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Abstract: Purpose: It has been assumed that nucleus pulposus-induced activation of the dorsal root ganglion (DRG) may 
be related to an activation of sodium channels in the DRG neurons. In this study we assessed the expression of Nav 1.8 
and Nav 1.9 following disc puncture. 

Method: Thirty female Sprague-Dawley rats were used. The L4/L5 disc was punctured by a needle (n=12) and compared 
to a sham group without disc puncture (n=12) and a naive group (n=6). At day 1 and 7, sections of the left L4 DRG were 
immunostained with anti-Nav 1.8 and Nav 1.9 antibodies. 

Result: At day 1 after surgery, both Nav 1.8-IR neurons and Nav 1.9-IR neurons were significantly increased in the disc 
puncture group compared to the sham and naive groups (p<0.05), but not at day 7. 

Conclusion: The findings in the present study demonstrate a neuronal mechanism that may be of importance in the 
pathophysiology of sciatic pain in disc herniation. 
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INTRODUCTION 

 Application of nucleus pulposus on nerve tissue has 
recently been linked to the occurrence of pain-related 
behavior in various experimental models [1, 2]. However, it 
seems likely that pain only appears, or is at least more 
pronounced, if exposure of the nerve tissue to nucleus 
pulposus is combined with mechanical deformation of the 
nerve tissue [1, 2]. This may suggest that nucleus pulposus 
sensitizes the nerve tissue to produce nerve root pain when 
the nerve tissue is deformed mechanically. There is also 
clinical evidence indicating that mechanical stimulation of a 
nerve root not previously exposed to nucleus pulposus 
results in only slight discomfort, whereas mechanical 
stimulation of a nerve root exposed to nucleus pulposus 
instead reproduces the sciatic pain [3]. Nucleus pulposus 
application on nerve tissue has also experimentally been 
found to induce electrophysiological changes such as 
activation of dorsal root ganglion (DRG) neurons [4] and 
ectopic discharge of the spinal dorsal horn neurons [5] as 
well as increased expression of sodium channels in neurons 
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in the DRG [6]. These data together suggest that nucleus 
pulposus induces hyperexcitability in DRG neurons. 
 Ion channels are very important in neuronal activity in 
generating and conducting action potential. Especially, sodium 
channels have been in focus in pain research, since the sodium 
channel blocker lidocaine is very useful clinically to block pain 
[7]. There are nine distinct voltage-gated sodium channel α 
subunits; Nav 1.1-1.9 [8]. Adult DRG sensory neurons may 
express a combination of Nav 1.1, Nav 1.6, Nav 1.7, Nav 1.8 
and Nav 1.9 sodium channels [9, 10]. Nav 1.9 is mostly 
expressed in neurons with unmyelinated axons (C-fibers) [11, 
12] and Nav 1.8 in neurons with unmyelinated and myelinated 
axons (A-fibers) [11, 13], and all these types of neurons are 
associated with transmission of nociceptive impulse. There are 
many reports about changes of these sodium channels after 
nerve injury and inflammation. However, it is unclear whether 
these sodium channels in the DRG neurons may be upregulated 
after lumbar disc herniation. The purpose of this study was to 
investigate the expression of Nav 1.8 and Nav 1.9 in DRG 
neurons exposed to nucleus pulposus using immunohisto-
chemical methods. 

MATERIALS AND METHODOLOGY 

 Thirty female Sprague-Dawley rats with an average body 
weight of 200-250g were housed in groups with free access 
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to food (B&K Rat/mouse standard, BeeKay feeds & 
beddings, Sollentuna, Stockholm) and tap water. 
Temperature was kept at 21°C, light schedule was 12 hours 
daylight starting at 6:00 a.m. and 12 hours darkness starting 
at 6:00 p.m., and the humidity was kept at 50%. The 
experimental protocol was approved by the local animal 
research ethics committee. 
 Surgical protocol [1]: The rats were anesthetized by 
inhalation of isoflurane. Through a midline incision, the 
thoracolumbar fascia was incised just left to the spinous 
processes of the 4th and the 5th lumbar vertebrae. The erector 
spinae muscle was gently moved laterally to expose the left 
facet joint between the 4th and the 5th lumbar vertebrae. The 
joint, including articular processes, was carefully removed. By 
this procedure, the ligamentum flavum, the left L4 DRG and 
the intervertebral disc could easily be identified. To form a 
control group for the surgical exposure of the spinal canal, no 
additional procedures were undertaken in twelve rats (sham 
group: n=12). To perform a disc herniation, a 25 Gauge needle 
was used to puncture the exposed disc (NP group: n=12). By 
gently injecting some air through the needle there was a 
leakage of nucleus pulposus out to the DRG. To ensure 
contact between the nucleus pulposus and the nervous tissue 
the obtained nucleus pulposus was transferred with the tip of 
the needle to the 4th lumbar nerve root and DRG. No surgical 
intervention was performed in the Naïve group (n=6). 

Immunohistochemistry 

 At day 1 and 7 after surgery, rats were deeply anaestheti-
zed with an intraperitoneal injection of 0.2 ml pentobarbital 
(50mg/ml) and underwent intracardiac perfusion with 200ml 
saline followed by 200ml of Histofix (4% formalin)(Histolab 
Products AB, Sweden). The left L4 DRGs were removed and 
postfixed for 24 hours. The DRGs were dehydrated, 
embedded in paraffin, and cut into transverse 4.5µm sections. 
The sections were mounted on slides, deparaffinized with 
xylene, rehydrated, and processed immunohistochemically. 
The endogenous peroxidase in the sections was suppressed 
with hydrogen peroxidase (PeroxiDazed1) (Biocare Medical, 
Concord, CA, USA) for 5 min and then washed in Tris Buf-
fered Saline (TBS) (Biocare Medical, Concord, CA, USA). 
For reducing non-specific binding, the sections were incubated 
with goat serum for 30 min at room temperature. The sections 
were then incubated with the primary antibodies, rabbit anti-
Nav 1.8(Chemicon, Temecula, CA, USA), in a dilution of  
1:100 or rabbit anti-Nav 1.9(Chemicon, Temecula, CA, USA), 
in a dilution of 1:200, for 30 min at room temperature. The 
incubated sections were washed in TBS and incubated with 
secondary antibody MACH2TM Polymer-HRP Conjugate 
(Goat Anti-Rabbit) (Biocare Medical, USA) for 30 min at 
room temperature. For visualizing the immunohistochemical 
staining, Betazoid DABChromagen Kit (Biocare Medical, 
USA) was used. Examination of the sections was performed 
with light microscopy. All analysis were performed in a 
blinded fashion. 

Data Analysis 

 The total number of neurons and Nav -like 
immunoreactive (IR) neurons with visible nucleus in one  
 

complete transverse section was counted. Neurons showing 
higher intensity than background were considered positive 
using imaging analysis software (NIH image J). The cross 
sectional area of the neurons was also examined to 
categorize to small sized neurons (<600µm2), medium sized 
(600-1200µm2), and large sized neurons(>1200µm2). To be 
able to observe as many neurons as possible, we picked 
sections from the central one third of DRG as defined by the 
shape of the DRG. Six randomly selected sections were 
examined per rat. The percentage of Nav -IR neurons of the 
total number of neurons was calculated. The results are 
expressed as the percentage of Nav -IR neurons in the DRGs 
(mean ±standard error of the mean). 
 Statistical analysis was performed using ANOVA and 
Fisher’s PLSD. P-values less than 0.05 were considered 
significant. 

RESULTS 

 Both Nav 1.8 and Nav 1.9 were stained positively in the 
somata of the DRG neurons in all experimental groups, 
especially in the small-sized neurons (<600µm2) (Figs. 1, 2). 
 At 1st day after surgery, the percentages of Nav 1.8-IR 
neurons significantly increased in the disc puncture group 
compared with the Sham and Naïve groups in small sized 
neurons(p<0.05) (Fig. 3). There were no significant 
differences in medium and large sized neurons regarding 
Nav 1.8 expression. Nav 1.9-IR neurons in small sized 
neurons significantly increased in the disc puncture group 
compared with the naive groups (p<0.05) and there were also 
significant differences between sham and naïve group 
(p<0.05). There were no significant differences regarding 
Nav 1.9-IR neurons in the disc puncture group compared 
with sham group (p<0.1), (Fig. 4). There were also no 
significant differences in medium and large sized neurons. 
No significant differences were found among the three 
groups at 7 days after surgery in both Nav 1.8 and Nav 1.9-
IR neurons (Figs. 3, 4). 

DISCUSSION 

 Leakage of nucleus pulposus from a lumbar disc to the 
dorsal root ganglion (DRG) induced transient increases of Nav 
1.8 and Nav 1.9-IR neurons in the affected DRGs. In a 
corresponding model, pain-related behavior was only seen at 
one day postoperatively, but not 7 days after surgery [1]. It is 
known that nucleus pulposus can induce injury of axons [14] 
and inflammatory reactions around the nerve tissue [15]. 
Therefore, the transient increase in expression of Nav 1.8 and 
Nav 1.9 in the present study might theoretically have been 
influenced by neuronal damage as well as inflammatory 
responses, as induced by nucleus pulposus. Such changes of 
sodium channels in DRG neurons can be expected to be 
related to the electrophysiological properties of the neurons, 
including sensitization of DRG neurons. This could explain 
the pain mechanisms induced by nucleus pulposus. Nav 1.8 
has been reported to be very important in pain sensation since 
a knock out of this channel [16] or blockage of this channel by 
specific blockers [17] showed a dramatic improvement  
of inflammatory pain in animals. A knock out of Nav 1.8 [18] 
and blockage of Nav 1.8 [17, 19, 20] has been  
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found to also attenuate neuropathic pain. Neuropathic pain 
induced by partial axotomy induced a decrease of Nav 1.8 
RNA and protein [21]. On the other hand, inflammatory pain 
induced by carrageenan caused an increase of Nav 1.8 [22]. 
Therefore, increase of Nav 1.8 induced by nucleus pulposus 
might follow the inflammatory effects of nucleus pulposus. 
 Nav 1.9 mRNA is likewise upregulated by inflammation 
and downregulated by axotomy [10]. Nav 1.9 null mice 
showed a decrease in inflammatory pain behavior but not in 
neuropathic pain [23]. Therefore, Nav 1.9 may be more 
closely related to inflammatory pain transmission than to 
neuropathic pain. Nav 1.9 current was increased by an 
inflammatory agent such as PGE2 [24]. Disc tissue harvested 
from the patients with sciatica contained many pro 
inflammatory mediators including PGE2 [25]. Therefore, in 
the model in the present study, there is a possibility that Nav 
1.9 was increased by inflammatory reactions induced by 
nucleus pulposus. This, however, remains to be clarified in 
future studies. 
 One discrepancy between the present and previous 
studies was that upregulation was not found seven days after 

surgery in our study, whereas pain behavior changes, 
although less pronounced than at day 1 or 3, may still be 
seen at day seven [1, 2]. In the present study ion-channels 
were only studied in the dorsal root ganglion neurons and it 
is suspected that there may be a similar upregulation in the 
axons of the nerve roots that may sustain more than seven 
days. Also other modes of injury, such as simultaneous 
nucleus pulposus-exposure and mechanical deformation 
would be of certain interest, as well as the treatment with 
sodium channel-inhibitors. This will be assessed in future 
studies. 

CONCLUSION 

 Clinically, sciatic pain induced by lumbar disc herniation 
is sometimes so pronounced that it is difficult to control the 
pain by presently available conservative treatment modalities 
such as NSAIDs, or nerve root block with local anesthetics 
and steroids. New strategies are needed to provide an 
alternative to surgery in such cases. Since the present 
immunohistochemical study indicates that sodium channels 
in DRG neurons may be increased by nucleus pulposus-

 
Fig. (1). Representative pictures of Nav 1.8-IR neurons in the disc puncture group (A) and the sham group (B). Small and medium but not 
large sized neurons showed immune reactivity for Nav 1.8 (▲: Nav 1.8-IR neurons, Bar: 100µm). 

 
Fig. (2). Representative pictures of Nav 1.9-IR neurons in the disc puncture model (A) and the sham group (B). Most of the Nav 1.9-IR 
neurons were small size neurons (▲: Nav 1.9-IR neurons, Bar: 100µm). 
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exposure, specific blockages of neuronal sodium channels 
might offer such an alternative. 
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Fig. (3). These graphs show percentages of Nav 1.8-IR neurons in small sized (<600µm2), medium sized (600-1200µm2) and large sized 
neurons (>1200µm2). There were significant differences between puncture and sham groups, and puncture and naïve groups in small neurons 
at Day 1. There were no significant differences in medium and large sized neurons. There were no significant differences among three groups 
at Day 7. * p<0.05 compared with naïve group, + p<0.05 compared sham group. 

 
Fig. (4). These graphs show percentages of Nav 1.9-IR neurons in small sized neurons (<600µm2), medium sized (600-1200µm2) and large 
sized neurons (>1200µm2). There were significant differences between puncture and naïve group, and sham and naïve group in small neurons 
at Day 1. The percentage of Nav 1.8-IR neurons tend to be higher in small sized neurons in puncture group compared with sham group at 
Day 1. There were no significant differences in medium and large sized neurons. There were no significant differences among three groups at 
Day 7. *p<0.05 compared with naïve group, # p<0.1 compared with sham group. 
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