Tonsillar Crypts and Bacterial Invasion of Tonsils: A Pilot Study

R.K. Mal*,1, A.F. Oluwasanmi1 and J.R. Mitchard2

1University Department of Otolaryngology, Southmead Hospital, Bristol, UK
2Department of Pathology, Southmead Hospital, Bristol, UK

Abstract: Objective: To investigate histologically if a lack of protection of the deep lymphoid tissue in tonsillar crypts by an intact epithelial covering is an aetiological factor for tonsillitis.

Method: A prospective histological study of the tonsillar crypt epithelium by immunostaining for cytokeratin in 34 consecutive patients undergoing tonsillectomy either for tonsillitis or tonsillar hypertrophy without infection (17 patients in each group).

Results: Discontinuity in the epithelium was found in 70.6% of the groups of patients with tonsillitis and in 35.3% of the groups of patients with tonsillar hypertrophy. This is of borderline significance.

Conclusion: We found no clear correlation between tonsillitis and a defect in the tonsillar crypt epithelium. Tonsillitis might be due to immunological differences of subjects rather than a lack of integrity of the crypt epithelium. Further study with larger sample size and normal control is suggested.

Keywords: Tonsillitis. tonsillar hypertrophy, tonsillar crypt epithelium.

INTRODUCTION

The association of lymphoid tissue with protective epithelium is widespread, eg skin, upper aerodigestive tract, gut, bronchi, urinary tract.

The function of the palatine tonsils, an example of an organised mucosa-associated lymphoid tissue, is to sample the environmental antigen and participate with the initiation and maintenance of the local and systemic immunity.

The epithelium lining the tonsillar crypts is a stratified squamous epithelium with patches of reticulated epithelium which is much thinner, with a discontinuous basal lamina, but has an unbroken oropharyngeal surface. The epithelium is exceedingly thin in places so that only a tenuous cytoplasmic layer separates the pharyngeal lumen from the underlying lymphocytes.

Epithelial cells are held together by small desmosomes anchored into bundles of keratin filaments. Interdigitating dendritic cells are also present. The intimate association of epithelial cells and lymphocytes facilitates the direct transport of antigen from external environment to the tonsillar lymphoid cells [1].

The palatine tonsils themselves are frequently prone to infection as indicated by the frequency of tonsillectomy.

Streptococcus is the commonest bacteria causing tonsillitis. Hokonohara et al. [2] in an animal experiment demonstrated the susceptibility of tonsils to infection on exposure to Group A streptococci, the pharynx, larynx, trachea, bronchi and lungs being resistant. The infection apparently occurs through the micropore of the crypt epithelium.

A. Jacobi in his presidential address in 1906: “The tonsil as a portal of microbic and toxic invasion” stated: “A surface lesion must always be supposed to exist when a living germ or toxin is to find access. Stoher has shown small gaps between the normal epithelia of the surface of the tonsil”. He also quoted George B. Wood: “It has been proven by several very thorough and capable investigators that foreign bodies in the crypts can pass through the epithelium into the inter follicular tissue” [3].

A.J. Wright observed in 1950: “The epithelium of these crypts is frequently absent in parts, thus bringing the lymphoid tissue into direct contact with the surface [4].

A breach in the continuity of the epithelium could explain the susceptibility of the tonsils to infection and we carried out a pilot study to investigate the integrity of the crypt epithelium by using immunostaining for cytokeratin.

MATERIAL & METHOD

Ethical approval was obtained from the hospital ethical committee and ethical standards were followed.

Thirty-four consecutive patients who were admitted for tonsillectomy by author, A.O. were recruited. No one refused to participate in the study. The indication for tonsillectomy was repeated tonsillitis in one group and large tonsils causing obstructive sleep apnoea without any history of tonsillitis in another group.

There were at least twelve episodes of tonsillitis prior to the operation. A period of at least six weeks was allowed to...
pass after an attack of acute tonsillitis before the operation was performed.

The tonsils were removed by sharp / blunt dissection with minimal possible trauma to the tonsillar tissue. The two sides were dealt with separately, but in an identical manner. They were marked “side one” and “side two”.

Laboratory Methods (Including the Method Used for Producing the Immunohistochemically Stained Sections)

The tonsillar tissue was fixed in 10% buffered formalin. Representative slices from each tonsil were embedded into paraffin wax and 4μ sections stained with haematoxylin and eosin. One section with the best array of crypts from each tonsil was chosen and was pretreated with 0.1% solution of Trypsin in 5% calcium chloride solution for 10 minutes at 37°C for antigen retrieval and thereafter was treated with DAKO monoclonal Mouse Anti-Human Cytokeratin antibody, Clone MNF 116. The later reacts with cytokeratins 5,6,8,17 and probably also 19, it shows an especially broad pattern of reactivity with human epithelial tissue from simple glandular to stratified squamous epithelium (www.dako.co.uk).

The sections were examined by light microscopy and apparent discontinuities in the crypt epithelium were sought and recorded as being present or absent. All the crypt epithelium in each slide was systematically examined. Foci of artefactual discontinuity were not included (Fig. 1b). Apparent epithelial discontinuity was regarded as being present if an imaginary line could be traced from the crypt lumen to the underlying lymphoid tissue without crossing visible epithelium (Fig. 1c, d). The microscopic examination was carried out without knowledge of the patient’s identity or medical history. Any ulceration of the tonsillar surface was noted. The examination was done by a single observer (JRM).

RESULTS

There were 17 patients (M13, F4) in the tonsillitis group and 17 patients (M5, F12) in the non-infective (hypertrophy) group. The age of the infective group ranged from 4 to 32, mean 14.9 years of age and the non-infective group ranged from 2 to 55, mean 10.7 years of age. None of the 68 tonsils had ulcers histologically. Of the total 68 tonsils examined, there were multiple areas of epithelial discontinuity in 21 (30.9%). The distribution of the epithelial discontinuity is shown in Tables 1 and 2.

Table 1. Diagnosis vs Discontinuity

<table>
<thead>
<tr>
<th></th>
<th>Infection</th>
<th>OSA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No discontinuities</td>
<td>5 (31.3%)</td>
<td>11 (68.8%)</td>
<td>16</td>
</tr>
<tr>
<td>One or more discontinuities (Unilateral or bilateral)</td>
<td>12 (66.7%)</td>
<td>6 (33.3%)</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>34</td>
</tr>
</tbody>
</table>

P (Fisher’s exact test) = 0.08.

Fig. (1). Photomicrographs of tonsillar tissue. Low power H and E stained section of unremarkable tonsil, original magnification x 12.5 (a). AE1/3 immunostained section of same area showing artefactual discontinuity of squamous epithelium (arrowheads), original magnification x 12.5 (b). High-power view of apparent epithelial discontinuities (arrows), AE1/3 immunostain, original magnification x 200 (c and d).
The data in Table 1 indicate that there is more infection in those with discontinuities of the crypt epithelium but it is only of borderline significance.

The finding of Table 1 suggests that the susceptibility of tonsils to infection is due to a breach in the epithelial lining. As mentioned earlier, there has been a historical concept that there are actual gaps in the epithelial covering in tonsillar crypts allowing entry of pathogens to the tonsillar parenchyma [4] and we have tried to examine the validity of this concept in our study.

The evidence from our observation and findings of the recent observers mentioned above might indicate that susceptibility to tonsillitis is determined by an immunological difference of the subjects rather than a mechanical failure in the tonsillar structure. The weakness in our study is a lack of normal control for obvious reasons. The relatively small sample size of this pilot study (although large enough for analysis) is another weakness. Confocal study might have demonstrated the epithelial breach more clearly.

CONCLUSION

Tonsils are very prone to infection despite their presumed protective function. A breach in the tonsillar crypt epithelium has been reported before. We examined the crypt epithelium by cyto keratin immunostaining in a tonsillitis group and a tonsillar hypertrophy group of patients. There was a breach in the crypt epithelium in a proportion of cases in both groups but the difference was only of a borderline significance.

The evidence from our observation and the work of the recent observers namely an increased bacterial load of the tonsils in some subjects cause tonsillitis and tonsillar hypertrophy in others and also that tonsils have special immunological function indicate that susceptibility to tonsillitis might be determined by an immunological
difference of the subjects rather than a mechanical failure in the tonsillar structure.

A further study with larger number of patients including normal control (ethics permitting) including confocal studies would be worthwhile to confirm the findings of our pilot study.

ACKNOWLEDGEMENTS

We thank Dr. K. Denton for her advice, Mrs. Eva Hicks for administrative help and Mrs. Karin Sibley for technical assistance.

REFERENCES