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Abstract: Cytokines are small proteins with a molecular mass lower than 30 kDa. They are produced and secreted on 
demand, have a short life span and only travel over short distances if not released into the blood circulation. In addition to 
the classical interleukins and the chemotactic chemokines, growth factors like VEGF or FGF and the colony stimulating 
factors are also considered cytokines since they have pleiotropic actions and regulatory function in the immune system. 
Despite the redundancy and pleiotropy of the cytokine network, specific actions of individual cytokines and endogenous 
control mechanisms have been identified. Particular local profiles of the classical proinflammatory cytokines are 
associated with inflammatory hypersensitivity and suggest an early involvement of TNFα, IL-1ß and IL-6. An increasing 
number of novel cytokines and the more recently discovered chemokines are being associated with pathological pain 
states. Besides acting as pro- or anti-inflammatory mediators increasing evidence indicates that cytokines act on 
nociceptors. Neurons within the nociceptive system express neuronal receptors and specifically bind cytokines or 
chemokines which regulate neuronal excitability, sensitivity to external stimuli and synaptic plasticity. A first step to-
wards a more mechanistic and individual pain therapeutic strategy could be avoidance of hypersensitive pain processing 
by either neutralization strategies for the proalgesic cytokines or by shifting the balance in favour of antialgesic members 
of the cytokine-chemokine network.  
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HYPERSENSITIVITY AND NOCICEPTOR SENSITI-
ZATION 

 Tissue injury and inflammation commonly cause hyper-
sensitivity of the affected body region, so that normally pain-
ful stimuli become more painful (hyperalgesia), and those 
usually associated with nonnoxious sensations evoke pain 
(allodynia). The neural bases for these sensory phenomena 
have been explored most extensively using heat injury and 
experimental arthritis as models. Heat and/or mechanical 
hypersensitivity is observed after burns, inflammation, nerve 
lesion and malignant tumour growth. In models of peripheral 
inflammation hypersensitivity has been attributed to sensiti-
zation of myelinated (Adelta) and unmyelinated (C) primary 
sensory neurons [1] that normally respond to potentially tis-
sue damaging (noxious) stimuli. Since the first report on 
primary afferent fibres that responded only to damaging 
stimulation of the skin and therefore were termed 
nociceptors [2] our knowledge on the function of these fibres 
and their association with pain has increased substantially. 
Detailed analyses of nociceptor function have been 
performed and strict criteria are available for phenotyping 
distinct classes of nociceptors in mice, rats and men [1, 3-6]. 
Nociceptors occupy a prominent functional position in fast 
information detection, transduction and transmission of po-
tentially noxious stimuli. They can undergo plastic changes 
and nociceptor sensitivity is modulated by a plethora of  
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mediators occurring in the extracellular space. These media-
tors activate ion channels or metabotropic receptors in the 
nociceptor membrane resulting in excitatory discharge or a 
drop of physical activation threshold frequently accompanied 
by an augmented response of single nociceptors to mechani-
cal, heat or cold stimuli. These alterations result in hypersen-
sitivity and/or ongoing pain [7, 8].  

ION CHANNELS FOR THERMAL AND MECHANI-
CAL NOCICEPTIVE TRANSDUCTION 

 In normal tissue, the sensation of heat pain occurs at a 
temperature of ~ 44°C. This correlates well with the activa-
tion threshold temperature of polymodal nociceptors and of 
the nociceptor-specific heat transducer transient receptor 
potential vanilloid receptor 1 (TRPV1 [9, 10]), a member of 
the thermoTRP family of ion channels [11, 12]. Nonetheless, 
nociceptors lacking TRPV1 have normal heat responses [13] 
and TRPV channel block with ruthenium red did not affect 
heat sensitivity of mechano-heat sensitive (polymodal) 
nociceptors, the most common nociceptor type, in vitro [14]. 
Other heat-sensitive ion channels must therefore be 
responsible for physiological transduction of heat stimuli. 
Thermosensitive TRPA1 so far has been found sensitive to 
cold stimuli (McKemy et al., 2002;Story et al., 2003), but 
possible candidates may be other members of the TRP 
superfamiliy, e.g. members of the TRPC subfamily which 
are also expressed in nociceptors [15-17]. The TRPC1 and 
TRPC6 ion channels co-operate with TRPV4 and may thus 
mediate mechanical hyperalgesia and nociceptor 
sensitization. However, it is well established that the 
capsaicin receptor TRPV1 is essential for the development of 
inflammatory hypersensitivity to heat stimuli in mice [18, 
19]. The sensitivity of TRPV1 to heat and capsaicin depends 
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on the phosphorylation status of the channel at intracellular 
serine/threonine or tyrosine sites [20-22] and this is regulated 
by a variety of inflammatory mediators including cytokines 
and chemokines (for review see [23, 24]). Intracellular sig-
nalling cascades are diverse but frequently converge on the 
activation of protein kinases (Fig. 1). Specific phosphoryla-
tion sites within TRPV1 intracellular sequence domains have 
been identified for PKC isoforms which are essential regula-
tors of ion channel function and trafficking ([25-28] and see 
also the chapter of Camprubi-Robles and co-authors in this 
issue). Protein kinases of the PKA or CaMK type may share 
these phosphorylation sites and regulate TRPV1 [29-33] and 
even crosstalk between different arms of the signalling 
pathways may be relevant, however, are to date not fully 
understood. Nonetheless, drugs targeting TRPV1 are consid-
ered promising novel analgesics [23, 34].  
 The enigma of “the” nociceptor specific mechanosensi-
tive ion channel so far has not unequivocally been resolved 
although a number of mechanosensitive ion channels has 
been identified (for review see [35]. Regarding the molecular 
correlates of mechano-nociceptor sensitivity several ion 
channels including members of the degenerin/ASIC family 
or the TRP family have been discussed as possible mecha-
nosensors (for review [36-38]). While some of the ASIC 

channels have been excluded as relevant channels for me-
chanical nociceptive transduction [39], some of the TRP 
channels expressed in nociceptive primary afferents are cur-
rently analysed by several groups. Recent data suggest a role 
in the detection of noxious mechanical stimuli for TRPA1 
[40, 41] which is also a potential target for modulation by 
chemokines and cytokines [42]. The TRPV4 channel may 
also contribute to the development of mechanical hyperalge-
sia of diverse etiologies, presumably as part of a mechanore-
ceptor signalling complex [43, 44]. It interacts with cy-
toskeletal components and members of the TRPC subfamily 
and is inhibited by the stretch-activated channel (SACs) in-
hibitor GsMTx-4. Intradermal injection of GsMTx-4 into the 
rat hind paw reversed mechanical hypersensitivity induced 
by intradermal injection of inflammatory mediators. In addi-
tion, single fibre recordings showed that GsMTx-4 reversed 
inflammatory mediator-induced decrease in mechanical 
threshold in half of sensitized C-fibres. Furthermore, 
GsMTx-4 reduced hypersensitivity to both mechanical stim-
uli in models of inflammatory and neuropathic pain, but did 
not affect baseline mechanical nociceptive thresholds [43-
45]. Therefore, TRPV4 may be relevant for mechanical hy-
persensitivity. Lastly, TRPC1, and TRPC6 are expressed in 
DRG neurons [15, 45, 46] and antisense RNAi to TRPC6, 
but not to TRPC1, reversed the mechanical hyperalgesia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Cytokines bind specific membrane receptors to regulate nociceptive ion channels in primary afferent nociceptors. Macrophages 
release cytokines, chemokines or growth factors which bind to membrane receptors or soluble receptors. Intracellular signalling cascades 
involving protein kinases phosphorylate ion channels and increase neuron excitability or sensitivity for natural stimuli. NGF: Nerve growth 
factor, FGF: fibroblast growth factor: VEGF: vascular endothelial derived growth factor, GM-CSF: granulocyte macrophage colony-
stimulating factor, TNFα: tumour necrosis factor α, IL-1ß: interleukin-1ß, IL-6: interleukin-6, sIL-6R: soluble IL-6 receptor, TTX: 
tetrodotoxin, TRPV1: transient receptor potential vanilloid 1 receptor channel, PKR: prokineticin receptor, p38 MAPK: p38 mitogen- 
activated protein kinase, PKA: protein kinase A, PKC: protein kinase C. 
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induced by a thermal injury. TRPC1 and TRPC6 channels 
may cooperate with TRPV channels to mediate mechanical 
nociceptor sensitization [45].  

HYPERALGESIAS ASSOCIATED WITH PAIN 
STATES WITH INFLAMMATORY COMPONENT  

 While acute pain serves as an essential alarm system to 
protect our body’s integrity, tissue injury including inflam-
mation, nerve lesion and cancer generate pathological pain 
states characterised by mechanical and/or thermal (heat, 
cold) hyperalgesia and/or allodynia in humans. A number of 
animal models have been developed to study the associated 
changes within the nociceptive system [47] and investigate 
peripheral mechanisms of thermal and mechanical hypersen-
sitivity [48]. Proinflammatory mediators which signal in-
flammation have been found to sensitize or excite nocicep-
tors and cause hypersensitivity in animal models [7, 49-53]. 
Many of the findings obtained on nociceptor pathophysiol-
ogy from animal models are translated into human pain 
models (for review see [54]). Regarding neuroimmune inter-
actions, cytokines have emerged as the most important link 
between the immune system and nociception. Since the first 
report on the interferons [55, 56] the cytokine family has 
gained a considerable number of new members. Among the 
cytokine gene products associated with proinflammatory and 
proalgesic effects are several families including TNF and 
members of its superfamily, IL-1alpha, IL-1beta, IL-6, IL-8, 
IL-15, IL-18, IL-33 and the more recently discovered 
chemotactic cytokines (chemokines).  

NEUROIMMUNE COMMUNICATION USING CY-
TOKINES AND CHEMOKINES 

 In general, cytokines are small proteins with a molecular 
mass lower than 30 kDa. They are produced and secreted on 
demand, have a short life span and only travel over short 
distances if not released into the blood circulation. In vivo 
concentrations are in the range of a few pg to ng per ml. 
They bind specifically to receptor molecules on the cell 
surface with binding constants between 10-12 and 10-10 M. 
Cytokines are a chemically diverse group of proteins but 
share common functions as regulators in the immune system. 
In addition to the classical interleukins and the chemotactic 
chemokines, growth factors like VEGF or FGF and the 
colony stimulating factors are also considered cytokines 
since they have pleiotropic actions and regulatory function in 
the immune system. Some cytokines and cytokine receptors 
are shedded by metalloproteinases (see below) which are 
also briefly reviewed in this article since they regulate 
cytokines and cytokine receptors in inflammation and cancer 
[57-59]. Despite the redundancy and pleiotropy of the 
cytokine network, specific actions of individual cytokines 
and endogenous control mechanisms have been identified. 
Particular local profiles of the classical proinflammatory 
cytokines are associated with inflammatory hypersensitivity 
and suggest an early involvement of TNFα, IL-1ß and IL-6 
[60-62]. Moreover, an increasing number of further 
proinflammatory cytokines and the more recently discovered 
chemokines are associated with pathological pain [63-66]. 
Besides acting as inflammatory mediators increasing 
evidence indicates that cytokines act on nociceptors [65, 67] 
where they specifically interact with neuronal receptors and 

ion channels regulating neuronal excitability, sensitivity to 
external stimuli and synaptic plasticity [67].  

Tumour Necrosis Factor TNFα 

 TNFα initiates the activation cascade of cytokines, 
chemokines and growth factors in the inflammatory response 
and therefore is generally accepted as the prototypic 
proinflammatory cytokine. Converging evidence points to a 
strong correlation between the number of macrophages, the 
level of TNFα production and the development of heat-
hyperalgesia in inflammatory and neuropathic animal models 
[68, 69]. Moreover, histology of experimental tumours 
shows a pronounced infiltration of the neoplastic tissue with 
macrophages and immune cells producing TNFα [70-72]. 
The TNFα antagonist etanercept® attenuates nociceptor 
sensitzation and heat and mechanical hypersensitivity in 
rodent cancer model [70, 73]. TNFα is accordingly 
synthesized and released in tumour tissue and induces heat 
hypersensitivity and pain by directly affecting nociceptors 
innervating the tumour area. Therefore, it is not surprising 
that, anti-TNFα treatment of refractory pain in selected pain 
patients significantly improved pain scores [74, 75]. Lastly, 
there is a strong link for TNF to the generation and 
maintenance of neuropathic pain [69, 76-79]. In animal 
models, injection of TNF induces mechanical and thermal 
hypersensitivity [70, 80, 81]. TNF seems to affect 
nociceptors directly, since sensitization of cutaneous 
nociceptors to heat also occurs in vitro at physiological pH 
which largely excludes secondary effects [70, 82, 83]. TNFα 
elicits neuronal discharges in dorsal root ganglion (DRG) 
neurons, and injured as well as neighboring uninjured 
afferent neurons exhibit an increased sensitivity to TNF [84]. 
TNFα binds to TNF receptor 1 (TNFR1) and TNF receptor 2 
(TNFR2) in the cell membrane. Both receptor subtypes are 
expressed by primary afferent nociceptors [70, 85] and 
upregulated following experimental nerve lesion or 
inflammation [68, 83, 85]. While neuropathic pain largely 
seems to depend on TNFα TNFR1 [85-90] TNFR2 seems to 
be more relevant for the development of cancer-induced heat 
pain and hyperalgesia since upregulation of TRPV1 and heat 
hypersensitivity is found in wild type but not in TNFR2-/- 
mice with experimental cancer [70].  
 Downstream of its receptors TNFα activates protein 
kinases including mitogen activated kinase p38/MAPK and 
PKC [91]. TNF-induced hypersensitivity to heat is mediated 
via p38 MAPK [92-94] and TNFα induces a fast sensitiza-
tion of responses to both heat and the specific TRPV1 ago-
nist capsaicin which requires activation of p38/MAP kinase 
and PKC [70]. Although PKC phosphorylates TRPV1 at 
specific sites and regulates channel function [95-97] some of 
the phosphorylation sites of the TRPV1 channel protein do 
not show preference for PKC, PKA or CaMKII and could be 
possible targets for phosphorylation by p38/MAPK [29, 30, 
98-100]. Besides regulating TRPV1 channel function at the 
cell membrane, TNFα also induces up-regulation of TRPV1 
expression [101]. Both mechanisms cooperate to sensitize 
nociceptors to heat. To provide nociceptors with even greater 
capacity to generate facilitated responses, cytokines also 
regulate nociceptor excitability (for review see [102]). TNF 
increases nociceptor excitability in a dual mode of action. 
First, via p38 activation it enhances TTX-resistant sodium 
currents which are a critical site of modulation underlying 
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hypersensitivity [103] and second, TNF suppresses sustained 
potassium currents which regulate membrane potential 
[104]. Both effects leave the nociceptive neuron in a hyper-
excitable state and increase the probability of action potential 
firing following an increased generator potential by TNFα.  

Interleukin-1ß 

 Inflammation induces hypernociception that is mediated 
by an initial release of TNF-α which triggers the subsequent 
release of IL-1ß [105, 106]. IL-1ß is the most studied 
member of the expanding IL-1 family because of its role in 
mediating autoinflammatory diseases (reviewed in [107]). 
More than any other cytokine family, the interleukin-1 (IL-1) 
family is closely linked to the innate immunity response 
[108]. The IL-1 family consists of two major agonistic 
proteins, IL-1α and IL-1ß, which are pleiotropic and affect 
mainly inflammation, immunity, and hemopoiesis. In their 
secreted form, IL-1α and IL-1ß bind to the same receptors 
and induce the same biological function but differ in their 
compartmentalization within the producing cell or the 
microenvironment. Thus, IL-1ß is solely active in its 
secreted form, whereas IL-1α is mainly active in cell-
associated forms (for review see [109]). Major cellular 
sources for IL-1ß in the context of pain include 
macrophages, glial cells and both sympathetic and sensory 
neurons [63, 110, 111]. Inflammatory hyperalgesia can be 
prevented by experimental administration of endogenous IL-
1 receptor antagonist (IL-1ra), and pain-associated behavior 
in mice with experimental neuropathy is reduced by 
neutralizing antibodies to IL-1 receptors [105, 112]. IL-1ß 
levels are locally increased in mice with experimental 
tumours. Osteosarcoma-induced thermal and mechanical 
hyperalgesia is inhibited by high doses of systemic anakinra, 
a neutralizing anti-IL1ß antibody but not when anakinra is 
given intrathecally. This suggests that some hyperalgesic 
symptoms observed in the mouse model of bone cancer pain 
are mediated by peripheral IL-1ß induced nociceptor 
sensitization and may be inhibited by antagonists of IL-1 
receptors type I [113]. However, the reduced mechanical 
hypersensitivity following treatment with exogenously given 
IL-1ra, the naturally occurring soluble IL-1 decoy receptor, 
is mainly explained by regulation of spinal nociceptive 
processing by IL-1ß [114-116]. Local injection of IL-1ß 
induces pain reflexes which might occur due to a secondary 
increase in prostaglandins [117].The peripheral pro-
nociceptive IL-1 action is likely mediated by a complex in-
tracellular signalling cascade and secondary production of 
nitric oxide, bradykinin or prostaglandins by which sensitiza-
tion or excitation of nociceptors may be explained [118-
122]. Expression of IL-1 receptor type I (IL-1RI) mRNA in 
sensory neurons suggests a possible direct influence of IL-1β 
on sensory processing [110, 123]. IL-1β facilitates heat-
evoked release of calcitonin gene-related peptide [82] and 
sensitizes heat-activated inward currents (Iheat) in sensory 
neurons via PKC and tyrosine kinases [123]. In addition, IL-
1ß acts in a p38 MAP kinase-dependent manner, to increase 
the excitability of nociceptors by regulating TTX-resistant 
voltage-gated sodium channels [124]. IL-1ß induced pain 
hypersensitivity is largely reduced in mice carrying a null 
mutation for the voltage-gated sodium channel Nav1.9 [125]. 
In addition, IL-1ß induced activation of c-Src kinase 
regulates preprotachykinin gene expression in rat sensory 

ganglia and substance P (SP) secretion [126]. Both, IL-1α 
and IL-1ß increase the neuronal content of SP. Interestingly, 
IL-1α was significantly more efficient than IL-1ß in inducing 
SP expression [127]. Taken together, all data suggest that 
IL-ß has a significant role in peripheral nociceptor 
sensitization which similar to TNFα converges on TRPV1 
regulation whereas mechanical hypersensitivity mainly 
depends on indirect signalling pathways.  

Interleukin-6 

 The classical proinflammatory IL-6 is an important neu-
ronal survival and neurite elongation factor [128-132] and 
neurons including nociceptors express signal transducer 
components present at the cell membrane [133, 134]. IL-6 is 
produced and excreted by immune cells including macro-
phages, glia cells and even neurons (reviewed in [135]). In-
creased levels of IL-6 have been correlated with sickness 
behaviour in humans [136] and treatment associated symp-
toms like pain, fatigue and others [137]. Apart from control-
ling immune cell interactions, IL-6 may account for the pain 
and hypersensitivity associated with inflammation, neuropa-
thy or cancer by directly regulating the gain of pain-sensing 
neurons. IL-6-/- mice present with reduced thermal 
hyperalgesia after carrageenan inflammation or nerve 
constriction [138-140]. Antisera neutralizing endogenous IL-
6 inhibit inflammatory hyperalgesia [141]. In neuropathic 
mice, nerve injury correlates well with upregulated IL-6 
levels and development of thermal hyperalgesia and 
allodynia [138, 142, 143]. Some tumours produce interleu-
kin-6 [144] and elevation of serum IL-6 levels is found in up 
to 60 % of lung cancer patients in advanced stages [145]. 
Mice with a selective deletion of the signal transducer pro-
tein gp130 in neurons develop significantly reduced levels of 
inflammatory and tumour-induced pain independent of the 
degree of inflammation or tumour growth [146]. In addition, 
IL-6 sensitises peripheral nociceptors to mechanical stimuli 
[147]. Both peripheral as well as central sites of action may 
also be relevant for the side effects of cancer chemotherapy 
which may increase plasma levels of IL-6 [148]. IL-6, al-
though involved in the generation of neuropathic pain states 
[149], may on the other hand protect against chemotherapy 
induced neuropathies without impairing anti-tumoural activ-
ity of the anti-mitotic drugs [150] and therefore global neu-
tralization of IL-6 signalling is controversially discussed. 
However, most experimental studies report pro-
inflammatory and pro-nociceptive roles for IL-6 [142, 151, 
152]. In most systems including sympathetic neurons, IL-6 
effects depend on the presence of the soluble IL-6 receptor 
(sIL-6R) [129] which after ligand binding heteromerizes 
with the signal transducer molecule gp130 that is also 
utilized by other cytokines of the same family, e.g. LIF [153, 
154]. IL-6/sIL-6R complex or Hyper-IL-6 (HIL-6), a fusion 
protein mimicking the effects of the IL-6/sIL-6R complex 
[128, 155], increase nociceptor responsiveness and induce 
thermal hypersensitivity [82, 134, 156]. A dual regulation of 
heat sensitivity by IL-6 and its soluble receptor sIL-6R has 
been reported [156]. The sensitization involves activation of 
the Janus tyrosine kinase (Jak), the adapter proteins Gab1 
and Gab2 and finally PKC-delta which regulates the heat 
transducer ion channel TRPV1 [134, 146]. Currently, the 
launch of inhibitors IL-6 or gp130 as a novel class of anti-
inflammatory drugs not only gives rise to great hopes for the 
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treatment of inflammation in rheumatoid arthritis [157-159] 
but may also alleviate its most quality of life worsening 
symptom, pain.  

OTHER PROINFLAMMATORY CYTOKINES 

Colony-Stimulating Factors 

 Granulocyte- and granulocyte-macrophage colony-
stimulating factors (G-CSF and GM-CSF) were originally 
defined as haematopoietic-cell growth factors, but have also 
been shown to act directly on mature myeloid cells. Recent 
data from animal models indicate that the depletion of CSFs 
has therapeutic benefit in many inflammatory and/or 
autoimmune conditions. As a result, early-phase clinical 
trials targeting granulocyte/macrophage colony-stimulating 
factor and macrophage colony-stimulating factor have now 
commenced (reviewed in [160]. CSFs mediate tumour nerve 
interactions and bone cancer pain in a mouse model [161]. 
Local injection of GM-CSF causes hypersensitivity to 
mechanical and thermal stimuli and GM-CSF sensitizes 
nerves to mechanical stimuli and capsaicin in vitro and in 
vivo [161]. Specific membrane receptors are expressed and 
are functional on nociceptive afferents [161, 162] and 
inhibition of G-CSF and GM-CSF signalling in vivo reduces 
tumour growth and nerve remodeling, and abrogates bone 
cancer pain [161].  
 Although a number of other proinflammatory cytokines 
have recently been associated with hyperalgesia, we are just 
beginning to understand their role in regulating nociceptor 
sensitivity. Frequently, their mode of action is indirect via 
control of downstream immediators of inflammation which 
in turn may affect nociceptive primary afferent. Particularly 
for the development of mechanical inflammatory 
hypersensitivity a crucial role for leukocytes has been 
reported and more recently discovered leukocyte products 
like IL-15, IL-18, IL-33 and the chemokine CINC-1 have 
come into focus of pain researchers. These cytokines 
frequently trigger sequential release of interferon-gamma, 
endothelin and prostaglandins which in turn affect 
nociceptor phenotypes [163-166].  

Chemokines  

 When tissue is invaded by immune cells chemokines are 
released as constituents of the inflammatory soup [167]. 
Chemokines are small chemotactic cytokines of about 10 kD 
which are secreted in damaged tissue not only by leucocytes 
but also by activated glia cells or neurons. More than 45 
chemokines have been identified and chemokine 
classification is based on the presence and position of cystein 
residues. The CC group has two cysteins next to each other, 
in the CXC group the two cystein residues are separated by 
one other amino acid, and the CX3C chemokine CX3CL 
(alias fractalkine) where the cysteins are separated by three 
other amino acid residues is the only member of its class 
[168]. Chemokine actions are mediated by seven-
transmembrane domain receptors that couple to the 
inhibitory G-protein Gi. Currently, nineteen chemokine 
receptors have been identified and they are expressed on a 
variety of cells, including immune cells, endothelial cells and 
neurons (for review see [169-172]). Chemokines promote 
immune cell migration, induce astrocyte migration and 
proliferation of microglia regulating nociceptive transmission 

in the spinal dorsal horn (for review see [167]. The 
chemokines CCL2 (and CXCL1) triggers calcitonin gene-
related peptide release by exciting nociceptive neurons [173, 
174], and induces mechanical hyperalgesia after intradermal 
injection [175]. In addition, it functions as a neuromodulator 
in neuropathic pain [175, 176]. The chemokine network is 
activated at multiple levels of the peripheral and central 
nervous system and has recently been identified as new 
target for pain relief [64]. Small molecule antagonists for 
particular chemokine receptors may therefore not only be 
promising for the treatment of acute and chronic 
inflammation [170, 177] but may also be of relevance in pain 
biology and therapy (for review see [64, 178].  

GROWTH FACTORS 

 A number of growth factors have been associated with 
the development of nociceptor hypersensitivity; however, for 
many of them we are just beginning to understand their role 
in pathological pain.  
 Nerve growth factor (NGF) was originally identified as 
an essential neuronal survival factor in the developing 
nervous system. In adults, NGF has a crucial role in 
generating pain and hyperalgesia. The expression of NGF is 
high in inflamed tissue and anti-NGF treatment provides 
effective pain control in animal models of inflammatory pain 
(for review see [179]. NGF and NGF receptor expression are 
high in immune cells and certain types of cancer [180-182] 
and more recently, crosstalk between NGF and TNFα has 
been associated with painful diseases, however, is not yet 
fully understood (for review see [183]). In inflammatory 
pain animals models, NGF is involved in thermal 
hyperalgesia and nociceptor sensitization [184, 185] and 
neutralization of NGF improves bone cancer pain and 
reduces up-regulation of ATF3 and other biochemical 
markers of nociceptor activation [186, 187]. NGF sensitizes 
nociceptive neurons to heat and capsaicin by binding to 
specific neurotrophin receptors activating PI3 and p38/MAP 
kinase dependent pathways [188] and rapidly increases 
TRPV1 expression in the nociceptor membrane [26, 27, 92]. 
Several pharmaceutical companies have developed 
approaches to antagonize NGF including NGF capture 
blocking the binding to its receptors, and NGF antagonism is 
expected to provide effective treatment for chronic pain 
states [179, 189].  
 Prokineticins PK1 (vascular endothelia growth factor, 
VEGF) and PK2 are tissue-specific angiogenic factors which 
share certain aspects of cytokines: PKs are highly expressed 
by neutrophils and other inflammatory cells and play a role 
in immune-inflammatory responses. PK-like hyperalgesic 
activity was demonstrated in extracts of rat inflammatory 
granulocytes and PKs seem to be new pronociceptive 
mediators in inflammatory tissues (for review [190]). 
VEGF/PK1 is significantly elevated in cancer patients [191] 
and it is secreted by islets and stellate cells in pancreatic 
cancer [192]. Nociceptors express prokineticin receptors 
PKR1 and PKR2 under the control of glia derived 
neurotrophic factor GDNF. The receptors for prokineticins 
are present in a fraction of peptidergic C-fibre neurons and in 
a fraction of myelinated A fiber neurons. PKR-expressing 
neurons also express TRPV1, and Bv8, an agonist oft both 
PKR1 and PKR2, has recently been shown to sensitize 
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TRPV1 channels [193]. Intraplantar injection of recombinant 
PK2 results in a strong and localized hyperalgesia with 
reduced thresholds to nociceptive stimuli. PK2 mobilizes 
calcium in dissociated dorsal root ganglion (DRG) neurons 
and mice lacking the PK2 gene display strong reduction in 
thermal and chemical nociception. However, PK2 mutant 
mice showed no difference in inflammatory response to 
capsaicin [194]. Mice lacking the PKR1 gene exhibit 
impaired Bv8-induced hyperalgesia, develop deficient 
responses to noxious heat, capsaicin and protons and show 
reduced thermal and mechanical hypersensitivity to paw 
inflammation, indicating a requirement for PKR1 signalling 
associated with activation and sensitization of primary 
afferent fibres [195]. This may also be the case for other 
growth factors including fibroblast growth factor [196] 
which has pleiotropic effects and at the same time may 
regulate nociception and pain sensation [197]. 

METALLOPROTEASES 

 Matrix Metalloproteases (MMP) are a family of enzymes 
which contribute to the degradation of the extracellular 
matrix and this is generally accepted to regulate leukocyte 
migration, inflammation, and wound healing [58, 198]. 
MMPs function as regulators of entire groups of cytokines 
and their downstream signalling pathways since they 
determine the degree of cytokine receptor activation by 
shedding of membrane bound receptor proteins or of target 
proteins relevant for nociceptor or immune cell function 
[199]. Studies propose the involvement of matrix 
metalloproteinases MMP-1,-2,-3,-9,-13 and ADAM-
17(TACE) and ADAMTS5 as major in vivo mediators of 
extracellular matrix degradation [200, 201]. They represent 
promising therapeutic targets to treat ostheoarthritic 
symptoms and more selective inhibitors are currently 
developed (for review see [202]). MMPs are also emerging 
as modulators of neuropathic pain [203-205]. Up-regulation 
of MMP-3 and following macrophage activation caused in 
the dorsal root ganglion found in animal models of 
neuropathic pain might be a significant event to trigger a 
series of reactions occuring along primary nociceptive 
afferents after nerve lesion [206]. Although little evidence is 
available for a direct role of MMPs at peripheral nociceptors, 
MMP inhibitors could be potentially interesting for pain 
therapy induced by inflammation and nerve lesion since they 
can control cytokine and chemokine substrates in health and 
disease. A significant role for MMPs is emerging for 
neuropathic pain [192, 207, 208] but cleavage of specific 
substrates and transsignalling by MMPs may be a more 
general mechanism for regulating nociceptor sensitivity by 
MMPs.  

CONCLUSION AND OUTLOOK 

 Severe pain persists in many patients even with high dose 
analgesic therapies. Individual variations in the severity of 
pain and in the responsiveness to treatment have been as-
sumed to result from either sociodemographic characteristics 
(age, sex, race, marital status), clinical health status (per-
formance status, comorbid conditions) or disease-related 
variables (stage of disease). Cytokines are strongly linked to 
inflammation, neuropathy and cancer and there is increasing 
evidence that the balance between proalgesic and antialgesic 
cytokines is relevant for the severity and persistence of the 

accompanying pain [209, 210]. Understanding the molecular 
epidemiology of pathological pain offers the opportunity of 
identifying specific genes involved in the cytokine network 
that could be used for a more personalized treatment of pain. 
A first step towards a more mechanistic pain therapeutic 
strategy could be avoidance of generation of hypersensitive 
pain processing by either neutralization strategies in order to 
prevent triggering the proinflammatory cytokine avalanche 
or by shifting the cytokine balance in favour of anti-
inflammatory cytokines.  
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