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Abstract: Nociceptors are peripheral sensory neurones which respond to painful (noxious) stimuli. The terminals of 
nociceptors, which have a high threshold to stimulation in their native state, undergo a process known as sensitisation, or 
lowering of threshold, following injury or inflammation. Amongst sensory receptors, sensitisation is a property unique to 
nociceptors. A shift in the stimulus-response function of nociceptors renders them more sensitive, resulting in both a 
reduction in the activation threshold, such that previously non-noxious stimuli are perceived as noxious (allodynia) and 
an increased response to suprathreshold stimuli (hyperalgesia). Sensitisation protects us from harm and is essential for 
survival, but it can be disabling in conditions of chronic inflammation. This review focuses on three stages in 
sensitisation: 1) Inflammatory mediators, which are released from damaged resident cells and from others that invade in 
response to inflammation, and include bradykinin, prostaglandins, serotonin, low pH, ATP, neurotrophins, nitric oxide 
and cytokines; 2) Intracellular signalling molecules which are important in transmitting the actions of inflammatory 
mediators and include protein kinase A and C, Src kinase, mitogen-activated protein kinases and the membrane lipid PIP2; 
and 3) Ion channel targets of intracellular signalling which ultimately cause sensitisation and include the temperature-
sensitive transient receptor potential channels, acid-sensitive ion channels, purinoceptor-gated channels, and the voltage-
sensitive sodium, potassium, calcium and HCN channels. 
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INTRODUCTION 

 Sensory neurones transduce mechanical, thermal and 
chemical stimuli into nerve impulses which then travel to 
higher centres to initiate painful sensations, a process 
referred to as nociception [1]. The activation of specific 
receptors or ion channels underlies the transduction of 
noxious stimuli into action potentials at peripheral 
nociceptive nerve terminals. Action potentials are then 
relayed via the dorsal horn of the spinal cord to the primary 
somatosensory area of the cerebral cortex, where the 
sensation of pain is experienced. Although there is a positive 
correlation between stimulus intensity and reported pain 
intensity, a large degree of plasticity is found at all levels of 
the nociceptive system which means that the experience of 
pain is highly variable [2]. Following inflammation or 
damage, noxious stimuli can evoke an exaggerated and 
prolonged pain (hyperalgesia) and pain thresholds can be 
lowered so that stimuli that are normally innocuous now 
become noxious (allodynia). Previously ‘silent’ nociceptors 
can become responsive to thermal or mechanical stimuli 
when sensitised by inflammatory substances or tissue injury 
[3, 4]. Most of these mechanisms have a rapid onset and are 
readily reversible. Longer term changes are found during 
chronic inflammation and in neuropathic pain, a disabling 
condition in which partial damage to peripheral nerves 
causes long-lasting allodynia and hyperalgesia. These long-
term changes in gene expression will be discussed in the 
context of the relevant receptors. 
 
*Address correspondence to this author at the Department of Pharmacology, 
University of Cambridge , Tennis Court Road, Cambridge CB2 1PD, UK; 
Fax: +44 1223 334100: E-mail: mjmf2@cam.ac.uk 

 During the process of inflammation, a mixture of 
inflammatory mediators such as peptides (bradykinin), lipids 
(prostaglandins), neurotransmitters (ATP), protons and 
neurotrophins (NGF) is released. Some of these mediators 
directly excite nociceptors, inducing painful sensations, 
while others sensitise nociceptors. The release of 
neuropeptides from peripheral neurones supports plasma 
extravasation of further mediators and chemoattraction of 
inflammatory cells, a process termed “neurogenic 
inflammation”. The sensitisation of the primary afferent 
neurones by local inflammatory mediators can occur by a 
direct action on the sensory neurones, or it can involve an 
indirect action on non-neuronal cells, especially but not 
exclusively on immune cells, from which further 
inflammatory mediators can then be released.  

 In this review, peripheral sensitisation is considered to be 
an increase in the responsiveness of primary afferent 
nociceptors compared to baseline. Repetitive stimulation, a 
part of the definition of sensitisation in a behavioural setting, 
is not required to elicit sensitisation at a molecular level. 
Sensitisation can arise for a variety of reasons, which can be 
broadly separated into effects on ion currents directly 
activated by the noxious stimulus (generator currents) and 
effects on ion channels involved downstream in the initiation 
of action potentials. Sensitisation is distinct from the actual 
process of initiating action potentials, though some of the ion 
channels responsible for determining the action potential 
threshold (e.g. hyperpolarisation-activated cyclic nucleotide 
gated channels, HCN) and for causing excitation (e.g. 
sodium channels) are also targets for sensitisation (see 
below). 
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 Visceral nociceptors are not as well studied as somatic, 
especially cutaneous, afferents. Many results concerning 
mediators and receptors have, however, been replicated in 
visceral pain models including all the mediators and 
receptors mentioned below [5]. A few differences have been 
reported, e.g. the IB4-positive population is smaller in 
visceral compared to somatic afferents, almost all visceral 
afferents are peptidergic and TRPV1-positive neurones are 
more prevalent than in somatic nociceptors [6, 7].  
 The mediators of inflammatory pain are better 
established than the processes involved in neuropathic pain, 
for this reason this review will focus on inflammatory pain. 
In the case of neuropathic pain some similar mechanisms of 
sensitisation and gene regulation have recently been 
reviewed [8]. The first part of the review focuses on 
extracellular mediators released by inflammation and leading 
to sensitisation. In the second part of this review we discuss 
how these mediators activate a rather small number of 
intracellular signalling pathways and mediators in order to 
induce peripheral sensitisation. The main mechanisms 
characterised to date are (i) phosphorylation of ion channels 
already in the surface membrane, and (ii) altered cell surface 
expression of ion channels, which can be modulated both in 
the short term by trafficking of ion channels from an 
intracellular store and in the longer term by altered gene 
expression. The third part of the review discusses the impact 
the activation of intracellular signalling pathways has on the 
most important ion channels engaged in sensitisation. 

INFLAMMATORY MEDIATORS OF SENSITISA-
TION 

 There are many extracellular mediators which contribute 
to nociceptor sensitisation. The importance of any specific 
factor has been proven difficult to dissect, since many of 
these release others, generating a multi-focussed web of 
factors. Ryan and Majno noted that inflammation is most 
likely mediated by vascular leakage, due to the actions of the 
kinins, vasoactive amines (histamine, serotonin) and the 
prostaglandins [9]. Many more groups of compounds might 
be involved, based on measurements from human inflamed 
tissue and pharmacological studies [10]. The multifactorial 
nature of inflammation led to the idea of an ‘inflammatory 
soup’ or ‘inflammatory mediators’ [11]. Unfortunately, this 
term is used for different compositions and concentrations, 
usually involving bradykinin, prostaglandin E2, histamine 
and serotonin, often at a lowered pH. The composition is 
clearly artificial and omits some important mediators found 
subsequently.  

Bradykinin 

 Bradykinin is amongst the most potent sensitizing agents. 
Injection of bradykinin into human skin produces a dose-
dependent pain and heat hyperalgesia, suggesting that 
bradykinin is capable of exciting and sensitising nociceptors 
to heat [12]. Bradykinin is formed by cleavage of low 
molecular weight tissue kininogen by the protease kallikrein 
to liberate lys-bradykinin (kallidin) which is then cleaved 
further to bradykinin by an aminopeptidase [13]. Kallikreins 
are serine proteases activated from prekallikrein by activated 
FactorXII of the coagulation cascade [14]. Bradykinin and 
kallidin are both potent B2 receptor activators, and are 
responsible for acute sensitisation and activation [15]. 

Functional B2 receptors are widely expressed, both in the 
nervous system and in non-neuronal tissues [16]. Kallikrein 
has also been shown to activate the B2 receptor directly [17]. 
Further cleavage of the C-terminal arginine of bradykinin 
liberates des-arg9 bradykinin, which has little action at the B2 
receptor but is a potent activator of the B1 receptor. The B1 
receptor is absent or expressed at low levels under normal 
conditions, but during prolonged inflammation B1 receptors 
are induced in primary nociceptors by glial cell derived 
neurotrophic factor and can sensitise the heat evoked current 
in dorsal root ganglia (DRG) neurones [18, 19]. Both 
bradykinin receptors are G-protein coupled and activate 
Gq/phospholipase Cβ (PLCβ) and Gi/phospholipase A2 [20]. 
Downstream of phospholipase Cβ are the mediators 
IP3/diacylglycerol and protein kinase C (PKC), as discussed 
below. Downstream of phospholipase A2, arachidonic acid 
from the cell membrane is converted to leukotrienes, 
hydroperoxyeicosatetraenoic acids (HPETEs), 
epoxyeicosatrienoic acids (EETs) and, most importantly, 
prostaglandins which lead to activation of protein kinase A 
(PKA). Bradykinin is also a good example of an 
inflammatory mediator which causes the secondary release 
of transmitters from neurones, including calcitonin gene-
related peptide, substance P and acetylcholine [21], and also 
the release of further inflammatory mediators from immune 
cells, including NGF, interleukins, tumour necrosis factor, 
prostaglandins and leukotrienes [22, 23]. Bradykinin 
decreases the threshold of thermally-activated ion channels 
such as TRPV1, and it also sensitises nociceptors by 
modulating other ion channels, for example by reducing the 
activity of potassium channels, which makes cells more 
excitable by decreasing the resting potential. 

Prostaglandins 

 Prostaglandins (PG) are derived from arachidonic acid, 
which is released from membrane phospholipids by the 
esterase action of phospholipase A2. PGE2 and PGI2 have 
been found to be more potent sensitisers than PGF2a, PGD2 
or TxA2 in humans [24] and in animal models [25]. Both 
have similar effects but different time courses of action [26]. 
The actions of PGE2 and PGI2 are transduced by the G-
protein coupled EP and IP receptors, respectively [27, 28], 
and in both cases the main action in primary sensory 
neurones is to couple to Gs, which in turn activates adenylate 
cyclase to release cyclic adenosine monophosphate (cAMP) 
and thus activate PKA, as discussed below [29]. Production 
of prostaglandins via cyclooxygenases 1 and 2 is the target 
of the most common used painkiller family. Cyclooxygenase 
inhibition reduced the activation of sensory neurones [30]. 
Prostaglandins sensitise sodium and calcium channels and 
suppress outward potassium currents [31]. An alternative 
cAMP-dependent pathway mediated via PKCε has been 
described in IB4-positive neurones [32]; the observed 
sensitisation in inflamed tissue is conveyed by Epac1 (the 
exchange protein directly activated by cAMP) from cAMP to 
PKCε [33]. Given the convergence of so many pathways on 
Gs proteins, it is not surprising that opioids, which have been 
shown to be potent peripheral analgesics in addition to their 
central actions, owe their peripheral actions to a 
counterbalancing activation of Gi, which inhibits adenylate 
cyclase [34]. Arachidonic acid is not only a substrate for 
production of prostaglandins but is also processed by 
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lipoxygenases and cytochrome p450 epoxygenase. Injection 
of the leukotrienes lowered nociceptive thresholds [35] and 
inhibition of 5- and 12-lipoxygenase reduced development of 
hyperalgesia [36]. There is also some indication of 
modulation of pain by EETs [37]. 

Histamine  

 The main source of histamine is mast cells, the 
degranulation of which is stimulated by substance P and 
vasoactive intestinal peptide [38, 39]. Extracellular levels of 
histamine are substantially increased in inflammation, but its 
contribution to sensitisation is unclear, since histamine 
evokes the sensation of itch rather than pain and directly 
activates only a minimal fraction of neurones [40].  

Serotonin  

 Serotonin, or 5-hydroxytryptamine (5-HT), is present at 
increased levels in inflamed tissues, and is released mainly 
from mast cells and platelets [41]. Serotonin can directly 
excite neurones via activation of the 5-HT3 receptor, which 
is an ion channel, and can in addition sensitise via the Gq-
coupled 5-HT2A receptors found in neurones [42, 43]. 
Inflammatory pain was shown to be reversed by an 
antagonist for 5-HT2A [44]. In trigeminal pain 5-HT1 
receptor subtypes are involved, and antagonists can be used 
to treat migraine [45]. At a molecular level, sensitisation by 
5-HT has been demonstrated for sodium channels [46]. 
Indirectly, serotonin sensitises by activating monocytes [47] 
and by interleukin 6 release from endothelial cells [48]. 

Protons 

 Acidic conditions occur in inflammation and ischemia. 
Protons can directly activate transducer channels, as 
discussed below, but the necessary pH levels are rarely 
found even in infections or severe tissue damage [49, 50]. 
Only intradermal infusion of pH 5 and below induces pain in 
humans, although owing to the high tissue buffering capacity 
the actual tissue pH attained may be less acidic than this and 
the corresponding pH at the nerve terminals remains 
unknown [51]. Furthermore, these extreme proton 
concentrations reduced conduction of many channels [52] 
and can lead to conduction block [53]. There might however 
be exceptions such as stomach afferents which are 
continuously exposed to extreme proton concentrations in 
the vicinity of lesions [54]. Protons also commonly act as 
subthreshold sensitising agents, acting cooperatively with 
bradykinin, ATP and inflammatory mediators [55-58]. 

ATP 

 ATP activates both the ionotropic P2X purinoceptors and 
the metabotropic P2Y receptors. High levels of ATP are 
required for purinoceptor activation, and are seldom attained 
by tissue damage or ischemia, but can be achieved by release 
from (sympathetic) neurones [59]. We discuss the P2Y 
receptors in this section and the P2X receptors in the final 
section on ion channels. DRG neurones express P2Y1 and 
P2Y2 receptors [60]. P2Y1 activation in DRG neurones 
inhibits CaV2.2 and P2X3 channels [61]. Activation of PKCε 
following P2Y1 receptor activation sensitises TRPV1 [62]. 
P2Y2 receptor activation also sensitises TRPV1 in 
expression systems and leads to TRPV1-mediated thermal 
hyperalgesia [63]. Following tissue injury, activation of 

extracellular signal-regulated kinases (ERKs) is mediated by 
P2Y receptors [64] and gene regulation is triggered via the 
cAMP response element binding protein CREB [65]. In 
contrast to these actions mediated by ATP and the P2 family 
of receptors, activation of the P1 receptors by adenosine 
decreases cellular excitability and nociception, and 
adenosine has analgesic actions in behavioural experiments 
[66]. 

Neurotrophins 

 Neurotrophins, including nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF) and neurotrophin 
3-5, activate the tyrosine kinase-couples receptors of the Trk 
family. Neurotrophin effects can be separated into short-term 
effects mediated by phosphorylation and trafficking of ion 
channels to the membrane, and long-term changes mainly 
caused by changes in gene expression [67, 68]. Injection of 
NGF has a rapid hyperalgesic effect, and also causes a 
hyperalgesia lasting for many days [69]. The short term 
action of NGF in promoting hyperalgesia is thought to be 
predominantly mediated via TrkA receptors [70]. NGF 
acutely sensitised the activation of sensory neurones by 
capsaicin, an effect mediated by TRPV1 [71]. NGF binds to 
TrkA, causing phosphorylation of tyrosine Y760 and thus 
activating the PI3K-Src signalling pathway to phosphorylate 
Y200 of TRPV1, which causes enhanced insertion of 
TRPV1 into the cell membrane [72, 73]. There have also 
been reports that NGF alters the activation threshold of 
TRPV1 via p42/44 mitogen-activated protein kinases 
(MAPK) [74]. NGF is an important link to stimulation of the 
immune system, including mast cell degranulation, cytokine 
production and B- and T-cell proliferation [75, 76]. The 
importance of NGF as an inflammatory mediator is also due 
to retrograde transport to the cell nucleus, where it induces a 
long term upregulation of gene expression, including 
TRPV1, acid-sensing ion channels (ASIC) and sodium 
channels, neuropeptides such as substance P and calcitonin 
gene-related peptide (CGRP), and bradykinin receptors [77-
80].  

Nitric Oxide 

 Nitric oxide (NO) is produced by the nitric oxide 
synthases, of which there are three isoforms, endothelial 
neuronal and inducible (eNOS, nNOS and iNOS, 
respectively). NO producing enzymes can be activated by 
noxious irritants, by NO itself, or in DRG neurones 
following nerve injury [81-83]. Local inhibition of NO 
synthesis reduces inflammatory hyperalgesia [84]. Nitric 
oxide is a short-lived inflammatory mediator and therefore 
has only very local effects, but it can pass readily through 
cell membranes and therefore often has effects in cells 
adjacent to those in which the NO is produced. The most 
well-known downstream pathway is the direct activation of 
soluble guanylate cyclase by NO, leading to enhanced levels 
of cGMP and consequent activation of protein kinase G in 
target cells. Bradykinin can also stimulate the formation of 
cGMP in nociceptive neurones [85], and while for central 
sensitisation cGMP seems to be important [86], in primary 
afferents the relevance of cGMP seems minor in comparison 
to cAMP [87, 88]. NO can also act directly on membrane 
proteins to S-nitrosylate cysteine residues, leading to the 
breaking of Cys-Cys bonds and a consequent change in 
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protein structure [89]. An important additional long-term 
effect of NO is the upregulation of cyclooxygenase 2 [90]. 

Cytokines 

 Immune cells contribute to sensitisation via a complex 
network [91]. TNFα is released from monocytes and tissue 
macrophages by several stimuli including microbial 
products, complement and tissue damage, and induces 
sensitisation with both rapid and long-lasting components 
[92]. TNFα activates the TNFR1 and TNFR2 receptors, 
which are upregulated during inflammation [93]. The 
importance of TNFα in chronic inflammation such as 
arthritis is illustrated by the success of monoclonal 
antibodies against it [94]. TNFα is the trigger for the release 
of a whole cascade of cytokines, including NGF and the 
interleukins 1β , 6 and 8, which are amongst the strongest 
proinflammatory cytokines [95]. Among these interleukin 
1β and NGF are especially potent in inducing lasting 
sensitisation [96]. These cascades also finally lead to 
prostaglandin formation. A link to the p38 MAPK pathway 
has been demonstrated [97]. In addition to this indirect 
action through a downstream cascade, there is also evidence 
for a direct action of cytokines on nociceptors [98, 99]. 
Members of the CCL family also trigger hyperalgesia, and 
an effect in sensitizing TRPV1 has been shown for CCL2 
and CCL3 [100, 101]. Many other chemokines have been 
described [102]. 

Prokineticins 

 Two human proteins named prokineticin 1 and 2 and 
their corresponding G-protein-coupled receptors have been 
identified [103]. Systemic injection of a prokineticin receptor 
agonist induces a biphasic hyperalgesia [104], and the heat 
and capsaicin sensitivity of prokineticin receptor 1 knockout 
mice is lower than in wildtype, implying a tonic sensitizing 
effect on TRPV1 in vivo [105]. Prokineticin receptors are 
expressed in neurones and their activation sensitised TRPV1, 
suggesting a role for prokineticins in physiological 
inflammation and hyperalgesia [106]. 

Proteases 

 Proteases are released during injury and blood clotting, 
and act upon protease-activated receptors (PARs), a family 
of four G protein-coupled receptors, to regulate hemostasis, 
inflammation, pain, and repair. PARs are cleaved by 
proteases at a specific site near the extracellular N-terminus, 
unmasking a tethered ligand which is then able to bind to 
and activate the receptor. PAR2 seems responsible for 
sensitisation, it is localised in most nociceptive neurones, 
and PAR2 in particular seems to be important in sensitising 
neurones via PKC-dependent phosphorylation of TRPV1 
[107]. 

INTRACELLULAR SIGNALLING MECHANISMS 

 The previous section has dealt with a plethora of 
mediators released during inflammation. The number of 
intracellular signalling pathways activated by these 
mediators is, by contrast, much less. Phosphorylation of 
target membrane ion channels is a key driver of sensitisation; 
the key players here seem to be the serine/threonine protein 
kinases PKA and PKC, and the tyrosine kinases Src and 
MAPK, though important roles for other kinases no doubt 

remain to be discovered. Principal phosphatases currently 
known to drive dephosphorylation include the calcium-
dependent phosphatase calcineurin (PPP3, formerly PP2B) 
and the SHP tyrosine phosphatases [108]. 
Dephosphorylation normally follows activation and is often 
driven by increased intracellular calcium levels [109, 110]. A 
change in phosphorylation state can be accompanied with 
trafficking to or from the plasma membrane [73, 111, 112].  

Protein Kinase A  

 PKA is activated by pathways which activate adenylate 
cyclase, leading to the production of cAMP. Stable analogs 
of cAMP cause sensitisation in behavioural models [113] 
and in in vitro models using rat nociceptive afferent 
neurones [88, 114]. PKA catalytic subunits were shown to 
translocate to the plasma membrane when activated [115]. 
Phosphorylation by PKA sensitises TRP channels, and 
sodium, calcium and potassium channels (Table 1). 

Protein Kinase C 

 Activation of PKC can sensitise as well as activate 
nociceptors [116]. PKC has several calcium-dependent and -
independent isoforms with different contributions to 
sensitisation [117]. Of particular importance is PKCε, which 
sensitises heat-evoked activation of DRG neurones [118]. 
Subtype-specific antagonists and PKCε deficient mice 
support that this isoform is vital for acute inflammation 
[119]. One report found that PKCα was also involved in 
sensitisation of TRPV1 [120]. Systemic inhibition of PKCβ 
reduced diabetic hyperalgesia through reduction of cGMP in 
DRG neurones [121]. PKC activation sensitises capsaicin-
stimulated neuropeptide release [122]. It was demonstrated 
that PKC activation can reduce the temperature threshold of 
TRPV1, even to below body temperature, thus leading to 
tonic activation of pain-sensitive afferents [58, 123]. PKC is 
also involved in sensitisation in neuropathic pain models, 
including alcoholic, diabetic and chemotherapy-induced 
neuropathy [124-126]. 
 Members of the A-kinase anchoring protein (AKAP) 
family associate both PKA and PKC with their targets [127]. 
It has recently been shown that the AKAP79 isoform binds 
to both TRPV1 and TRPV4 and in this way maintains PKA, 
PKC and the phosphatase calcineurin in close proximity with 
their target serines and threonines. Downregulation or 
inhibition of binding of AKAP79 completely disrupts 
sensitisation via both PKA and PKC [128, 129]. These 
observations suggest that the binding of AKAP79 to TRPV1 
may be a “master switch” whose inhibition could be used to 
antagonise sensitisation via both the PKA and the PKC 
pathways. 

Src Kinase 

 The tyrosine kinase Src has recently been shown to play 
a key role in sensitisation of TRPV1. Binding of NGF to the 
TrkA receptor initiates several signalling cascades, amongst 
them the ras-MAPK pathway (see next section) and the 
PI3K-PKB-Src pathway. Src phosphorylates an N-terminal 
tyrosine in TRPV1, leading to a rapid increase in trafficking 
to the neuronal cell membrane and therefore to an enhanced 
response to activators of TRPV1 [73]. This pathway seems 
likely to explain the rapid increase (minutes) in membrane 
TRPV1 following exposure to NGF, while increased 
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expression following activation of the ras-MAPK pathway is 
responsible for more long-term sensitisation (days). 

Mitogen-Activated Protein Kinases (MAPK) 

 Kinases of the MAPK family (ERK, p38, and JNK) can 
contribute to nociceptor sensitisation, although their role in 
central pain processing is more prominent [130]. MAPK 
inhibitors alleviate hyperalgesia and allodynia in 
inflammatory pain models, though basal sensory threshold 
are little affected [131]. ERKs are activated in DRG 
neurones by NGF [132], by chemical and electrical 
stimulation [133] and by inflammation by Freund’s adjuvant 

[134]. Similarly, p38 MAPK in DRG neurones is also 
activated by NGF [135], by capsaicin and by thermal 
stimulation [136]. P38 and c-Jun are both activated in DRG 
neurones by inflammation [137, 138]. Both p38 and c-Jun 
aminoterminal kinases are activated by TNFα [139], and c-
Jun regulates expression of neuropeptides vasoactive 
intestinal peptide (VIP) and neuropeptide Y (NPY) in DRG 
neurones [140]. 

PIP2 

 Phosphatidyl-inositol 4,5-bisphosphate (PIP2) is an 
ubiquitous component in the plasma membrane. PIP2 levels 

Table 1. Summary of the regulation of the ion channels and intracellular pathways discussed in this review. ↑ denotes an 
activation or sensitisation, ↓ an inhibition or desensitisation, ↔ evidence that there is no regulation. ∅  indicates that we 
have found no report of modulation. In the case of conflicting evidence a combination of symbols is given. For calcium 
and potassium channels the affected channel subtypes are mentioned when known, or marked as NI (not identified) if 
currents were measured without clear identification of subtypes 

 PKA PKC Src MAPK PIP2 Inflammation 

TRPV1 ↑[115, 155] 
↑ 

[154, 156, 252] 
↑[72-74, 153, 158] ↑ [74, 78] 

↑[158, 253-256] 

↓[257] 
↑[258] 

TRPV4 ↑ [129] ↑[129, 259] ↑[260, 261] ∅ ∅ ↑[262, 263] 

TRPM8 ↓[177, 264] ↓[114, 177] ∅ ∅ ↑[143, 178, 265] ↔[266] 

TRPA1 ↑ [170] ∅ ∅ ↑ [266] 
↑[267] 

↓[171, 268] 
↑[266, 269] 

ASIC ∅ ↑[197, 270] ∅ ↑[77] ∅ ↑ [271, 272] 

P2X [33] 

↑indirect 

[33, 202, 273]  

↓[274] 

∅ ∅ ↑ P2X1 [275] ↑[276, 277] 

Nav1.7 
↑[278] 

↓ [221] 
↑ [221] ∅ ∅ ∅ ↑[208, 209, 279] 

Nav1.8 ↑[221, 230, 280] 
↑[230, 280, 281] 

↓[221] 
∅ ∅ ∅ ↑ [208, 209, 279] 

Nav1.9 ∅ ↑[230, 282] ∅ ∅ ∅ 
↑[279] 

↔ [208] 

Potassium 

↑ 

Kv1.2 [283] 

Kir1.1 [284] Kir2.1 
[285] 

↓ 

NI [233] 

K2P [286] 

↑ 

Kv3.4[287] 

↓ 

Kir2.1[285] 
Kir4.1/5.1[288] 

K2P [286] 

↓ 

Kv1.3 [289] 
∅ 

↑ 

Kir1-3 [290] 

↑ 

Kv1.2 [235] 

Calcium ∅ 

↑ 

NI[241, 291] 

Cav2.2 and 
Cav2.3[242] 

↓ 

[243, 244, 292] 

∅ ∅ 
↑ 

[293, 294] 
∅ 

HCN ∅ ↑ [295] ↑[296, 297] ↑[295] ↑ [298] ↑[299] 
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in the plasma membrane have been found to regulate the 
activities of several neuronal transporters and receptors 
[141], including sodium-proton exchangers, inward rectifier 
potassium channels, epithelial sodium channels, ryanodine-
sensitive calcium channels, several TRP channels, P2X 
channels and HCN channels (see Table 1). Probably the most 
significant regulation in the context of nociception is the 
enhancement of activity of TRP channels caused by 
elevations of PIP2 [142], and the consequent loss of activity 
when PIP2 levels are depleted, for instance by an elevation of 
intracellular calcium [143]. See further discussion below. 

MODULATION OF ION CHANNELS  

 The following section discusses ion channels thought to 
be of major importance for nociceptor sensitisation. 
Interestingly, many of them are rather selectively expressed 
in sensory neurones [144]. The IUPHAR nomenclature 
http://www.iuphar-db.org is used. 

TRP Channels 

 Members of the transient receptor potential (TRP) family 
have received a great deal of attention in the context of pain 
processing [145]. The name originates from the transient 
receptor potential found in the visual receptors of Drosophila 
melagnogaster with the trp mutations. The defective gene 
was later identified as the canonical TRP receptor, an ion 
channel with a characteristic ankyrin repeat motif in the N-
terminal cytoplasmic domain [146]. A large family of TRP 
channels has been identified [147]. This review focuses on 
the three thermally sensitive TRP channels TRPV1, TRPA1 
and TRPM8, which are expressed in somatosensory 
neurones [148] and are thought to be the main TRP ion 
channels involved in sensitisation.  
 TRPV1 is the founder member of the vanilloid group 
[149], and is activated by an wide variety of physical (heat 
>42°C, membrane stretch) and chemical stimuli [150]. 
Chemical activators are structurally diverse and include 
vanilloids such as capsaicin and resiniferatoxin, low pH, 
endogenous lipids and ethanol. The sensory role of TRPV1 
in intact animals is still not completely clear, because 
although it is clearly heat-activated and activation causes a 
burning sensation, deletion of TRPV1 has rather little effect 
on thermal thresholds in vivo [151, 152]. A pivotal role for 
TRPV1 in inflammatory heat hyperalgesia is, however, 
supported by a large body of evidence using TPRV1-
deficient mice [151, 152]. Phosphorylation of TRPV1 by 
PKA, PKC and src leads to sensitisation to a wide range of 
activating stimuli, including heat, capsaicin, low pH and the 
endogenous cannabinoid anandamide [118, 153, 154]. The 
respective phosphorylation sites for PKA and PKC have 
been identified [155, 156]. A previous proposal that 
sensitisation of TRPV1 could be explained by removal of 
PIP2 following activation of phospholipase C by 
inflammatory mediators such as bradykinin or NGF [157] is 
now not thought to be correct because application of PIP2 to 
inside out patches was found to enhance rather than reduce 
the activity of TRPV1 channels [158]. In addition to 
sensitisation of channels already located in the cell 
membrane, new TRPV1 channels can also be rapidly 
trafficked to the cell membrane via exocytosis from an 
intracellular store, following activation of the PI3K-Src 
cascade by mediators such as NGF and insulin [73, 112, 

159]. Long-term upregulation of expression of TRPV1, 
driven by growth factors such as NGF, and downstream by 
the ras-MAPK signalling pathway, are also likely to play a 
role in long-term thermal hyperalgesia [78, 160]. Evidence 
has been accumulating for the involvement of TRPV1 in a 
wide range of diseases, particularly in gastrointestinal, 
respiratory and bladder diseases [161]. Sensitisation of 
TRPV1 to a threshold below body temperature could explain 
ongoing nociceptive input and therefore pain in 
inflammatory conditions such as arthritis. TRPV1 has 
sufficient calcium conductance on its own to trigger calcium-
dependent mechanism like neuropeptide release without the 
contribution of voltage-gate calcium channels [162].  
 TRPA1 detects chemical irritants such as acrolein, a 
constituent of smoke, and agonists such as allyl 
isothiocyanate (mustard oil), allicin or formalin, all of which 
induce a burning or pricking sensation [163, 164]. 
Unsaturated electrophilic structures are a common motif and 
a corresponding covalent and irreversible activation 
mechanism, targeting intracellular N-terminal cysteine 
residues, has been described [165, 166]. The expression of 
TRPA1 is regulated by NGF [163]. Animals deficient in 
TRPA1 were less sensitive in several pain models [167]. A 
unique feature of TRPA1 is its direct gating by intracellular 
calcium, rendering TRPA1 a potential amplifier of other 
stimuli which reach the necessary calcium threshold [168, 
169]. Sensitisation of TRPA1 by bradykinin appears to 
involve both PLC and PKA pathways in sensory neurones 
[170]. The protease-activated receptor 2 sensitises TRPA1 
via reduction of membrane PIP2 levels [171]. The sensitivity 
of TRPA1 to cold has been debated [164, 168], but recent 
evidence supports a slow activation at low temperatures, 
which may have been missed by some temperature protocols 
[163, 172]. Both TRPV1 and TRPA1 are sensors of chemical 
irritants, and some algogens activate both. Such agonists still 
activate nociceptive neurones when either channel is 
individually deleted, but in double knockout animals the 
activation completely vanishes [173, 174].  
 TRPM8 was cloned by two groups [175, 176]. It is 
activated physically by cooling and by a variety of chemicals 
e.g. menthol. Recent behavioural studies show that activation 
of TRPM8 antagonises capsaicin-induced nociception [114]. 
TRPM8 is co-expressed with bradykinin and prostaglandin 
receptors, and application of the respective mediators 
reduced the TRPM8 response to cooling and lowered the 
threshold temperature via pathways thought to involve PKC 
and PKA [177]. PKC-dependent dephosphorylation of 
TRPM8 via protein phosphatase 1 (PP1) has also been 
proposed to inhibit TRPM8 [114]. PIP2 cleavage desensitises 
and PIP2 addition recovers TRPM8 activation, with the C-
terminal TRP box appearing to be the critical PIP2 
interaction site [178]. Mice deficient in TRPM8 have an 
impaired thermoception at least at near-ambient cool 
temperatures [179, 180], suggesting a role for TRPM8 in 
mediating innocuous cold perception. TRPM8 might also 
play a role in the nocifensive response to noxious cold [179]. 
In inflammation the temperature threshold of TRPM8 may 
be elevated and thus could explain cold pain at normally 
innocuous temperature [181]. The clinical role of TRPM8 is 
largely unknown. TRPM8 regulation has been reported in 
urogenital syndromes [182], suggesting a role for TRPM8 in 
these pathological states.  
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Other TRPs and Heteromers 

 In addition to TRPV1, TRPA1 and TRPM8, other TRPs 
appear to work in concert to induce sensitisation in 
pathological states. TRPV2 and TRPV3 both sensitise on 
repeated activation in the absence of intracellular calcium 
[183, 184], and can be sensitised, as is TRPV1, by 2-
aminoethoxydiphenyl borate [183, 185, 186]. TRPV4 can be 
sensitised by activation of PKC [129, 187], by low pH [188] 
and by nitric oxide [189]. Intracellular calcium levels trigger 
the calcineurin-dependent desensitisation of many TRP 
channels [109, 190]. Recently, TRPC channels were found to 
contribute to intracellular calcium homeostasis [191].  
 TRP channels are tetramers. Due to their similarity, the 
possibility of heteromer formation has been investigated 
[192]. In many neurones TRP channels are coexpressed, and 
heteromers could give rise to channels with novel properties, 
as demonstrated for TRPC channels [193]. Several TRP 
channels with currently unclear function but strong changes 
in post-injury expression could alter neuronal sensitivity by 
such a mechanism [194].  

ASIC Channels 

 Members of the ASIC family are activated by protons 
[195]. Local acidosis is observed during ischemia and 
inflammation and it is therefore tempting to attribute the pain 
caused by inflammation to activation of ASICs. Sensitivity 
to protons is not exclusive to members of this family. In 
skin, a lower pH sensitises all unmyelinated nociceptors to 
mechanical stimuli, whereas low-threshold mechanosensors 
are unaffected [51]. Proton-induced currents in DRG 
neurones are sensitised by nitric oxide, and the sensitisation 
was shown to depend on S-nitrosylation of ASICs at an 
external location rather than activation of soluble guanylate 
cyclase [196]. ASIC channels have been shown to be 
sensitised by PKC [197]. 

P2X Purinoceptors 

 Both P2X ion channels and P2Y G-protein coupled 
receptors (see discussion above) can modulate neuronal 
excitability [198]. In this section we discuss only the former. 
Application of ATP to human blisters caused pain [199]. 
P2X receptor isoforms 1–3 are expressed in sensory 
neurones and in the heart in humans [200]. Peripheral 
inflammation enhances both the potency and effectiveness of 
locally administered P2X receptor agonists [201]. Although 
all P2X receptors have a consensus sequence for PKC 
phosphorylation, several studies argue against a direct 
phosphorylation by PKC [202]. C-terminal Src inhibitory 
kinase inhibits P2X3 receptor by Y393 phosphorylation 
[203]. An indirect sensitisation via interleukin 1β is also 
caused by the P2X7 receptor, which is expressed in immune 
cells [204], which may be the basis of the reduced pain-
related behaviour and allodynia seen in P2X7 knockout 
animals [205].  

Sodium Channels 

 Nine sodium channels are found in humans, but only 
those important in DRG neurones are discussed in this 
review. The properties of sodium channels differ in their 
activation threshold and their time constants for inactivation 
and for recovery from inactivation [206]. In native DRG 

neurones Nav subtypes 1.1 and 1.6 were found preferentially 
in A-fibre neurones, while 1.7, 1.8 and 1.9 were 
preferentially located in C-fibre populations [207]. 
Inflammation increases the expression of subtypes 1.3, 1.7 
and 1.8 [208, 209]. Action potentials of nociceptors have a 
striking long duration and low maximum frequency [210]. 
 Some sodium currents have been recognised for many 
years to be insensitive to tetrodotoxin (TTX), which provides 
a useful tool to distinguish the involvement of different 
isoforms [211, 212]. The TTX-resistant sodium currents are 
carried by Nav1.8 and Nav1.9, which are found only in a 
subpopulation of sensory neurones, and Nav1.5 which is only 
expressed in cardiac cells [213]. TTX-resistant sodium 
currents in nociceptive neurones are enhanced by 
inflammatory mediators [214]. The alpha subunits of sodium 
channels have several phosphorylation motifs for PKA and 
PKC [215]. In sensory neurones the peak sodium currents 
are increased and the current voltage-relationship was 
reported to shift to lower membrane voltages (i.e. in such a 
way as to enhance the ease of excitation of the neurone) 
following phosphorylation by PKA [46, 216]. 
 NaV1.1 channels are inhibited by PKA activation [217]. 
Nav1.2 expression in sensory neurones is so low that the 
relevance of these channels is unclear, and in addition the 
sodium currents are inhibited by PKA and PKC, which does 
not favour a role in hyperalgesia [207, 218]. Nav1.7 produces 
a fast activating and inactivating current [219]. Due to its 
slow inactivation from the closed state, Nav1.7 is more likely 
to be activated by slowly rising generator potentials than 
other sodium channels and is therefore well suited to mediate 
the slow firing activity in nociceptors [220]. Nav1.7 currents 
are attenuated by activation of PKA and PKC. PKA does not 
change the steady-state voltage dependence, while PKC 
shifts it in depolarizing direction [221]. Nav1.7 DRG-specific 
knockouts showed reduced pain-related behaviour compared 
to wildtype mice [222]. Nav1.8 activates only upon strong 
depolarisation, as its threshold is some 20 mV positive to the 
thresholds of other sodium currents [223]. Nav1.8 has been 
shown to be the major contributor to the upstroke of action 
potentials in nociceptors and to account for a large part of 
the current in trains of action potentials [224]. Nav1.8 
currents are potentiated by activation of PKA [221, 225]. In 
contrast, PKC decreases Nav1.8 currents, and shifts the 
voltage dependence in a depolarizing direction [221]. Based 
on the phenotype of Nav1.8 knockout mice, the channel 
seems to be of minor importance for pain responses [226]. 
Nav1.9 is partially activated at the resting membrane 
potential, generating a small and persistent current; PGE2 
reduces the time-constant of activation and shifts the current-
voltage relationship of activation and inactivation in a 
negative direction [227, 228]. Nav1.9 knockout animals had 
normal mechanical and thermal thresholds, but had reduced 
inflammatory hyperalgesia and sensitisation by 
inflammatory mediators [229]. The sensitisation of Nav1.9 is 
mediated by PKC [230]. 

Potassium Channels 

 Potassium channels contribute to the background 
conductance in all neuronal cells. They are the largest family 
of ion-selective channels and can be categorized into four 
classes: voltage-gated, inwardly rectifying, tandem pore 
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domain and calcium-activated potassium channels [231]. A 
reduction in potassium channel conductance increases 
neuronal excitability and the probability of repetitive 
discharge [232]. The conductance of potassium channels can 
be reduced by pathways stimulating cAMP formation and 
PKA-mediated phosphorylation in rat sensory neurones 
[233]. Potassium channels properties have been shown to be 
modulated by PKA, PKC, Src, PIP2 (see Table 1) and the 
protein tyrosine kinase PYK2 [234]. NGF and PKA can also 
regulate the expression and intracellular distribution of 
potassium channels [235, 236]. Inward rectifier potassium 
channels can be modified by the second messenger-sensitive 
minK potassium channel protein [237]. 

Calcium Channels 

 Modulation of calcium influx into the cytoplasm by 
voltage gated calcium channels or calcium permeable 
channels affects neuronal excitability and promotes 
exocytosis of neuropeptides such as substance P and CGRP 
from nociceptive neurones. Norepinephrine, gamma-
aminobutyric acid (GABA) and 5-HT have been 
demonstrated to inhibit calcium influx and to shift the 
voltage-dependence of calcium channels [238, 239]. The ten 
known calcium channel subtypes are not identically 
regulated. Cav2.2 is most important for neurotransmission in 
unmyelinated neurones and is a target for antinociceptive 
drugs [240]. PKC activation rapidly increases calcium 
currents in sensory neurones [241], an effect which may 
have a complex origin as subtypes 2.2 and 2.3 are enhanced 
by PKC activation while 1.1-1.4 are inhibited [242-244]. 
Calcium channels can be rapidly inhibited by Gi-protein 
coupled receptors activated by opioids [245], which is 
mediated via the G-protein β/γ subunits [246]. An second 
mechanism which may play an important role in nociception 
is the activation of CaV3.1 (T-type) calcium channels by 
reducing agents and endogenous L-cysteine [247]. 

HCN Channels 

 Hyperpolarisation-activated cyclic nucleotide gated 
channels generate Ih pacemaker currents in the heart [248]. 
The hyperpolarisation-evoked current can be enhanced by 
cAMP and, to a lesser extent, by cGMP by direct binding to 
a C-terminal site, which causes a shift in channel activation 
to more positive membrane potentials [249]. Voltage-clamp 
studies in DRG neurones showed that large neurones 
expressed a fast, cAMP-insensitive Ih in large neurones, and 
that this current was abolished by genetic deletion of HCN1, 
while in small neurones a slower, cAMP-sensitive current, 
consistent with expression of HCN2, was seen [250]. In 
small neurones the enhanced generation of action potentials 
caused by exposure to PGE2 was found to be entirely 
attributable to the cAMP-sensitivity of Ih, and other factors 
such as modulation of Na currents (see above) played at 
most a marginal role [250]. For HCN2, the voltage-
dependent activation is shifted by intracellular pH which 
might increase the role in tissue acidosis [251]. In addition 
HCN channels can be sensitised by Src and PIP2 (see table 1) 
though the importance of this for nociceptors function is 
currently unknown. 

CONCLUSION 

 Sensitisation is a property unique to nociceptors – all 
other sensory receptors adapt to an intense or prolonged 

stimulus. The function of sensitisation is to enhance the 
urgency of a painful stimulus so that action is taken to 
preserve the integrity of the organism. As such it has been 
subjected to many millennia of evolution and has become a 
complex and multifaceted process. In this review we have 
outlined our current understanding of this vital process at the 
level of the peripheral sensory neurones. Sensitisation at the 
level of central pathways also has an important role to play 
but is beyond the scope of this review. We have identified 
three main stages of sensitisation: the production of 
inflammatory mediators which initiate sensitisation; the 
activation of intracellular signalling pathways; and the ion 
channel targets which ultimately modulate the electrical 
response of the nociceptor. Our knowledge in these areas 
will guide the development of future analgesics to control 
the pain associated with tissue damage and inflammation.  

ABBREVIATIONS 

5-HT = 5-hydroxytryptamine, serotonin 
AKAP = A-kinase anchoring protein 
ASIC = Acid-sensing ion channels 
cAMP = Cyclic adenosine monophosphate 
cGMP = Cyclic guanosine monophosphate 
CGRP = Calcitonin gene-related peptide  
DRG = Dorsal root ganglion 
EET = Epoxyeicosatrienoic acid 
ERK = Extracellular signal-regulated kinase 
HCN = Hyperpolarisation-activated cyclic nucleotide-

gated 
HPET = Hydroperoxyeicosatetraenoic acid 
IB4 = Isolectin B4 
MAPK = Mitogen-activated protein kinase 
NGF = Nerve growth factor 
NO = Nitric oxide 
PG = Prostaglandin 
PAR = Protease-activated receptor 
PI3K = Phosphoinositide 3-kinase 
PIP2 = Phosphatidyl-inositol 4,5-bisphosphate 
PKA = Protein kinase A 
PKC = Protein kinase C 
PLC = Phospholipase C 
TRP = Transient receptor potential  
TNFα = Tumor necrosis factor alpha 
TTX = Tetrodotoxin 
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