This may contribute to incomplete bone graft 
incorporation, which has been described as a common  
finding around grafted implants [4, 5]. Periosteum plays a 
major role in promoting bone growth and bone repair [10, 
13, 14] and contains multiple cells with osteoblastic potential 
[11, 15-18]. Augmenting the bone graft with fragmented 
periosteum may provide a signal for improved osteogenic 
differentiation, and possibly add pluripotent mesenchymal 
progenitor cells for facilitating initial bone healing. 

 Our experimental model was designed to study early 
fixation and osseointegration of an uncemented implant 
component surrounded by a bed of impacted bone graft [24]. 
It was simple and had a high degree of control of parameters 
[25], but the model had limitations. The implant model is not 
subject to several clinically relevant influences such as joint 
fluid pressure and direct load transmission, and the results 
are therefore limited, as the full effects of weight-bearing 
conditions are not addressed. Furthermore, the grafted defect 
was created in healthy bone of young animals, and not the 
compromised bone typically surrounding a loose implant in 
humans. Dogs were chosen as experimental animals because 
their bone quality and trabecular density reflect human bone 
well [26]. However, it is noted that the bones of dogs 
remodel three times more quickly than human bone [27]. 
The observation time of four weeks was chosen since the 
aim was to study influence of periosteal augmentation on 
early implant fixation. Early implant subsidence has been 
shown to be associated with late implant loosening [28, 29] 
and it is therefore of interest to study any experimental 
approach at an early time point. The method used for 
periosteum harvest could in some animals have been 
incomplete causing incomplete harvest of the inner cambium 
layer. This may explain why some specimens only showed 
limited new bone activity in the vicinity of the fibrous tissue 
islands. The ability for the surgeon to conduct a complete 
periosteal harvest was not evaluated. The model allows 
paired comparison of two treatment groups, by which the 
influence of biological differences between the animals was 
reduced. 

 Contrary to our hypothesis, we found no benefit of 
adding periosteum to the allograft bone. Overall, with 
periosteum we found a reduced osseointegration but 
unaltered mechanical properties. Histologically, several 
implants in the periosteum group showed large fibrous tissue 
islands in the peri implanteric gap. High activity of new bone 
formation in the vicinity of these islands was a common 
finding (Fig. 4). This may indicate maintained 
osteoinductive properties of the cambium layer, which is in 
accordance with earlier studies showing bone formation on 
transplanted autologous periosteum [17, 18]. 

 The osteoinductive mechanism of fragmented periosteum 
may be multifactorial. By fragmenting the periosteum, the 
cambium layer maintains its relation to the original 
periosteum tissue. This might extend its effect on new-bone 
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formation in the non-vascularized impacted environment. An 
additional mechanism is the potential liberation of essential 
bone stimulating substances once the cambium cells 
necrotize. Therefore, augmenting the bone graft by smaller 
fragments of periosteum, isolated cambium layer tissue or 
cultured periosteal cells would be interesting approaches for 
future research in grafted implants. 

CONCLUSION 

 This study evaluated a simple method for heightening the 
bioactivity of morselized allograft bone in a one-stage 
procedure. We were not able to improve the mechanical 
fixation but the results showed potential histological benefits 
in terms of enhanced new-bone formation around the 
periosteum fragments. 
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