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Abstract: Trypanosomatids cause many diseases in and on animals (including humans) and plants. Altogether, about 37 

million people are infected with Trypanosoma brucei (African sleeping sickness), Trypanosoma cruzi (Chagas disease) 

and Leishmania species (distinct forms of leishmaniasis worldwide). The class Kinetoplastea is divided into the subclasses 

Prokinetoplastina (order Prokinetoplastida) and Metakinetoplastina (orders Eubodonida, Parabodonida, Neobodonida and 

Trypanosomatida) [1,2]. The Prokinetoplastida, Eubodonida, Parabodonida and Neobodonida can be free-living, com-

mensalic or parasitic; however, all members of theTrypanosomatida are parasitic. Although they seem like typical protists 

under the microscope the kinetoplastids have some unique features. In this review we will give an overview of the family 

Trypanosomatidae, with particular emphasis on some of its “peculiarities” (a single ramified mitochondrion; unusual mi-

tochondrial DNA, the kinetoplast; a complex form of mitochondrial RNA editing; transcription of all protein-encoding 

genes polycistronically; trans-splicing of all mRNA transcripts; the glycolytic pathway within glycosomes; T. brucei vari-

able surface glycoproteins and T. cruzi ability to escape from the phagocytic vacuoles), as well as the major diseases 

caused by members of this family. However, the present review does not cover all trypanosomatids; for example, the in-

sect trypanosomatids are underrepresented here. On the other hand, reviews on this particular group of parasites have been 

written by experts in the field [3-12]. 
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INTRODUCTION 

 Trypanosomatids are evolutionarily extremely successful, 
not only because they are found over nearly the entire planet 
and parasitize all groups of vertebrates, several species of 
invertebrates (including many insects) and even plants [13-
16], but also because there is sound evidence that their an-
cestors date back to about 100 million years ago [2,17,18]. 
Although there are roughly a thousand described monox-
enous trypanosomatids from insects, it is expected that hun-
dreds of thousands of insect trypanosomatids will eventually 
be described, especially because new lines of evidence indi-
cate that insects are the ancestral hosts for these parasites 
[2,5,15,19,20]. 

 The nine genera of trypanosomatids recognized to date 
(the monoxenous Crithidia, Blastocrithidia, Herpetomonas, 
Wallaceina and Leptomonas, as well as the heteroxenous 
Trypanosoma, Leishmania, Endotrypanum and Phytomonas) 
were classified mostly by morphological features in conjunc-
tion with host relationships. The morphotypes that character-
ize individual genera are cell shape, dimensions and the posi-
tion of the complex kinetoplast-flagellar pocket relative to 
the nucleus [15,21] (Fig. 1). These morphotypes can be al-
tered considerably by the environment, in vitro cultivation or 
the addition of drugs [15,19,22-24]. 
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Fig. (1). The most common morphotypes of trypanosomatids. A: 

promastigote; B: opisthomastigote; C: amastigote; D: epimastigote; 

E: trypomastigote; F: choanomastigote; G: spheromastigote. Dia-

gram based on Hoare and Wallace [21]. 
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 Biochemical, nutritional and ultrastructural characteris-
tics were added to the classical morphological traits to dis-
tinguish trypanosomatid species [25]. Such biochemical fea-
tures include the complement of cell surface polysaccha-
rides, sialidases and proteolytic enzymes and the content and 
number of acidocalcisomes. These characteristics, either 
alone or in combination, are sufficient to distinguish between 
strains and species, but they usually fail to distinguish be-
tween genera [15,26-29]. However, molecular markers in-
volving highly conserved gene sequences (such as small 
subunit rRNA, 5S rRNA, spliced-leader RNA or a few pro-
tein-coding genes) are especially useful for distinguishing 
between genera [2,15,20,30-32].  

 Some developmental stages of trypanosomatid protozoan 
parasites are well suited to cultivation in vitro; one such 
stage is the proliferative stage found in the gut of inverte-
brate hosts [33]. The most common of these stages is the 
promastigote, which is the insect stage of Leishmania spe-
cies and the insect trypanosomatid morphotype that grows 
best in vitro (Fig. 1A). An exception is Crithidia spp., whose 
most commonly observed stage is the choanomastigote (Fig. 
1F) [34]. With respect to African trypanosomes, the slender 
stage (proliferative in the bloodstream of mammalian hosts) 
and the procyclic form (proliferative in the fly midgut) grow 
well in vitro and have a trypomastigote shape (Fig. 1E) [35]. 
Most studies of T. cruzi were performed using the epimas-
tigote form (Fig. 1D), which is the proliferative stage in the 
insect host [36]. The life cycles of T. cruzi, T. brucei, 
Leishmania spp. and Phytomonas spp. are discussed later in 
this review. 

 The most significant morphological and physiological 
aspects of trypanosomatids are briefly described here. We 
divide these aspects into two groups: “common” characteris-
tics, which are traits that are present in other groups of or-
ganisms yet are somewhat unique; and “peculiar” features, 

which are characteristics that thus far have been found only 
among the kinetoplastids [37]. It is noteworthy that many 
“unique” biological phenomena first discovered in trypano-
somes are in fact more widespread, but cryptic, in other eu-
karyotes. Examples of this include trans-splicing of nuclear 
RNAs, glycosylphosphatidylinositol (GPI)-anchored mem-
brane proteins and RNA editing. All were first described in 
trypanosomatids but were subsequently shown to be general 
traits of eukaryotes [38]. Unless otherwise noted, all of these 
features will be described herein using T. cruzi as a model, 
as shown in the diagram of the fine structure of the epimas-
tigote form (Fig. 2) [39]. 

THE “COMMON” CHARACTERISTICS  

Cell Surface 

 The cytoplasmic membrane with its constituents is the 
interface between protozoa and their environment. The cell 
membrane of all examined trypanosomatids is similar to that 
of other eukaryotes, except for the fact that there are subpel-
licular microtubules firmly attached to the inner surface of 
the membrane. The cell surfaces of all trypanosomatids are 
coated with GPI-anchored proteins and/or free GPI glycolip-
ids, both of which form protective surface layers and/or me-
diate crucial host-parasite interactions [40,41]. Intracellular 
trypanosomatids, such as T. cruzi and Leishmania, initially 
interact with cell surfaces in vertebrate hosts and then with 
the membrane of the parasitophorous vacuole. Trypanoso-
matids also interact with the epithelial intestinal cells of in-
vertebrate hosts [42-44]. 

Membrane Transporters 

 Membrane transporters are proteins that possess many 
alpha helical transmembrane segments and mediate the trans-
location of various compounds through biological mem-
branes. Some molecules that are small and relatively non-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Main structures and organelles found in the epimastigote form of Trypanosoma cruzi. The structures and organelles are de-

picted as detected in thin sections by transmission electron microscopy. Diagram adapted from De Souza [39] with permission from the 

author. 
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polar, such as oxygen, nitrogen and carbon dioxide, can pass 
through lipid bilayers. All other molecules are too large 
and/or hydrophilic to diffuse across membranes, so they 
need transporters to facilitate their passage [45].  

 Membrane transporters perform a large number of tasks, 
such as taking up nutrients, expelling metabolites, establish-
ing ion gradients, translocating compounds from one intra-
cellular compartment to another and taking up or exporting 
drugs [46,47]. Not surprisingly, about 2 to 2.5% of the pro-
teins encoded by the genome of trypanosomatids have been 
annotated as membrane transporters; some of those are de-
velopmentally regulated so that the parasites can cope with 
severe changes in their environment during the course of 
their life cycle [45,48,49]. 

Flagellum 

 The flagellum is a motility organelle that moves the para-
site forward by wave-like beats of the microtubule-based 
flagellar axoneme [50,51]. All of the stages of trypanosomat-
ids possess one flagellum per cell, even the amastigote form. 
The flagellum emerges from a basal body in the cytoplasm 
through a prominent invagination of the plasma membrane 
called the flagellar pocket [50,51]. Along the length of the 
cell, the flagellum and cell body are held in close apposition 
by a network of cytoskeletal and membranous connections 
that collectively make up the flagellum attachment zone 
(FAZ) [52]. The flagellum has a typical array of one central 
microtubule pair and nine peripherally arranged microtubule 
doublets [53]. A fibrillar structure within the flagellum 
known as a paraflagellar or paraxial rod is a peculiar struc-
ture in the flagellum of trypanosomatids; this rod is made of 
a complex matrix of filaments connected to the axoneme and 
is essential for the parasite’s survival [53-57]. The flagellar 
membrane, the flagellar pocket and the pellicular plasma 
membrane are morphologically, chemically and functionally 
distinct and have highly diverse biological functions; none-
theless, these three membranes are physically connected and 
all comprise part of the plasma membrane [50].  

 In addition to the importance of the flagellum for parasite 

motility, it is also involved in host-parasite interactions, cell 

morphogenesis, cell division and evasion from the host-

immune system [52]. Pathogenic features of sleeping sick-

ness, Chagas disease and leishmaniasis are directly linked to 

the migration and binding of the parasites to specific host 

tissues, which is decisive for disease progression [52,58-60]. 

Moreover, the flagellum is essential for these parasites to 

complete each respective life cycle within the insect host, 

both for traveling and attaching to target tissues [52,61,62]. 

 Intercellular signaling cross-talk between trypanosomat-

ids and their hosts directs the movements and developmental 

transformations of the parasite within specific host com-

partments [52], both in mammalian [57,63,64] and insect 

hosts [52,65-67]. Recent studies have localized cyclic nu-

cleotide and calcium signaling pathways to the flagellum 

[52,68-71], suggesting that the flagellum provides a signal-

ing platform for environmental sensing [52]. Intracellular 

signaling cross-talk between the flagellum and several or-

ganelles and the structures to which it is connected, e.g., the 

FAZ, the flagellar pocket, the kinetoplast and the mitochon-

drion, directs their arrangement and organizes them for seg-
regation during cytokinesis [72].  

 The flagellar pocket is the exclusive site of endocytosis 
and secretion in trypanosomatids [73] and it has long been 
speculated that flagellar beating influences entry into the 
flagellar pocket [52]. Flagellar motility mutants of blood-
stream-form T. brucei are not able to engulf VSG complexed 
with immunoglobulin (Ig) [74]. As clearance of VSG-Ig pro-
tein complexes from the parasite surface is crucial for avoid-
ing destruction by the host immune system, this result 
strongly suggests that flagellar motility contributes to im-
mune evasion and persistent infection [74].  

Cytoskeleton 

 In all trypanosomatids, subpellicular microtubules are 
distributed throughout the protozoan body, except in the 
flagellar pocket region. The subpellicular corset consists of 
microtubules that are connected to one another and to the 
plasma membrane. The microtubules form a helical pattern 
along the axis of the cell underlying the plasma membrane 
together with a regularly spaced intermicrotubule [39,75,76]. 

 Microfilaments have never been observed in the cyto-
plasm of T. cruzi. On the other hand, biochemical and ge-
nomic analyses identified a potential role for an actin-myosin 
system in T. cruzi, as this protozoan possesses an expanded 
myosin family and a CapZ F-actin capping complex in addi-
tion to an actin gene [77-79].  

Acidocalcisomes 

 Acidocalcisomes are acidic calcium-storage organelles 
that were first described in T. brucei and T.cruzi [80,81]. 
Later, acidocalcisomes were also described in the protozoan 
parasites Toxoplasma gondii [82] and Plasmodium spp. [83], 
in the green alga Chlamydomonas reiinhardtii [84], in the 
slime mold Dictyostelium discoideum [85], in bacteria 
[86,87] and in human platelets [88]. Acidocalcisomes were 
morphologically identified by light microscopy more than 
one hundred years ago as a different kind of granule [89]. 
These organelles are observed in Giemsa-stained prepara-
tions and with the use of dyes that accumulate in acidic 
compartments [84-88,90].  

 The morphology and the number of acidocalcisomes vary 
from species to species and among the developmental stages 
of the same species [90,91]. By transmission electron mi-
croscopy (TEM), T. cruzi acidocalcisomes appear as round 
electron-dense structures with an average diameter of 0.2 m 
and their distribution varies among the three developmental 
stages of the parasite. X-ray microanalysis, 

31
P-NMR and 

biochemical techniques indicate the presence of Na, Mg, S, 
Cl, K, Ca, Zn, O, Fe and P (the latter concentrated in the 
form of inorganic phosphate and as short-chain polyphos-
phate (poly P)) [92]; amino acids [93]; and various enzymes 
[84,94]. The membrane of T. cruzi acidocalcisomes contains 
a specific glycoinositolphospholipid (GIPL) and low concen-
trations of 3 -hydroxyesterol and as observed in other organ-
isms, a vacuolar ATPase (V-H

+
ATPase) and a vacuolar py-

rophosphatase (V-H
+
PPase) that establish the H

+
 gradient; 

transporters (for basic amino acids, phosphate (Pi), pyro-
phosphate (PPi) and ions such as Ca (Ca

2+
-ATPase), Mg, Zn 

and Fe); exchangers (Na
+
-H

+
-exchanger; Ca

2+
-H

+
-
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exchanger); and channels (a Cl
-
 channel and a water channel 

or aquaporin) [95].  

 The different functions attributed to acidocalcisomes 
include: phosphorous storage (which may be involved in 
environmental stress response, differentiation [96] and/or 
osmoregulation [88,97,98]); the storage of cations (mainly 
calcium, which is related to the host cell invasion process 
[99,100]); and pH homeostasis due to the generation of H

+ 

from the hydrolysis of polyphosphate. Due to the importance 
of acidocalcisomes in trypanosomatid metabolism and their 
unique features observed in different organisms, this organ-
elle is considered an important target for the development of 
new drugs [101,102]. 

Nucleus 

 The nucleus is enveloped by a typical porous membrane, 
which encloses a nucleolus and condensed chromatin dis-
persed throughout the nucleoplasm [103-105]. During the 
division process, the nuclear membrane remains intact, in-
tranuclear microtubules appear, the chromatin disperses and 
dense plates appear, whose number varies depending on the 
trypanosomatid species [104]. Still, there is no evidence that 
these plates correspond to chromosomes, which have thus far 
been detected only using biochemical/molecular biological 
approaches [106].  

 A combination of scaffolds, synteny maps and end se-
quences from T. cruzi bacterial artificial chromosome (BAC) 
libraries was used to organize the majority of T. cruzi contigs 
into chromosome-size assemblies [107,108]. Additionally, a 
set of chromosomes was validated experimentally via South-
ern blot analysis using individual genes as probes to confirm 
the predicted organization of each chromosome. Using this 
approach, 41 pairs of chromosomes were assembled; this 
number is in agreement with the predicted chromosome 
number based upon pulse-field gel analysis [108]. 

Endosymbionts 

 Bacterial endosymbionts live in various plants, animals 
and protozoa and are especially relevant because they likely 
represent a transitional stage between bacteria and organelles 
such as mitochondria and chloroplasts [109]. Bacterial endo-
symbionts have been observed in some insect trypanosomat-
ids of the genera Crithidia, Blastocrithidia and Herpeto-
monas [109].  

 Trypanosomatid endosymbionts possess two membranes; 
one corresponds to the plasma membrane, which is in con-
tact with the bacterial matrix and the other is an outer mem-
brane that faces the host protozoan cytoplasm [3]. The sym-
biont matrix contains ribosomes, filamentous genetic mate-
rial, proteins, enzymes and metabolic intermediates that sup-
plement essential biosynthetic pathways of the host proto-
zoan, such as heme, purines, numerous amino acids and vi-
tamins [11,109]. Recently, Motta et al. [110] found that dur-
ing Crithidia deanei cell division the endosymbiont repli-
cates before the basal body and kinetoplast segregations and 
that the nucleus is the last organelle to divide, before cytoki-
nesis. Taking into consideration that the endosymbiosis in 
trypanosomatids is a mutualistic relationship, which resem-
bles organelle acquisition during evolution, these findings 
can be considered an excellent model for the understanding 

of mechanisms related to the establishment of organelles in 
eukaryotic cells [110]. 

THE “PECULIAR” FEATURES 

Glycosomes 

 Trypanosomatids harbor numerous genes sharing appar-
ent common ancestry with plants and/or bacteria [111,112]. 
Many products of these horizontally acquired genes now 
function in glycosomes, which are found only in members of 
the class Kinetoplastea. Glycosomes are spherical structures 
with a protein-dense matrix surrounded by a single phos-
pholipid bilayer and containing no DNA [114,115]. Al-
though glycosomes are evolutionarily related to the perox-
isomes of higher eukaryotes and the glyoxysomes of plants 
[114,115], glycosomes are distinct from peroxisomes be-
cause they harbor the glycolytic pathway, which is the 
mechanism that allows the conversion of glucose into pyru-
vate, which in trypanosomatids is more efficient than in most 
other eukaryotes [14]. Ardelli et al. [113] have also identi-
fied glycosomes and the glycolytic enzymes hexokinase, 
fructose-1,6-biphosphate aldolase, triosephosphate isome-
rase, glucosephosphate isomerase and glyceraldehyde-3-
phosphate-dehydrogenase associated with this organelle in 
pathogenic and nonpathogenic strains of the bodonid Cryp-
tobia salmositica. The trypanosomatid glycosomal proteome 
of L. major, T. brucei and T. cruzi confirmed that gly-
cosomes contain most of the glycolytic enzymes [116-118]. 
The other divergent feature of trypanosomatid glycosomes is 
the absence of catalase, a characteristic peroxisomal enzyme 
[119]. In the pathogenic haemoflagellate bodonid C. sal-
mositica, however, catalase is found in the glycosomes 
[113]. On the other hand, the presence of the enzymes neces-
sary for the initial steps in the production of phosphoglycer-
ate from glucose or glycerol in the glycosomes is shared 
among trypanosomatids [91,115,119,120] and the bodonid 
C. salmositica [113], which contrasts with other eukaryotes, 
in which this pathway occurs in the cytoplasm.  

 Glycosomes, the cytosol and the mitochondrion cooper-
ate in the energy metabolism of kinetoplastids. The insect 
stages of all human-pathogenic trypanosomatids (T. brucei, 
T. cruzi and Leishmania spp.) seem to be capable of metabo-
lizing both amino acids and sugars for their free energy sup-
ply; they have a large repertoire of enzymes for carbohydrate 
metabolism, including the glycolytic pathway and a well-
developed mitochondrion with a respiratory chain-linked 
system for oxidative phosphorylation [121-124]. Gly-
cosomes also have other functions related to the biosynthesis 
of pyrimidines, purine salvage pathways and the synthesis of 
ether lipids and -oxidation of fatty acids [14,119,125]. 
Amastigote forms of Leishmania spp. and T. cruzi, as well as 
insect-stage parasites (called the procyclic form in T. brucei, 
the epimastigote form in T. cruzi and the promastigote form 
in Leishmania), have a more elaborate energy- and carbohy-
drate-metabolic network. In these cells, other ATP-
dependent kinases (e.g., phosphoenolpyruvate carboxykinase 
and pyruvate phosphate dikinase) may be found in the gly-
cosomes, whereas phosphoglycerate kinase (PGK) is relo-
cated to the cytosol [125]. Glycosomes seem to be crucial 
organelles for the bloodstream form of Trypanosoma brucei, 
as this form of the parasite is exclusively dependent on gly-
colysis for ATP generation [124]. 
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 Because of the absence of DNA and protein translational 
machinery in glycosomes, glycosomal proteins are encoded 
in the nucleus, synthesized by cytosolic ribosomes and then 
imported into glycosomes [120]. Thus, glycosomal proteins 
need to be tagged by post-translational modifications in or-
der to reach and bind to their target glycosomal receptors 
[126]. 

Mitochondria  

 Mitochondria harbor systems for energy production 
through oxidative phosphorylation, synthesize key metabo-
lites and iron-sulfur clusters and can be the reservoir for fac-
tors that amplify signals for programmed cell death [39,106]. 
It is worth mentioning that in order to synthesize mitochon-
drial proteins, all the mitochondrial tRNAs of trypanosomat-
ids are imported from the cytoplasm [127-129]. In cells of 
multicellular organisms, the number of mitochondria is vari-
able but often quite large. The ultrastructure of mitochondria 
in protists is usually peculiar. In addition to particularities in 
the density of the matrix and the number of cristae, individu-
als in the phylum Apicomplexa and in the order Trypanoso-
matida have a single ramified mitochondrion [9,39,130] (Fig. 
2). In trypanosomatids, separation of the replicated mito-
chondrial DNA is directly linked to the segregation of the 
flagellar basal body and mitochondrial division seems to be a 
checkpoint for cytokinesis [38,131]. 

 In the order Trypanosomatida, the mitochondria are dis-
tributed in branches under the subpellicular microtubules and 
are dilated at regions in which kinetoplast DNA (kDNA) is 
present. The volume of each mitochondrion depends on en-
vironmental and nutritional resources [132,133]. In Trypano-
soma brucei, mitochondrial volume and activity are higher in 
parasites in the midgut and proventriculus where glucose 
levels are low but are lower in metacyclic salivary gland 
forms. They reach their lowest values in slender forms from 
blood, where glucose levels are high and thus favor direct 
glycolysis [134,135]. In contrast, the relative volume occu-
pied by glycosomes varies in the opposite manner. This 
volumetric counterbalance has been observed in all genera 
analyzed so far [136,137].  

 There are two terminal oxidases in the mitochondrial 
electron transport chain. One is the usual cytochrome oxi-
dase, which is a cyanide-sensitive oxidase and the other is a 
cytochrome-independent, salicylhydroxamic acid-sensitive 
alternative oxidase [9,138-140]. The bloodstream form of T. 
brucei uses glucose as its energy source and suppresses 
many mitochondrial activities. The bloodstream-form mito-
chondria lack cytochromes, so that respiration in this form is 
exclusively dependent on the cytochrome-independent try-
panosome alternative oxidase (TAO) [138,141]. On the other 
hand, the procyclic form that lives in the insect’s midgut 
have a well-developed mitochondrion with a fully functional 
cytochrome-dependent respiratory system and a reduced 
level of TAO. The procyclic-form mitochondria produce 
ATP by both oxidative and substrate-level phosphorylation 
[138,142]. On the other hand, bloodstream-form mitochon-
dria do not produce ATP but hydrolyze ATP to maintain the 
inner membrane potential, analogous to the reactions that 
happen in the plant mitochondrial system [138,143-146]. 

 In higher eukaryotes, the electron-transfer chain is a 
functional sequence of four major multi-subunit complexes 

that are randomly dispersed in the inner mitochondrial mem-
brane and designated NADH-coenzyme Q reductase (com-
plex I), succinate-CoQ reductase (complex II), ubiquinolcy-
tochrome c reductase (complex III) and cytochrome c oxi-
dase (complex IV). The enzyme complexes are connected by 
two mobile redox-active molecules: ubiquinone and cyto-
chrome c [147,148]. In T. brucei procyclic forms, ubiqui-
none can carry electrons from succinate dehydrogenase 
(complex II) either to the cytochrome-mediated respiratory 
chain (involving cytochrome c reductase (complex III), cyto-
chrome c and cytochrome c oxidase (complex IV)) or to 
TAO [142,148]. On the other hand, ubiquinone can poten-
tially carry electrons from NADH:ubiquinone oxidoreduc-
tase (complex I) and alternative NADH dehydrogenases ei-
ther to complex III, complex IV or TAO [149-151]. Al-
though a multisubunit complex I has recently been character-
ized in Phytomonas serpens, the presence of a typical com-
plex I in T. brucei is controversial [149]. Hypothetically, 
complex I may be smaller and highly divergent from its 
equivalents in higher eukaryotes, or T. brucei may have by-
passed the need for complex I by using an NADH-fumarate 
reductase to oxidize mitochondrial NADH, thereby produc-
ing succinate as a substrate for complex II [149,152]. 

 Most of the trypanosomatid mitochondrial proteins are 
synthesized in free cytoplasmic ribosomes and then imported 
into the organelle [38]. Many other proteins are synthesized 
within the mitochondria, but as trypanosomatid mitochon-
drial genomes have lost all tRNA genes, they need to import 
the entire set of mitochondrial tRNAs [127]. All mitochon-
drial tRNAs in trypanosomatids derive from eukaryotic-type 
cytosolic tRNAs that need to function in the context of the 
bacterial-type translation system of mitochondria [127-129]. 
In Leishmania tropica, the RNA import complex (RIC) in-
duces the transport of tRNAs across natural and artificial 
membranes [153]. RIC is a multi-subunit protein complex 
from the mitochondria that can also act as an efficient deliv-
ery vehicle for tRNA and other small RNAs into mitochon-
dria within intact mammalian cells [153].  

 In trypanosomatids, mitochondrial tRNAs and their cyto-
solic correspondents originate from the same nuclear genes. 
However, due to compartment-specific post-transcriptional 
nucleotide modifications, cytosolic and imported mitochon-
drial tRNAs are often physically different [127]. The tRNAs 
of trypanosomatids are subject to extensive mitochondrion-
specific modifications, which include methylation, thiolation 
and C to U editing [31,127,154,155]. Using inducible ex-
pression of a tagged tRNA

Glu
, Bruske et al. [127] showed 

that it is mainly the thiolated form that is imported to the 
mitochondrion in vivo. Unexpectedly, the imported tRNA 
becomes dethiolated after import, which explains why the 
non-thiolated form is enriched in mitochondria [127].  

Unusual Mitochondrial DNA: The Kinetoplast 

 In the majority of trypanosomatids, the kinetoplast forms 
a disk-like structure; in contrast, trypomastigotes of T. cruzi 
and endosymbiont-bearing trypanosomatids possess a more 
rounded kinetoplast [39].  

 Kinetoplast DNA (kDNA) differs from nuclear DNA in 
its buoyant density, base ratio and degree of renaturation. 
Moreover, unlike any other DNA in nature, the kDNA of 
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trypanosomatids is composed of circular molecules that are 
topologically relaxed and interlocked to form a single net-
work. There are two types of DNA rings, minicircles and the 
maxicircles. There are several thousand minicircles, which 
range in size from about 0.5 to 10.0 kb and a few dozen 
maxicircles, which usually vary between 20 and 40 kb [156-
158]. The maxicircles are analogous to the mitochondrial 
DNA of higher eukaryotes and they encode two rRNAs and 
several subunits of the respiratory complexes as well as 
some guide RNAs (gRNAs). The minicircles encode gRNAs 
that modify maxicircle transcripts by extensive uridylate 
insertion or deletion in a process known as RNA editing 
[9,158].  

Kinetoplastid RNA Editing 

 Two different RNA editing systems have been described 
in the kinetoplast-mitochondrion of trypanosomatid protists. 
The first is a unique form of post-transcriptional RNA proc-
essing that occurs only in the mitochondria of kinetoplastid 
protists. This editing system involves the precise insertion 
and deletion of uridine residues mostly within the coding 
regions of maxicircle-encoded mRNAs to produce recogniz-
able open reading frames (ORFs). This editing system is 
mediated by short overlapping complementary gRNAs that 
provide the information for U insertion and deletion on the 
edited mRNA [159,160] through a series of enzymatic 
cleavage-ligation steps [9,161].  

 The second RNA editing system is based upon another 
derived feature of the kinetoplastid mitochondrial genome, 
which is the complete lack of tRNA genes and the importa-
tion of all mitochondrial tRNAs from the cytosol [4]. Thus, 
the second system involves editing by a C34-to-U34 modifi-
cation within the anticodon of imported tRNATrp, thereby 
permitting UGA stop codons to be read as tryptophan [9].  

Trans-Splicing of all mRNA Transcripts 

 Unlike the majority of eukaryotic organisms, trypanoso-
matids transcribe all protein-encoding genes polycistroni-
cally [162-164]. Most trypanosomatid chromosomes contain 
at least two polycistronic gene clusters (PGCs), which can be 
transcribed towards the telomeres or away from the te-
lomeres. Genes from a polycistronic unit in trypanosomatids 
usually do not code for functionally related proteins [165], 
which is completely different from how operons function in 
bacteria and nematodes [162].  

 Trypanosomatid parasites utilize RNA splicing for the 
maturation of nuclear pre-mRNA in two distinct ways: cis-
splicing and trans-splicing. Although cis-splicing has been 
observed in T. brucei [166], intron removal appears to be a 
rare event in trypanosomatids, as the trypanosomatid genome 
sequences have identified only three putative intron-
containing genes [167]. Trans-splicing proceeds through a 
two-step transesterification reaction, analogous to cis-
splicing but forming a Y-shaped structure instead of a lariat 
intermediate [168,169]. Maturation to translatable monocis-
tronic units in trypanosomatids requires resolution of each 
coding region by trans splicing of a 39-nucleotide (nt) 
spliced leader (SL) exon and 3’-end polyadenylation [168-
170]. The source of the SL sequence was found to be a small 
capped RNA, the SL RNA [169,171,172]. Thus, the addition 
of the SL sequence serves two purposes: it functions together 

with polyadenylation to dismember the polycistronic tran-
scripts and it provides a cap for the mRNA [169]. The SL 
RNA is involved in the maturation of each and every nuclear 
mRNA, accounting for approximately 7% of total RNA syn-
thesis [170,173,174]. Rapid substrate SL consumption sug-
gests a dynamic processing mechanism [170]. Substrate SL 
RNA is modified by eight methylations of the 5-nt cap struc-
ture and pseudouridylation at nt 28 ( 28) [170]. Along with 
those of the m

7
G (cap 0), the methylations of the kinetoplas-

tid cap 4 are the most extensive, with 2’-O-ribose methyla-
tion of the first four nucleotides and additional base methyla-
tions on the first (m2

6
A) and fourth (m

3
U) positions 

[170,175-177]. The SL cap 4, the primary exon sequence 
and/or pseudouridylation have all been implicated in kineto-
plastid trans splicing [170,178-181] and polysome associa-
tion [170,182]. 

 RNA splicing is carried out by the spliceosome, which 
consists of five small spliceosome nuclear ribonucleoprotein 
particles (snRNPs) (U1, U2, U4, U5 and U6) as well as non-
snRNP proteins. In the human system, there are approxi-
mately 45 distinct spliceosomal snRNP proteins and up to 
170 proteins were found to be associated with spliceosomal 
complexes. In trypanosomatids, all five spliceosomal U 
snRNAs have been identified [169,183] and there are 
orthologs of all seven Sm proteins [183,184] and of LSm2 to 
LSm8 [183,185].  

Reservosomes 

 Reservosomes are endocytic organelles of parasites from 
the Schizotrypanum sub-genus, such as T. vespertilionis, T. 
dionisii and T. cruzi. In T. cruzi, reservosomes are round 
electron-dense compartments with a mean diameter of 500 
nm mainly localized at the posterior region of epimastigote 
forms. Reservosomes, which were first described as multive-
sicular bodies [186], present a matrix made primarily of pro-
teins where internal vesicles, membrane profiles, electron-
lucent inclusions of a lipid nature and rod-shaped electron-
lucent structures bound by a membrane monolayer can be 
observed [136,187]. Reservosomes are the main site for the 
storage of proteins and lipids that are ingested by endocyto-
sis and for secretory proteins produced by the parasite 
[136,188,189]. Reservosomes contain lysosomal proteins 
(including two peptidase, cruzipain [190-192] and serine 
carboxypeptidase [193,194]) and an arylsulfatase activity 
detected by ultrastructural cytochemistry [195]. Due to the 
presence of peptidases, an acidic pH of 6.0 maintained by the 
action of two P-type H

+
-ATPase isoforms [196] and the 

presence of Tc Rab11, a homolog of mammalian Rab11 
[197], the organelle is also considered the main site of pro-
tein degradation and recycling.  

 Because multiple studies have failed to identify a mo-
lecular marker for this organelle, some researchers decided 
to perform a subcellular proteomic analysis of a purified 
epimastigote reservosome fraction using several biochemical 
analysis, including mass spectrometry (LC-MS/MS) 
[192,198]. Those studies confirmed the presence of the pre-
viously described molecules and identified new proteins 
from different classes such as enzymes, proton pumps and 
transport proteins. Reservosomes have a complex role in the 
life cycle of T. cruzi directly related to cell differentiation 
[199]. The unique features of this organelle are potential 
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targets for the development of chemotherapeutical drugs for 
Chagas disease. 

CHAGAS DISEASE: TRYPANOSOMA CRUZI 

 The pathophysiological aspects of Chagas disease and its 
mechanism of transmission were first reported by Carlos 
Chagas in a series of studies published in 1909 [200-202]. 
After 100 years of research, American trypanosomiasis (or 
Chagas disease) is still a serious health problem in the 
Americas. Unfortunately, no vaccines are available and very 
few anti-parasitic drugs are effective at treating the acute 
phase of the disease. The most important mode of transmis-
sion is through the feces of several species of hemato-
phagous triatomine insects. However, blood transfusion, 
organ transplantation, congenital transmission and food con-
tamination are other important ways of transmitting the dis-
ease [203-205].  

 The most prominent pathologies associated with the 
chronic form of the disease are cardiomyopathy and diges-
tive megasyndrome [202,206]. The cerebral form is an infre-
quent complication of the acute phase that was already men-
tioned by Carlos Chagas in the original description of the 
disease [202,206,207]. In addition, it has been shown that 
chronic Chagasic patients that become immunodeficient be-
cause of HIV infection or specific drug treatment may un-
dergo disease reactivation in the central nervous system 
[206]. 

 Intriguingly, in a series of very elegant experiments, 
Hecht et al. [208] showed the presence of T. cruzi DNA in 

the genomes of Chagas patients and their descendants. Five 
families with Chagas disease were studied, as confirmed by 
specific anti-T. cruzi antibodies and/or nuclear DNA 
(nDNA) signatures. The targeted primer-thermal asymmetric 
interlaced PCR (tpTAIL-PCR) technique was used to dem-
onstrate the rate of lateral DNA transfer (LDT) and to under-
stand the consequences of lateral kDNA transfer (LkDT) 
from T. cruzi to host cells in the families examined. tpTAIL-
PCR based on kDNA and long interspersed nuclear element-
1 (LINE-1) retrotransposon sequences showed that T. cruzi 
minicircles integrated primarily into host genome transpos-
able elements. Furthermore, the integrated minicircle frag-
ments were inherited by Chagas disease patient progeny. 
Minicircle integrations into nearly all human chromosomes 
were detected, kDNA minicircle sequences were concen-
trated within LINEs and multiple integration events mobi-
lized minicircles and thus moved them to other chromo-
somes, resulting in disruption of coding regions and gene 
loss [208]. The LkDT and vertical kDNA transfer (VkDT) 
events were largely independent, as parasitic kDNA integra-
tions could occur via germline or congenital transmission. 
The authors claim that LkDT- and VkDT-induced genotypic 
and phenotypic alterations might explain the variability of 
some clinical manifestations of Chagas disease [208].  

 Endemic Chagas disease affects eight to ten million peo-
ple worldwide and kills more than any other parasitic disease 
in Latin America [209]. Chagas disease extends through 
North, Central and South America, from Mexico in the north 
to Argentina and Chile in the south, affecting 21 countries 
[210] (Fig. 3). Chagas disease is becoming a global health 

 

Fig. (3). Geographic distribution of endemic Chagas disease. Chagas disease and its vectors are distributed throughout the American con-

tinent and some Caribbean islands. The area with infected humans is shown in red (see text, [http://www.dpd.cdc.gov/]). 
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problem because of the migration of Latin American people 
to other regions of the world [211]. Thousands of people 
infected with T. cruzi have been reported in the USA, Can-
ada, several European countries, Australia and Japan. In the 
USA, it was estimated that in 2007, approximately 340,000 
Latin American immigrants were potentially infected with T. 
cruzi. Of these, 65,000 may have or develop symptoms or 
signs of chronic Chagas disease [211].  

 The genome of T. cruzi was recently sequenced and it has 
been estimated that 50% of the genome is composed of re-
petitive sequences, consisting mostly of large gene families 
of surface proteins, retrotransposons and subtelomeric re-
peats [212]. T. cruzi exhibits extensive intraspecific genetic 
diversity [213] and its population structure has been sepa-
rated into two major groups, T. cruzi I and T. cruzi II [214], 
based on several biological and molecular markers such as 
isoenzyme analysis, polymorphisms in the 24S  rDNA and 
mini-exon gene sequences. T. cruzi I strains, which contain 
zymodeme Z1, are associated with the sylvatic cycle of 
transmission and arboreal mammals and show low parasit-
ism in human Chagas patients.  

 In contrast, T. cruzi II strains, which contain zymodeme 
Z2, are associated with the domestic cycle of transmission 
and a terrestrial niche and cause human infection with high 
parasitemia in traditionally endemic areas [215]. Studies of 
the genetic composition and population structure of T. cruzi 

are still quite controversial. The biological properties of the 
parasite, including its geographical distribution, host speci-
ficity and clinical outcomes of infection, have been consid-
ered in the classification scheme. Some authors have sug-
gested that T. cruzi I and II can occasionally form stable hy-
brids, sometimes polyploids, that are able to produce regular 
epidemiological samples in hybrid zone niches [216]. 

 The life cycle of T. cruzi consists of two stages in the 
insect vector and two stages in the human host [202]. In the 
insect vector, epimastigote forms replicate in the midgut and 
are then transformed into infective metacyclic trypomas-
tigotes. These forms can be expelled together in the insect’s 
excreta during a blood meal and reach the host’s bloodstream 
through the bite wound or exposed ocular or oral mucosa. In 
mammals, trypomastigotes are contained within a structure 
known as the parasitophorous vacuole from which they sub-
sequently escape to differentiate into amastigotes and freely 
replicate in the cytosol [217]. After several binary divisions, 
amastigotes differentiate back into highly motile trypomas-
tigotes, which are released upon host cell rupture. During 
blood feeding, a triatomine insect can acquire the parasite 
from an infected individual and continue the cycle [36] (Fig. 
4). 

 Mesenchymal cells, especially macrophages and fibro-
blasts, are the first cells to be infected by metacyclic trypo-
mastigotes at the site of primary infection [218]. Blood-

 

Fig. (4). Life cycle of Trypanosoma cruzi. Infection occurs when infected metacyclic trypomastigotes enter the body through wound open-

ings or mucous membranes. The trypomatigotes enter various cells, differentiate into amastigotes and multiply intracellularly. The amas-

tigotes differentiate into trypomastigotes which are then released back into the bloodstream. The life cycle is continued when a reduviid bug 

feeds on an infected person and ingests trypomastigotes in the blood meal (see text, [http://www.dpd.cdc.gov/]). Diagram based on Stuart et 

al. [217]. (Animated-life cycles of T. brucei, T. cruzi and Leishmania spp. can be seen at the following site: http://www.who.int/tdrold/ me-

dia/multimedia/lifecycle.htm). 
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stream trypomastigotes can then infect several different 
types of cells farther from the wound site, but stable infec-
tion usually occurs in cardiac and skeletal muscle and enteric 
nerves [219]. Strain-dependent, tissue-specific tropism and 
genetically distinct strains and clones can be isolated both 
from animal models and patients with primary cardiac or 
gastrointestinal disease [220-224]. 

 Prior to entry, parasites must survive, reach the cell sur-
face and form stable attachments to host cells [224]. Interac-
tions of parasites with host cells and the extracellular matrix 
occur through a diverse group of parasitic surface glycopro-
teins and peptidases [224]. These surface molecules perform 
important roles such as binding to host cells, cleaving recep-
tors or ligands, digesting matrix constituents, assisting with 
immune evasion and triggering bidirectional signaling events 
in the parasite and host cells [41,204,224,225]. 

 The major cell surface molecules expressed by kineto-
plastids, including T. cruzi, are glycosylphosphatidylinositol 
(GPI)-anchored glycoconjugates. Nearly 50% of the T. cruzi 
genome is dedicated to encoding GPI-anchored proteins, 
which are expressed in all developmental stages and encoded 
by numerous members of multigene families, including the 
trans-sialidase (TS)/gp85 glycoprotein, mucin, mucin-
associated surface protein (MASP) and metallopeptidase 
gp63 [41,212,226,227]. Enzymatic cleavage via GPI-specific 
phospholipase C (GPI-PLC) releases the head group and has 
been implicated in lipid and paracrine signaling, as well as 
signal termination [224,228,229]. Some GPI anchors and 
GPI-anchored molecules (e.g., TS/gp85 and mucins) in T. 
cruzi are robust proinflammatory molecules that are essential 
in the modulation of and escape from host immune responses 
[41,204,226,230-234]. These and several other T. cruzi 
molecules important for binding, entry and survival in host 
cells are listed in Table 1.  

 T. cruzi trypomastigotes directly invade both professional 
phagocytes and non-phagocytic cells. The cellular mecha-
nisms of phagocytosis have been well-studied [324-327], 
showing that tissue resident macrophages are critical targets 
for early T. cruzi infection [224,328,329].  

 T. cruzi trypomastigotes exploit two distinct modes of 
host cell invasion by which they gain access to the intracellu-
lar environment of mammalian cells: a lysosome-dependent 
pathway and a lysosome-independent pathway [224,330]. In 
the first case, the parasite induces an increase in intracellular 
calcium (Ca

2+
) when it interacts with the host cell, leading to 

actin polymerization and microtubule reorganization, as well 
as the fusion of preformed lysosomes with the plasma mem-
brane [36,238,331,332]. The second pathway involves 
plasma membrane-mediated invagination and phosphoinosi-
tide 3 kinase (PI3K) signaling but is independent of actin 
polymerization [224,330,333,334].  

 Diverse molecules on the host cell surface interact with 
T. cruzi, including the mannose receptor, L-selectin and 
Toll-like receptors (TLRs) [335-338]. TLR2, TLR4 and 
TLR9 are all involved in the recognition of T. cruzi during 
invasion [231,335,339-341]. T. cruzi activates TLR2 and 
TLR4 via molecules rich in GPI or GIPL anchors and acti-
vates TLR9 via the parasite DNA, stimulating cytokine pro-
duction by macrophages. TLR2 regulates the entry of T. 

cruzi into macrophages through the activation of PI3K 
[335,339,340].  

 Rab GTPases are small guanine phosphonucleotide-
binding proteins and regulate the entry of T. cruzi into cells 
via the endocytic pathway, vesicle trafficking and different 
stages of phagosome maturation [335,342]. In their active 
form Rab proteins regulate the binding of other effector pro-
teins and membrane-membrane fusion of vesicles to the de-
veloping phagosome [335,343,344]. Rab5 induces the fusion 
of early endosomes and Rab7 mediates fusion between late 
endosomes and lysosomes [335,345-347]. Rab5 binds to the 
membrane and serves as an anchor for the effector protein 
early endosomal antigen 1 (EEA1), which collaborates with 
Rab5 during membrane fusion [335,348].  

 Newly formed parasitophorous vacuoles containing try-
pomastigotes and amastigotes have an acidic pH. After two 
hours of infection, 70% of the parasites can be found within 
partially destroyed vacuoles or free in the cytoplasm. When 
the pH of the vacuole is elevated by incubation with a vari-
ety of drugs, however, the escape of the parasites is signifi-
cantly inhibited [349-351]. T. cruzi trypomastigotes secrete 
the acid-stable hemolytic protein Tc-Tox within the acidic 
parasitophorous vacuole. Tc-Tox is then incorporated into 
the phagosome membrane, forming pores that aid in the de-
struction of this membrane and the consequent escape of 
parasites into the cytoplasm [299,352]. Recently, trans-
sialidase (TS) has also been implicated in escape from 
lysosomes [224]. In fact, trypomastigotes derived from in-
fected mammalian cells express and release 20 times more 
TS activity than axenic metacyclic trypomastigotes [353].  

 The most important integral membrane proteins in 
lysosomes are lysosome-associated membrane protein 1 and 
2 (LAMP1 and LAMP2) [354,355]. Both LAMPs are highly 
glycosylated and rich in sialic acid and they cover about 80% 
of the interior surface of the lysosome [355,356]. These two 
proteins are crucial in T. cruzi infection of host cells for both 
entry and intracellular development, as demonstrated by T. 
cruzi infection in LAMP1 and 2 double-knock-out 
(LAMP1/2

-
/
-
) fibroblasts, probably because they are the ma-

jor source of sialic acid for T. cruzi [354,356]. Infection 
studies with T. cruzi metacyclic trypomastigotes have sup-
ported this hypothesis, as trypomastigotes overexpressing 
trans-sialidase have shown that increased trans-sialidase 
activity is associated with faster parasite escape from vacu-
oles [353]. Intriguingly, unlike previous expectations [357], 
the insertion of TcTox seems to be more efficient in parasi-
tophorous vacuoles lacking sialic acid [354].  

 Both innate immunity and systemic anti-parasite inflam-
matory responses are initiated by macrophages through epi-
tope processing and presentation. Interestingly, macrophages 
play a dual role in T. cruzi infection by both harboring [358] 
and limiting the infection [224,359-361]. T. cruzi infection 
elicits intense innate and adaptive immune responses and 
focal areas of inflammation. T. cruzi can induce the produc-
tion of cytokines that decrease the expression of molecules 
critical for T-cell stimulation such as major histocompatibil-
ity complex (MHC) class II and costimulatory molecules, 
possibly as a strategy for survival in the host [362,363]. On 
the other hand, exacerbated immune responses, although 
efficient in eliminating the pathogen, may lead to tissue 
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Table 1. Some Molecules Synthesized by Trypanosoma cruzi Involved in Parasite Binding, Entry or Survival in Mammalian Host 

Cells 

Molecules Activity/Target Reference 

Mucins Parasite protection and establishment of persistent infection [234-236] 

Trans-sialidase family 

TS and TS-e 

TS1 

 

Trans-sialidase/sialidase  

Binds to -galactose 

 

[237-239] 

[240,241] 

Trans-sialidase-like family  

Tc85/Gp85 

Complement regulatory proteins (CRP)  

Tc13 

 

Gp82 

 

Gp90 

F1-160 (Flagellum-associated protein) 

 

Binds to laminin and other extracellular matrix components 

Bind to mannose; complement regulation 

Interacts with host beta-adrenergic receptor (?); induces immune responses  

associated with pathology  

Mediates metacyclic trypomastigote entry by triggering Ca2+ mobilization in both 

 host cell and parasite 

Binds to mammalian cells in a receptor-mediated manner 

Surface protein that mimics a mammalian nerve protein 

 

[226,242,243] 

[244-246] 

[247,248] 

 

[249,250] 

 

[249] 

[251,252] 

Mucin-associated proteins (MASP) Parasite survival (?) [212,253,254] 

Peptidases 

Cruzipain 

TcGP63 (T. cruzi GP63 related  

metallopeptidases) 

Oligopeptidase B 

MMP9 and MMP2 (Matrix  

metallopeptidases) 

POP/Tc80 (Prolyl oligopeptidase) 

 

Cystein peptidase, bradykinin signaling, generates kinin; favors parasite invasion 

Expressed in all life stages; attachment and/or entry of host cells 

 

Triggers calcium release, mediates host cell invasion, disassembles host cell F-actin 

Hydrolyze extracellular matrix compounds in host cells 

 

Binds to human collagen; fibronectin 

 

[191,255,256] 

[227,257] 

 

[258-261] 

[262,263] 

 

[264-266] 

Antioxidants 

T(SH)2 (Trypanothione)/ TXN  

(Tryparedoxin) 

Glutathione peroxidase  

(TcGPXI-cytosolic and glycosomal; 

 and TcGPXII-Endoplasmic reticulum) 

Trypanothione synthetase 

 

Tryparedoxin peroxidases 

(cTXNPx-cytosolic; mTXNPx-

mitochondrial) 
 

Ascorbate-dependent hemoperoxidases  

(TcAPX) 

Iron superoxide dismutase (Fe-SOD) 

mitochondrial, cytosolic and  

glycosomal 

 

Scavenge H2O2, peroxynitrite and radiation-induced radicals  

 

Decompose organic peroxides, prevent cellular damage due to lipid peroxidation  

 

 

Increases during epimastigote-metacyclic trypomastigote differentiation, virulence  

factor 

Decompose H2O2, peroxynitrite and organic hydroperoxides, increase during  

epimastigote-metacyclic trypomastigote differentiation, parasite survival,  

replication and differentiation, virulence factor  

 
Decompose H2O2 but not organic hydroperoxides, potential drug target 

 

O2
.- detoxification; enzyme overexpression causes increased resistance to  

complement-dependent programmed cell death and enhanced sensitivity  

against benznidazol and gentian violet 

 

[267-273] 

 

[270,271,274] 

 

 

[275,276] 

 

[275-279] 

 

 

[272] 

 

[280,281] 

Heat Shock Proteins 

HSP70  

 

HSP90 (HSP83) 

HSP40 

SHSP16 - Small heat shock proteins  

( -HSPs) 

 

Induces an increase in the secretion of cytokines and growth factors, stimulates  

programmed cell death in host cells 

Controls parasite cell division  

Acts with HSP70 and HSP90 as a complex; HSP70 regulators 

Increased by heat stress, biological role (?) 

 

[282-286] 

 

[287] 

[288-291] 

[292] 
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(Table 1). Contd….. 

Molecules Activity/Target Reference 

Other molecules 

Mucin-like glycoproteins 

Proline racemase 

 

Tc-TOX (Hemolisin)  

Ssp3 and Ssp4 (Parasite surface  

antigen) 

Amastin 

Tc PI-PLC (T. cruzi phosphoinositide 

phospholipase C) 

TolT 

Gp83 

Penetrin 

 

Tc-1 (T. cruzi Caseine Kinase II  

substrate)  

LLGP-67 (Lectin-like 67 kDa  

glycoprotein) 

LYT1 (Lytic pathway protein) 

TcMIP (Secreted peptidyl-prolyl  

cis-trans isomerase) 

Ecto-ATPases 

Membrane transport proteins 

 

TXA2 (Thromboxane A2 synthesized by 

 T. cruzi)  

TcPAF (Platelet-activating factor-like 

phospholipid synthesized by T. cruzi) 

 

Major acceptors of sialic acid on the surface of metacyclic trypomastigotes  

B-cell polyclonal activation induced by parasite; favors T. cruzi invasion and  

differentiation 

Forms pores in phagosome, favors parasite escape from phagosome into the cytosol 

Stage-specific epitopes, favor T. cruzi invasion 

 

Amastigote surface protein; biological role (?) 

Developmentally regulated in amastigotes, differentiation of trypomastigotes into 

amastigotes 

Bloodstream trypomastigote surface protein; differentiation 

Modifies human heart cell receptor, enhancing binding and invasion 

Binds to heparin/heparan sulfate glycosaminoglycans; promotes trypomastigote  

attachment to and penetration into host cells 

Cell surface casein kinase substrate, stage specific, the first described  

transmembrane surface protein involved in trypomastigote-host cell interaction  

Protein with galactose-binding activity involved in the recognition of host cell  

receptors; favors T. cruzi invasion 

Involved in cell lyses, parasite infectivity and differentiation in vitro 

Involved in cell invasion 

 

Parasite growth and macrophage infection 

Take up nutrients, establish ion gradients, efflux metabolites, intracellular  

trafficking, take up or export drugs  

Controls parasite proliferation and modulates the inflammatory responses to the  

parasite infection 

Enhances parasite differentiation and mouse-macrophage infection  

 

[233,293-295] 

[296-298] 

 

[299] 

[300,301] 

 

[302,303] 

[304-307] 

 

[308] 

[228,309-311] 

[312,313] 

 

[314] 

 

[315] 

 

[316] 

[317] 

 

[318,319] 

[47,320,321] 

 

[322] 

 

[323] 

 

pathology [364]. According to Tarleton [365], there are two 
possible explanations for the delayed generation of protec-
tive immune responses: (a) a failure of prompt innate recog-
nition of T. cruzi and (b) “immune confusion” generated by 
the presentation of a wide array of potential target epitopes 
to CD8

+
 T cells. The initial innate immune response against 

T. cruzi is mediated in part by TLRs [341]. Among the cyto-
kines generated during this response, interleukin 12 (IL-12), 
interferon  (IFN- ), tumor-necrosis factor  (TNF- ) and 
type I IFN participate in resistance to the parasite [365]. On 
the other hand, both TGF-  and IL-10 prevent the protective 
action of IFN-  [366]. It was previously demonstrated that 
membrane components shed by T. cruzi increase tissue para-
sitism and inflammation by stimulation of IL-4 and IL-10 
synthesis and this mechanism may play a central role in the 
pathogenesis of acute-phase Chagas disease [367]. 

 The GPI anchors of mucins from cell-derived trypomas-
tigotes (tGPI-mucins) induce production of the proinflamma-
tory cytokines IL-12 and TNF by interacting with TLR2, 
TLR1 or TLR6 on the surface of macrophages [234]. Cruzi-
pain is responsible for enhancing IL-4, IL-5 and IL-10 pro-

duction while decreasing NO production by downregulating 
iNOS expression and generating endogenous kinins [368]. 
During infection of its mammalian host, T. cruzi secretes a 
proline racemase (TcPRAC) that contributes to parasite im-
mune evasion by acting as a B-cell mitogen. Overexpression 
of TcPRAC leads to an increase in parasite differentiation 
into infective forms and subsequent penetration into host 
cells [297]. In addition, other molecules released by T. cruzi 
have been shown to cause specific immunosuppression and 
could be present in vesicles. AgC10, a T. cruzi mucin-like 
protein present in amastigotes, blocks IL-2 synthesis at the 
transcriptional level by inhibiting tyrosine phosphorylation 
during T cell receptor-associated signal transduction [369].  

 Currently, there are no vaccines available for Chagas 
disease. T. cruzi antigens recognized by immune sera from 
infected humans or animals were the first disease antigens to 
be described. Characterization of these antigens allowed 
studies with recombinant proteins based on isolated, antigen-
specific genes. Different antigens alone and mixtures of dis-
tinct adjuvants, plasmid DNA and, more recently, recombi-
nant viruses and bacteria have been tested as T. cruzi vac-
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cines [370]. Various antigens delivered using distinct deliv-
ery systems have been able to induce protective immune 
responses in a mouse model of T. cruzi infection as meas-
ured by a reduction in acute-phase parasitemia, tissue para-
sitism and mortality [370]. In general, the diversity of the 
immunodominant response among strains presents a signifi-
cant challenge for the development of vaccines. A vaccine 
would require a number of CD8

+
 epitopes that cover not only 

the different human MHC haplotypes but also the different 
parasite strains. Alternatively, the use of sub-dominant epi-
topes could favor protective immune responses without re-
quiring as many epitopes [370]. 

 The discovery that stem cells are capable of differentiat-
ing into specialized cell types has opened new avenues for 
the treatment of degenerative and traumatic disorders, in-
cluding heart failure. For Chagas disease, in mice chronically 
infected with a myotropic Colombian T. cruzi strain that re-
ceived bone marrow cells to repair the heart tissue, the trans-
planted cells showed a nearly 60% reduction in fibrosis two 
months after therapy [371]. Although the results of phase II 
and phase III clinical trials in patients with Chagas disease 
are encouraging, we are still in the beginning phases of de-
velopment for a new therapy [372]. Interestingly, a case of 
chronic Chagas disease and systemic lupus erythematosus 
was recently described that required immunosuppression to 
control the autoimmune response. Interestingly, benznida-
zole induced a reduction, but not elimination, of circulating 
T. cruzi levels and subsequent treatment with posaconazole 
led to a successful outcome of the infection, even with the 
use of immunosuppressive therapy [373].  

 The drugs currently used to treat Chagas disease are ni-
furtimox, which is derived from nitrofuran and benznidazole, 
a nitroimidazole derivative. Nifurtimox and benznidazole are 
trypanocidal to all forms of the parasite [374]. They act 
through the formation of free radicals and/or electrophilic 
metabolites but can cause systemic toxicity. 

 Thus, studies are aimed at finding new therapeutic agents 
against T. cruzi such as inhibitors of certain cellular compo-
nents, including (a) compounds that interfere with purine 
metabolism (e.g., allopurinol and purine analogs), (b) inhibi-
tors of ergosterol synthesis, (c) compounds that act in the 
respiratory chain, (d) inhibitors of alkylphospholipid synthe-
sis (e.g., miltefosine and phospholipid analogs), (e) inhibi-
tors of enzymes involved in nucleotide synthesis, (f) inhibi-
tors of the enzyme trypanothione reductase (e.g., nitrofuran, 
naphiloquinone and phenothiazine derivatives), (g) inhibitors 
of cruzipain, (h) inhibitors of glyceraldehyde-3-phosphate 
dehydrogenase and (i) inhibitors of protein kinases of T. 
cruzi [375]. Recently, K777 (N-methyl-piperazine-urea-FhF-
vinyl-sulfone-phenyl), a cruzipain inhibitor in preclinical 
development, has shown good efficacy against different or-
ganisms, including T. cruzi [376]. 

 Natural compounds with potential antichagasic activity 
have also been described, including (a) the antioxidative 
flavanols catechin, epicatechin, gallocatechin, epigallocate-
chin and some of their gallates; (b) xanthones; (c) tetracyclic 
triperpenes; and (d) naphthylisoquinoline alkaloids [375]. 
Further studies are required, however, to better understand 
these compounds. 

 Recently, successful elimination of T. cruzi transmission 
by Triatoma infestans was reported in Brazil, Uruguay, Chile 
and parts of Argentina, Bolivia and Paraguay. Still, we 
should not consider the problem solved because other coun-
tries have not implemented a national program for the con-
trol of T. cruzi transmission and possible re-infestation of 
treated areas and eventual spread to neighboring regions may 
take place [377]. Moreover, insecticide control has not been 
a complete success, especially because strains resistant to 
pyrethroids have been found in Rhodnius prolixus from 
Venezuela and in Triatoma infestans from Brazil [378,379]. 
Furthermore, in the last decade, different levels of pyrethroid 
resistance have been detected in an area ranging from north-
ern Argentina to central Bolivia [378-380]. 

 In this scenario, efforts and methodologies need to be 
combined to reach the prevention of and a cure for Chagas 
disease, which unfortunately still seems to be a long distance 
away. 

AFRICAN TRYPANOSOMIASIS: TRYPANOSOMA 
BRUCEI  

 African trypanosomiasis (AT) is caused by protozoan 
parasites of the genus Trypanosoma. It is transmitted by 
tsetse flies (genus Glossina) and is known to be invariably 
fatal if untreated [381]. African animal trypanosomiasis 
(AAT) threatens about 50 million head of cattle per year, 
causing about 3 million deaths, which has a severe impact on 
cattle production in sub-Saharan Africa [382]. According to 
the World Health Organization (WHO), 60 million people in 
36 countries are at risk of contracting human African try-
panosomiasis (HAT, also known as sleeping sickness) and 
there are about 500,000 people infected with the disease, 
with at least 70,000 new cases per year [210].  

 AAT is caused by a large number of species: Trypano-
soma congolense, T. vivax, T. evansi and T. brucei brucei 
cause “nagana” in cattle and T. equiperdum causes “dura” in 
horses. Representative strains of T. equiperdum and T. 
evansi have been characterized by numerous molecular and 
classical parasitological approaches and actually shown to be 
strains of T. brucei. Interestingly, these trypanosomes lost 
part (dyskinetoplastidy - Dk) or all (akinetoplastidy - Ak) of 
their kDNA [383]) and should therefore be considered two 
subspecies, T. brucei equiperdum and T. brucei evansi, re-
spectively, that recently arose spontaneously [383].  

 Since the discovery of AAT (1894) and HAT (1910), 
peaks of epidemics have devastated the African continent 
[384]. Although a noticeable decrease in the incidence of AT 
was observed between 1949 and 1965, the disease has re-
emerged over the past few decades to become one of the 
major causes of morbidity and mortality in humans and cat-
tle [385]. Thus, AT represents an obstacle to human welfare 
and cattle rearing, affecting approximately one-third of Af-
rica's total land area (Fig. 5).  

 HAT transmission occurs through injection of the infec-
tive form of the parasite, metacyclic trypomastigotes (Mts), 
into the host’s skin by the bite of a tsetse fly. A local skin 
lesion known as a “chancre” may develop 5–15 days later. 
After this period, Mts transform into bloodstream trypomas-
tigotes and are carried to other sites throughout the body 
where they reach other blood fluids and continue replication 
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by binary fission. These parasites can cross the blood-brain 
barrier and invade the central nervous system (CNS) in a few 
weeks. Tsetse flies are infected with bloodstream trypomas-
tigotes when they suck the blood of an infected mammalian 
host. In the fly’s midgut, parasites transform into procyclic 
trypomastigotes and multiply by binary fission. They then 
leave the midgut, transform into epimastigotes, reach the 
salivary glands, multiply by binary fission and transform into 
metacyclic trypomastigotes. This complete cycle in the fly 
takes approximately three weeks [217] (Fig. 6).  

 In the early stage of HAT, parasites are found in the 
bloodstream and lymphatic system (trypanosome prolifera-
tion) and symptoms include fever, chills, headache and lym-
phadenopathy. Immune activation is evident from lymph 
node enlargement, hepatomegaly and splenomegaly. Later, 
patients progress to the CNS stage, where the symptoms in-
clude severe headaches, insomnia, progressive mental dete-
rioration, psychiatric manifestations and tremors. If left un-
treated, the disease finally culminates in seizures, somno-
lence, coma and death [217]. HAT is caused by infection 
with the morphologically indistinguishable subspecies T. 
brucei rhodesiense (in East and Southern Africa) and T. b. 
gambiense (in West and Central Africa). Over 90% of all 
reported cases of HAT are caused by T. brucei gambiense in 
which progression to late-stage disease may take several 
months or longer and late-stage CNS infection may last sev-
eral years [386,387]. T. b. rhodesiense accounts for less than 
10% of all reported cases of HAT but is responsible for the 
most virulent form of the disease with progression to late-
stage disease occurring in a matter of weeks and late-stage 
CNS infection usually leading to death within 3 months 
[381,388]. 

 As all stages of African trypanosomes occur extracellu-
larly, the parasites have evolved means to evade the host’s 
innate and adaptive immune responses in the plasma mostly 
through antigenic variation involving variable surface glyco-
protein (VSG) [389]. The surface of the parasite is covered 
with a dense layer of VSG homodimers (circa 10

8
 VSG 

molecules) attached to the trypanosome cell membrane via a 
GPI anchor [390]. T. brucei has about 1,000 VSG genes and 
pseudogenes and of these, only one is transcribed at a time 
from one of multiple telomeric VSG expression sites 
[391,392]. The mechanism of antigenic variation in trypano-
somes consists of continuous random switching of VSG 
genes, enabling the parasite to maintain a state of chronic 
infection in the host that can last for years. The importance 
of this process is indicated by the fact that VSG genes oc-
cupy 10% of the trypanosome genome [393,394]. 

 VSG is involved in several mechanisms of escape from 
the host immune response such as the prevention of com-
plement activation [389] and reduction of antibody titers 
against VSG, which occurs by the endocytosis of antibody-
VSG complexes, followed by subsequent proteolysis of the 
antibody and recycling of the VSG back to the parasite sur-
face [74]. VSG is an immunodominant antigen capable of 
eliciting both T-cell-dependent and -independent B-cell re-
sponses, depending on its conformation [395].  

 Mouse models of infection have shown that both host and 
parasite genetic factors may control the development of 
HAT. These factors interact in the immune response to infec-
tion, especially in the regulation of macrophage activation 
and inflammatory responses [396]. The first response of the 
host immune system consists of classically activated macro-
phages secreting pro-inflammatory molecules such as TNF, 

 

Fig. (5). Geographic distribution of the main subspecies of Trypanosoma brucei. Sleeping sickness occurs at a low level of transmission 

in the majority of countries in tropical Africa, with occasional epidemic outbreaks and at least 50 million people are at risk. Animal try-

panosomiasis deters the breeding of domestic stock over large areas of the continent. The area with infected humans and animals is shown in 

red (see text, [http://www.dpd.cdc.gov/]). 
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IL-1, IL-6 and NO [397]. The GPI anchor of VSG also inter-
acts with macrophages (via a presumed receptor) and in-
duces the secretion of pro-inflammatory cytokines 
[390,398,399]. Interestingly, throughout both human and 
animal trypanosomiasis, TNF plays an important role in the 
control of parasitemia, as well as in the pathology resulting 
from infection (e.g., anemia, neurological disorders, fever 
and cachexia) [397,400]. VSG has been identified as the 
primary molecule inducing TNF in trypanosome-soluble 
extracts [397]. Apparently there are two modes of action for 
VSG: the glycosylinositolphosphate (GIP) fraction directly 
induces macrophage activation and the induction of TNF-  
in macrophages following IFN-  stimulation, whereas the 
dimyristoylglycerol (DMG) component of the anchor is not 
able to induce TNF-  directly but is involved in macrophage 
priming [397]. 

 A long, drawn-out inflammatory response can cause pa-
thology; therefore, it is vital for the host to reduce inflamma-
tion by downregulating the classic activated macrophages 

and their pro-inflammatory cytokines. Longer survival of the 
host relies on the production of type II cytokines such as IL-
4, IL-10 and IL-13, which can induce macrophages to be-
come more anti-inflammatory [401-404]. Comprehensive 
immune suppression affects both humoral (B cell) and cellu-
lar (T-cell and macrophage) immune functions [405], leading 
to trypanosome-induced immunopathology [406-408]. A 
frequent pathological trait is anemia, the degree of which is a 
sign of disease severity [409].  

 The main feature of HAT is a striking increase in immu-
noglobulin (Ig) levels, particularly IgM, including both try-
panosome-specific antibodies and non-specific Ig production 
induced by cytokine activation of B cells [410]. In African 
trypanosomiasis, the VSG-specific B cell responses can oc-
cur in a T-cell independent manner, although T-cells im-
prove the B-cell response primarily by secreting cytokines 
that mediate antibody class switching [411]. From this per-
spective, increased IL-4 mRNA levels and a concomitant 
increase in IgG1 antibodies against VSG have been observed 

 

Fig. (6). Life cycle of Trypanosoma brucei. During a blood meal on the mammalian host, an infected tsetse fly (genus Glossina) injects 

metacyclic trypomastigotes into skin tissue. The parasites enter the lymphatic system and pass into the bloodstream. Inside the host, they 

transform into bloodstream trypomastigotes, are carried to other sites throughout the body, reach other blood fluids (e.g., lymph, spinal fluid) 

and continue the replication by binary fission. The entire life cycle of African Trypanosomes is represented by extracellular stages. The tsetse 

fly becomes infected with bloodstream trypomastigotes when taking a blood meal on an infected mammalian host. In the fly’s midgut, the 

parasites transform into procyclic trypomastigotes, multiply by binary fission, leave the midgut and transform into epimastigotes. The epi-

mastigotes reach the fly’s salivary glands and continue multiplication by binary fission. The cycle in the fly takes approximately 3 weeks. 

Humans are the main reservoir for Trypanosoma brucei gambiense, but this species can also be found in animals. Wild animals are the main 

reservoir of T. b. rhodesiense (see text, [http://www.dpd.cdc.gov/]). Diagram based on Stuart et al. [217]. (Animated-life cycles T. brucei, T. 

cruzi and Leishmania spp. can be seen at the following site: http://www.who.int/tdrold/media/multimedia/lifecycle.htm). 
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in trypanotolerant cattle infected with T. congolense, but not 
in trypanosusceptible cattle [404]. In animal trypanosomia-
sis, trypanotolerance involves the combination of a humoral 
response, which is necessary to control parasitemia, with the 
ability to oppress immunopathology [397]. Additionally, B-
cells become suppressed or exhausted later in the infection, 
resulting in a total absence of IgG responses and a greatly 
reduced IgM response [397,412]. 

 The humoral response to VSG has immunopathological 
consequences, e.g., the generation of auto-antibodies induced 
by molecular mimicry [413] and immune complex disease 
[414]. Furthermore, in the late CNS stage of infection, both 
trypanosome-specific IgG and IgM and polyclonal IgM re-
sponses have been detected in cerebrospinal fluid, which 
may be due to modified plasma cells in the white matter or 
plasma cells that form perivascular infiltrates in the brain 
[387,414].  

 In addition to antigenic variation, African trypanosomes 
cause a loss of various B cell populations, disable the host 
capacity to raise a long-lasting and specific protective anti-
parasite antibody response and abrogate vaccine-induced 
protective responses to non-related human pathogens [415]. 

 Even more than 100 years since the discovery of African 
trypanosomes, only a few clinically useful drugs have been 
developed. These drugs are still considered unsatisfactory, 
however, mainly due to significant toxicity and severe side 
effects [217]. 

 In the early stage of HAT, two drugs, pentamidine and 
suramin, are used against T. b. gambiense and T. b. rhode-
siense, respectively. Pentamidine, an aromatic diamidine, has 
been used since the 1930s and acts by inducing changes in 
DNA topology and inhibiting topoisomerases, resulting in 
impaired DNA replication. Some adverse effects have been 
reported, however, such as nephrotoxicity and diabetes mel-
litus [416]. Suramin, a polysulfonated naphthalene deriva-
tive, was first used against sleeping sickness in 1922. The 
trypanocidal action of suramin is possibly due to inhibition 
of low density lipoprotein (LDL) uptake, affecting the para-
site's supply of cholesterol and phospholipids. Unfortunately, 
this drug causes several side effects, mainly involving aller-
gic reactions and renal complications [417]. 

 For late-stage disease, the drugs of choice are melar-
soprol (active against both T. b. gambiense and T. b. rhode-
siense) and eflornithine (active only against T. b. gambi-
ense). Melarsoprol, an arsenic derivative, has been used 
since 1949 and is the main drug of choice to date [418], al-
though its mechanism of action remains unknown [419]. On 
the other hand, severe side effects have been observed with 
melarsoprol such as convulsions and other neurological se-
quelae that can precede coma and death in the reactive en-
cephalopathy that afflicts 5-10% of treated patients [420] and 
is fatal in 10-70% of cases [421]. 

 In contrast, eflornithine, an analog of the amino acid or-
nithine that acts by inhibiting the polyamine biosynthetic 
enzyme ornithine decarboxylase (ODC), is relatively safe. 
This drug has a similar affinity for both mammalian and try-
panosomal ODCs, but it is degraded much more slowly in 
trypanosomes [418]. Recent clinical trials have shown that 
combinatorial therapy with eflornithine and nifurtimox is 

quite promising against the late/cerebral stage of T. b. gam-
biense infection [418,421]. 

 The sequenced genome of T. brucei emphasized that 
generating a vaccine for AT is highly unlikely due to the 
alternate expression and recombination of a repertoire of 
approximately 1,000 genes encoding VSG [217,422]. On the 
other hand, characterization of invariable surface glycopro-
teins (ISGs) is an appealing alternative [394,423]. For in-
stance, one of the ISG antigens has been used in DNA vac-
cine preparations against an experimental model of AT and 
shown to elicit humoral responses, achieve partial immune 
protection and preferentially induce Th1-like IgG2a anti-T. 
brucei antibodies. Furthermore, a DNA vaccine encoding a 
trans-sialidase gene induced partial immunoprotection 
against T. b. brucei in mice [424]. Preliminary data on vac-
cination with GPI in mice indicate that TNF-associated im-
munopathology is reduced in subsequently infected mice 
[390]. In other words, an understanding of the immunologi-
cal components of this disease may offer new opportunities 
not only for vaccine development but also for therapeutic 
intervention [387]. 

LEISHMANIASIS: LEISHMANIA SPP. 

 Leishmaniasis is one of the major insect-borne diseases 
in developing countries. Leishmania species are found in 
most inter-tropical and temperate regions of the world. 
Transmission occurs through the bite of the insect vector, the 
phlebotomine sandfly. Leishmaniasis currently threatens 350 
million people in 88 countries globally. Worldwide, 2 mil-
lion new cases are estimated to occur annually and 12 mil-
lion people are presently infected [210] (Fig. 7). 

 Leishmaniasis refers to a group of diseases that can be 
divided into cutaneous, diffuse cutaneous, mucocutaneous 
and visceral leishmaniasis; visceral leishmaniasis (VL) is 
lethal if untreated. Cutaneous leishmaniasis (CL) affects the 
skin, causing ulcers that usually heal after some weeks; the 
mucocutaneous form (MCL) causes ulceration, followed by 
the destruction of mucous membranes of the nasal, oral and 
throat cavities and surrounding tissues. The diffuse cutane-
ous form (DCL) produces disseminated and chronic skin 
lesions and it is more difficult to treat. Cases of DCL in Bo-
livia, Brazil and Peru account for 90% of all of the cases 
worldwide. The most dangerous form of leishmaniasis, how-
ever, is VL. It is characterized by high fever, weight loss, 
anemia and swelling of the liver and spleen [425]. Currently, 
another important aspect of the disease is co-infection with 
the human immunodeficiency virus (HIV); in these co-
infection cases, the risk of development of VL increases by 
100 to 1000 times [426].   

 The genus Leishmania was created in 1903 by Ross. 
Species of this genus are identified primarily by their clinical 
manifestation and geographic distribution. Other important 
criteria for classification include behavior of the parasite in 
sand fly and mammalian hosts [427], as well as biochemical 
and molecular characteristics [24,428-430]. More than 
twenty species have been described and allocated into two 
subgenera: Leishmania and Viannia [427,431]. The former 
contains species from both the Old World and the New 
World and the latter is composed only of species from the 
New World [432]. 
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 The life cycle of Leishmania involves three developmen-
tal forms: the amastigote, the procyclic promastigote (Fig. 
1A) and the metacyclic promastigote [433]. The sandfly vec-
tor becomes infected when feeding on the blood of an in-
fected individual or an animal reservoir host. In the sandfly, 
Leishmania parasites replicate as extracellular, actively mo-
tile, elongated (10-20 micrometers), flagellate procyclic 
promastigotes, which primarily inhabit the insect’s alimen-
tary tract. Procyclic promastigotes are multiplicative forms, 
not infective to mammalian hosts and found in the midgut. 
Metacyclic promastigotes are non-dividing forms, shorter 
than the procyclic promastigotes (7 to 10 micrometers), in-
fective to mammalian hosts and found in the thoracic midgut 
and proboscis of the sandfly. When an infected sandfly feeds 
on a mammalian host, its proboscis pierces the skin and sa-
liva-containing anti-coagulant is injected into the wound to 
prevent the blood from clotting; the metacyclic promas-
tigotes are transferred to the host along with the saliva. Once 
in the host, the metacyclic promastigotes differentiate (after 
being phagocytosed by a macrophage) into the intracellular 
amastigote form (Fig. 1C). This form of the parasite, round 
and non-motile (3 to 7 micrometers in diameter), resides 
within the parasitophorous vacuole (a vacuole with lysoso-
mal features), where it resists the microbiocidal action of the 
acid hydrolases from the lysozymes; the amastigote form 
survives and multiplies inside these vacuoles, eventually 
leading to lysis of the macrophages. The released amas-
tigotes are taken up by additional macrophages, so the cycle 
continues. Ultimately, all the organs containing macrophages 
and phagocytes are infected, especially the spleen, liver and 
bone marrow [433] (Fig. 8).  

 The major components of the surface coat are free GPI 
glycolipids and/or bound to the cell surface via GPI. These 
components form protective layers that mediate host-parasite 
interactions; the constitution of this surface coat is precisely 

regulated during the course of the parasite life cycle [40]. 
Lipophosphoglycans are the most abundant macromolecules 
on the surface of Leishmania promastigotes and contain a 
structurally distinct GPI anchor [434]. Free GPIs constitute 
the major class of parasite molecules on the surface of amas-
tigotes. However, amastigotes also acquire glycosphingolip-
ids from the macrophage host; these glycosphingolipids ap-
pear to be incorporated into the exoplasm of the amastigote 
plasma membrane [40]. In fact, Leishmania species present 
many surface macromolecules, including GIPL and lipo-
phosphoglycan (LPG), as well as the membrane proteins 
proteophosphoglycan (PPG), MSP/GP63 (major surface pro-
tein or 63-kDa glycoprotein), PSA-2/GP46 (promastigote 
surface antigen-2 or 46-kDa glycoprotein) and amastin sur-
face proteins (developmentally regulated amastigote proteins 
that are unique to the Trypanosomatidae). These glycoconju-
gates perform an important role in parasite adaptation and 
establishment in different hostile environments, such as the 
sandfly midgut and the macrophage phagolysosome 
[257,435,436].  

 Neutrophils are short-lived leukocytes that are first re-
cruited to inflamed tissues and thus play a crucial role in 
immunity to infection [437]. Neutrophils die by apoptosis, 
necrosis and NETosis [438], when they release fibrous traps 
of DNA, histones and granule proteins named neutrophil 
extracellular traps (NETs). These NETs attract and kill 
Leishmania efficiently, as previously described for fungi and 
bacteria [437].  

 To survive, Leishmania must evade activation of the 
mammalian host’s immune responses. In the macrophages, 
the parasites undergo many rounds of replication and pro-
duce a great number of amastigotes [63]. During infection, 
upon activation, macrophages produce pro-inflammatory 
cytokines, such as interleukin 12 (IL-12), which induces the 
activation of Th-1 responses to combat intracellular parasites 

 

Fig. (7). Geographic distribution of endemic leishmaniasis. Leishmaniasis is found in parts of about 88 countries. Approximately 350 

million people live in these areas. Most of the affected countries are in the tropics and subtropics. The settings in which leishmaniasis is 

found range from rain forests in Central and South America to deserts in West Asia. More than 90 percent of the world's cases of visceral 

leishmaniasis are in India, Bangladesh, Nepal, Sudan and Brazil. Leishmaniasis is found in Mexico, Central America and South America, 

from northern Argentina to Texas (not in Uruguay, Chile, or Canada), southern Europe (leishmaniasis is not common in travelers to southern 

Europe), Asia (not Southeast Asia), the Middle East and Africa (particularly East and North Africa, with some cases elsewhere). The areas 

with infected humans are shown in red (see text, [http://www.dpd.cdc.gov/]). 
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[63]. Th-1 lymphocytes induce the activation of macro-
phages by secretion of INF- , which stimulates macrophages 
to produce nitric oxide, which is the major player in killing 
intracellular parasites [439]. The importance of TLR4 in the 
recognition of L. major promastigotes has been proposed 
[440]. Increased number of parasites in L. major-infected 
TLR4

-
/
-
 mice was shown to be associated with an overall 

increase in Th1- and Th2-like cytokine production in vitro 
[440]. On the other hand, a global decrease in both Th1- and 
Th2-like cytokines (IFN-  and IL-10) was observed in L. 
pifanoi-infected WT and TLR4

-
/
-
 mice [441].  

 There is still a need for innovative and alternative thera-
pies against leishmaniasis. Despite decades of investigation, 
an efficacious vaccine against human leishmaniasis has not 
yet been developed, as attempts to confer significant protec-
tion against human leishmaniasis have ultimately failed 
[217,426]. On the other hand, the efficacy of a heterologous 
prime-boost vaccination using attenuated vaccinia virus and 
Leishmania DNA expressing an antigen homolog of recep-
tors for activated C kinase has been shown [442]. Addition-
ally, the first vaccine against canine leishmaniasis, 
Leishmune® vaccine, was recently licensed in Brazil. This 
vaccine presents around 76 to 80% effectiveness and has 
also been shown to be valuable in blocking transmission, 

causing a 79% reduction in the capacity for transmission by 
sandflies previously fed on serum of vaccinated dogs. In 
addition, this vaccine was also shown to effectively treat 
dogs infected with the parasite; at 22 months post-
vaccination, 90% of the animals were asymptomatic [443-
445].  

 The drugs currently used for the treatment of both VL 
and CL are the pentavalent antimonials, sodium stibogluco-
nate and meglumine antimoniate. These drugs require long-
term parenteral administration and are very toxic and almost 
obsolete. The antibiotic amphotericin B has been the drug of 
choice for the treatment of VL in India due to the emergence 
of drug-resistant parasites [217]. Miltefosine, a phospholipid 
derivative and the first oral treatment for VL, is effective 
against CL and was registered for treatment of both VL and 
CL in India and Colombia in 2002 and 2005, respectively. 
However, its use is limited because of potential teratogenic-
ity [217,446]. Several groups of synthetic phospholipids 
have also shown activity against Leishmania and other pro-
tozoa [217,447]. 

 Molecular targets need to be validated as crucial for para-
site growth or survival using gene knockout or knockdown 
technologies and/or using highly specific small molecule 
inhibitors. Current estimates suggest that about 10% of 

 

Fig. (8). Life-cycle of Leishmania spp. Leishmaniasis is transmitted by the bite of infected female phlebotomine sandflies. The sandflies 

inject the infective promastigotes from their proboscis during blood meals. Promastigotes that reach the wound are phagocytized by macro-

phages and other types of mononuclear phagocytic cells. Progmastigotes transform into amastigotes, which multiply by simple division and 

proceed to infect other mononuclear phagocytic cells. Parasite, host and other factors affect whether the infection becomes symptomatic and 

whether cutaneous or visceral leishmaniasis results. Sandflies become infected by ingesting infected cells during blood meals. In sandflies, 

amastigotes transform into promastigotes, develop in the gut and migrate to the proboscis (see text, [http://www.dpd.cdc.gov/]). Diagram 

based on Stuart et al. [217]. (Animated-life cycles T. brucei, T. cruzi and Leishmania spp. can be seen at the following site: 

http://www.who.int/tdrold/media/multimedia/lifecycle.htm). 
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known genes are able to bind drug-like small molecules 
[217].  

PLANT INFECTIONS: PHYTOMONAS SPP. 

 Phytophagous insects have generally been regarded as 
the primary vectors of Phytomonas spp. [448,449]. When a 
competent insect vector feeds on infected plant fluid, Phyto-
monas spp. reach the intestinal tract and, after migrating 
throughout the hemocele, reach the salivary glands. As the 
infected insect feeds on another plant, the flagellates are then 
transmitted via saliva [449-450]. Plant flagellates might also 
circulate between different insects, passing from one insect 
to another probably by coprophagy or during group feeding, 
common behaviors among insects [449,451] (Fig. 9). 

 After natural transmission in fruits and seeds, plant flag-
ellates remain concentrated near the point of inoculation 
[448]. In lactiferous plants, the infection is generally limited 
and not all ducts are infected [452]. In contrast, flagellates 
that infect phloem vessels may disseminate throughout the 
vascular bundle [453]. Whereas the infection of fruits, seeds 
and latex tubes is not harmful, the infection of phloem sap is 
generally associated with lethal disease [453,454]. The pa-
thology promoted by P. francai in Manihot palmata (escu-
lenta), popularly known as cassava or manioc, results in 
chlorosis of the leaves and considerable atrophy of the roots, 
causing producers to incur major losses [449].  

 Little is known about the geographical distribution of 
species of the genus Phytomonas. Thus far, it has been rec-
ognized that the genus Phytomonas is endemic in South 
America, with most species isolated from Brazil; in a few 

European countries, particularly in Spain and France; in 
Asia, particularly in India and China; and in Northwest Af-
rica [455,456] (Fig. 10). These findings suggest that the ge-
nus Phytomonas may be dispersed globally and strains from 
several other places in the world may be isolated within the 
next few years.  

 Vickerman and Preston [459] proposed that only try-
panosomatids with a digenetic life cycle in plants and insects 
that retain the promastigote form throughout should be con-
sidered Phytomonas. On the other hand, a century after the 
first description of the genus, clear criteria to define plant 
isolates at the species level are still not available. A feature 
that is very common among Phytomonas promastigotes, but 
not commonly observed in insect trypanosomatids, is a cork-
screw shape of the cellular body [460-462]. Another peculiar 
feature present in all Phytomonas species studied to date is 
extreme variation in shape and size depending on whether 
they grow in a host (plant or insect) or in axenic medium 
[463]. These changes in the form and shape of Phytomonas 
promastigotes may be the result of physiological changes 
that these trypanosomatids undergo in their hosts. All cur-
rently known plant trypanosomatids have been grouped in 
the genus Phytomonas, although they can differ greatly in 
terms of both their biological properties and their effects on 
the host [463].  

 When analyzed by electron microscopy, plant flagellates 
show the standard ultrastructure displayed by the majority of 
trypanosomatids. Perhaps the only unique trait of the cellular 
organization of plant flagellates is the pronounced quantity 
of glycosomes [106]. In all trypanosomatids, a large part of 

 

Fig. (9). Life cycle and transmission of Phytomonas spp. Parasites ingested by phytophagous insects reach the intestinal tract and pass 

through the hemocele, migrating through the hemolymph to infect the salivary glands. The infected insect transmits the parasites via saliva 

when it feeds on another plant. The major plant cultures affected by Phytomonas spp. are shown.  
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glycolysis is performed in glycosomes [119]. The impor-
tance of these organelles for Phytomonas spp. is extremely 
pronounced once the plant stage is reached given that the 
mitochondria do not contain a functional Krebs cycle, cyto-
chromes or the classical respiratory chain and the parasites 
are not able to catabolize amino acids; therefore, ATP pro-
duction is based on glycolysis [464-466]. Respiration in 
these parasites is insensitive to inhibitors of ubiquinol-
cytochrome c oxidoreductase (respiratory Complex III or 
bc1) and cytochrome c oxidase (respiratory Complex IV) 
[467]; however, respiration is entirely sensitive to salicylhy-
droxamic acid (SHAM), an inhibitor of cytochrome-
independent trypanosome alternative oxidase (TAO) [138]. 
TAO performs a terminal oxidation step in a multicompo-
nent pathway that serves to re-oxidize NADH produced dur-
ing glycolysis [467]. This metabolic pattern is similar to that 
observed in a long, slender bloodstream form of Trypano-
soma brucei, whereas in Phytomonas spp., it is observed in 
culture [467]. 

 The plant stage of Phytomonas spp. involves the secre-
tion of enzymes that the utilization of cellulose, starch, su-
crose and xylulose, carbohydrates present in large quantities 
in the phloem, latex and fruits [12]. P. serpens possesses 
peptidases that share biochemical and biological functions 
with the metallopeptidase gp63 and cysteine peptidases, 
which are virulence factors present in Leishmania spp. and 
T. cruzi, respectively [257,468-471]. The importance of 
these peptidases in the interaction of Phytomonas species 
with the salivary glands of insect vectors has been demon-
strated [468,472].  

 Recent studies have demonstrated immunological simi-
larities between P. serpens and T. cruzi. For instance, serum 
samples from Chagas disease patients showed strong reactiv-
ity against P. serpens. In addition, the immunoprotective 
proprieties of P. serpens antigens were clearly demonstrated 
in mice previously immunized either orally or intraperito-
neally with P. serpens that then showed reduced parasitemia 
and an increase in survival after being challenged with a 
known lethal inoculum of T. cruzi [473]. 

 The genus Phytomonas has been considered a mono-
phyletic group more closely related to insect trypanosomat-
ids and Leishmania than to the genus Trypanosoma 
[2,24,474-476]. On the other hand, recent wide evolutionary 
divergence among members of the genus Phytomonas has 
been described and extremely different genomic organization 
between two Phytomonas groups has been observed 
[477,478]. Most notably, the chromosome number was found 
to be 7 in one Phytomonas group (with a genome size of 10 
Mb) versus 21 in another group (25 Mb). These data demon-
strate unsuspected genomic diversity among plant trypano-
somatids that may justify further debate about their division 
into different genera [478].  

PERSPECTIVES 

 The governments and pharmaceutical companies still 
regard parasitic diseases as neglected diseases. Considerable 
progress made by control programmes in some endemic lo-
calities contrasts with persisting difficulties in other vast 
geographic regions. Recent emergence of the diseases in 
non-endemic areas because of population migrations has 
become a problem. Drugs for treatment of these diseases are 
limited, poorly tolerated and not very effective, especially 
with raising numbers of drug resistance. On the other hand, 
the scientific community has grown to appreciate the impor-
tance of parasites as models for studying evolution, specia-
tion and other questions of broader significance in biology. 
Molecular epidemiology and phylogeography, combined 
with insightful laboratory experiments, have transformed our 
understanding of the diseases caused by T. cruzi, T. brucei 
and Leishmania. Intriguing questions remain to be answered 
and new techniques, especially for developing better drugs, 
need to be improved.  
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