
 The Open Pathology Journal, 2010, 4, 67-79 67 

 

 1874-3757/10 2010 Bentham Open 

Open Access 

Molecular Markers in Diagnostic Paediatric Bone Lesions 

Brendan C. Dickson
1
, Catherine T-S. Chung

2 
and Adrienne M. Flanagan

*,3,4,5,6
 

1
Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, 

Canada 

2
Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of 

Toronto, Toronto, Ontario, Canada
 

3
Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK 

4
Department of Histopathology, UCLH NHS Trust, London, UK 

5
UCL - Paul O'Gorman Cancer Institute, University Street, London, UK 

6
Institute of Orthopaedics and Musculoskeletal Science, UCL, Stanmore, Middlesex, UK 

Abstract: Molecular pathology has become an essential adjunct in the realm of diagnostic histopathology. While gains in 

this field have been enjoyed in many areas, their impact has arguably been greatest felt in bone and soft tissue pathology. 

The purpose of this paper is to highlight the emerging role of molecular techniques in the context of paediatric bone 

pathology, discussing select syndromic and neoplastic processes affecting this demographic. To this end, we review the 

salient molecular advances bridging both clinical research and clinical practice. 
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1. INTRODUCTION 

 Applications in molecular biology have revolutionized 
the practice of pathology, enhancing not only our 
understanding of the pathophysiology of disease, but its 
diagnosis and prognosis. The first use of this term was borne 
from a reference to early studies in the field of heredity [1], 
and although many credit the term to Warren Weaver at the 
Rockefeller Foundation [2], it remained largely undefined 
for over half a century until the 1950 Harvey lecture by 
physicist William Thomas Astbury: 

It [molecular biology] is concerned particularly 
with the forms of biological molecules, and 
with the evolution, exploitation and ramification 
of those forms in the ascent to higher and higher 
levels of organisation . . . It must at the same 
time inquire into genesis and function [3, 4]. 

 Arguably, the field of soft tissue pathology has benefited 
most from recent advances in our understanding of the 
molecular basis governing many of these neoplasms [5]; the 
corollary applies to non-neoplastic diseases affecting skeletal 
bone. Decades of careful morphologic and radiologic studies 
have long recognized a genetic component to many 
osteochondrodysplasias and molecular techniques have 
begun to establish a basis for their pathogenesis [6]. The 
purpose of this brief review is to summarize some of the 
principal molecular attributes governing neoplasms of 
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paediatric bone, as well as drawing attention to recent 
diagnostic applications to select non-neoplastic lesions. 

2. FAMILIAL SYNDROMES ASSOCIATED WITH A 
PREDISPOSITION TO PAEDIATRIC BONE 

NEOPLASMS 

 A large number of conditions, including those with either a 
sporadic and/or hereditary basis, are associated with lesions 
involving the bones of paediatric patients. These lesions may 
be neoplastic in nature, or the result of non-neoplastic 
processes. 

 By far, the most common entities causing bone lesions in 
the paediatric population are the skeletal dysplasias, or 
osteochondrodysplasias, which represent a large (>370) and 
heterogeneous group of conditions. Discussion of these 
entities is beyond the scope of this review; nevertheless, some 
of these disorders necessitate mention. For the remainder, it 
should suffice to draw attention to the classification proposed 
by the International Skeletal Dysplasia Society together with 
the Nosology Group. This classification divides these entities 
into 37 groups, integrating morphologic details from clinical 
and radiologic observations together with pathogenetic and 
molecular findings [7]. 

 The following is a brief overview of some of these entities. 
Most can be diagnosed on a clinical and morphologic basis; 
however, molecular testing is possible in many cases, and may 
be an important consideration for patients and their family 
members. 

2.1. Bloom Syndrome 

 Clinically characterised by proportional dwarfism, sun-
sensitive skin and immunodeficiency, affected individuals 
have a predisposition to neoplasia at an early age [8, 9]. While 
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the majority of neoplasms are carcinomatous or lympho-
proliferative in origin, osteosarcoma has been reported in the 
first two decades, including one patient with a prior Wilms’ 
tumour [9]. 

 The BLM gene, situated at 15q26.1, encodes DNA helicase 
RecQ protein-like-3 (RECQL3) [10, 11]. Interestingly, two 
other members of the RECQL family have been linked to 
neoplasms of bone in childhood. The WRN/RECQL2 gene, 
situated at 8p12-p11.2, encodes RECQL2, which is linked to 
Werner syndrome [12]. Mutations involving the RECQL4 
gene are associated with Rothmund-Thomson syndrome (vide 
infra) [13]. 

2.2. Cherubism 

 This condition results in bilateral bony expansion of the 
jaw, involving mainly the mandible and occasionally the 
maxilla; it usually begins in the first decade and stabilizes in 
the second [14, 15]. Histologically, tissue from involved sites 
is fibrous and osteoclast-rich; it is indistinguishable from 
lesions arising from hyperparathyroidism and central giant cell 
lesion (giant cell reparative granuloma) [16]. 

 The trait is passed in an autosomal dominant fashion and 
demonstrates variable penetrance. The gene maps to 4p16.3 
[17, 18], and in the majority of cases is due to mutation in the 
Src Homology-3 Binding Protein-2 gene SH3BP2 [19]. In a 
smaller number of cases other genetic disorders have been 
associated with the cherubism phenotype, including 
neurofibromatosis type 1 [20-22] and Noonan syndrome [23-
27]. It is possible other entities may also lead to this 
phenotype. 

2.3. Diaphyseal Medullary Stenosis with Malignant 
Fibrous Histiocytoma 

 Also known as Hardcastle's Syndome [28], diaphyseal 
medullary stenosis represents a rare entity and is inherited as 
an autosomal dominant trait with high penetrance. It tends to 
present in late adolescence and early adulthood [29]. The long 
tubular bones demonstrate diaphyseal medullary stenosis and 
cortical thickening, and the bone is prone to fracture. 
Associated with this abnormality is a high incidence of 
secondary malignant transformation which appears to be 
associated with bone infarction [29-31]. The malignant tumour 
associated with this disease was originally described as 
fibrosarcoma, this has since been changed to malignant fibrous 
histiocytoma (pleomorphic undifferentiated sarcoma) to reflect 
this tumour’s aggressive course [29]. 

 While the causative gene remains to be identified, it has 
been mapped to 9p21-p22 and it is associated with a loss of 
heterozygosity at this locus [32-34]. 

2.4. Enchondromatosis 

 Also known as multiple enchondromas, this is 
characterised by the development of multiple intramedullary 
cartilaginous neoplasms. In isolation this process is referred to 
as Ollier disease; when combined with the presence of 
multiple soft tissue haemangiomas it is called Maffucci 
syndrome. Neither Ollier disease nor Maffucci syndrome are 
familial. Both entities are associated with an increased risk of 
chondrosarcoma [35, 36] and osteosarcoma [35, 37, 38]. 
Maffucci syndrome is further associated with a remote risk of 
angiosarcoma [39]. 

 Mutations in the parathyroid hormone receptor 1 gene, 
PTHR1, located at 3p21-22, have been identified as causative 
in a minority of patients with Ollier disease [40, 41]; these 
observations were not confirmed by a separate group, making 
this the subject of ongoing study [42]. As the cause appears to 
be heterogeneous, it is conceivable that mutations in other 
components contributing to chondrocyte differentiation (e.g., 
Indian Hedgehog-PTH-related protein pathway) might also 
contribute to enchrondromatosis [43]. Of note, mutations in 
PTHR1 are also known to contribute to some chondro-
dysplasias [44, 45]. 

 Few reports exist of cytogenetic studies in enchondromato-
sis. The results of studies with enchondromas have proved 
inconsistent with variably normal karyotypes in a number of 
cases [46, 47] isochromosome of the short arm of chromo-
some 6 [46], t(12; 15)(q13; q26) [46], as well as more 
complex cytogenetic findings [47-50]. 

2.5. Li-Fraumeni Syndrome 

 This represents a heterogeneous entity both in clinical 
presentation, and causative gene(s). Affected individuals have 
a profound predisposition to malignancies at a young age; this 
includes osteosarcoma, soft tissue sarcomas, breast carcinoma, 
and an eclectic host of other neoplasms [51, 52]. The classic 
form of this syndrome is diagnosed in a proband with a 
sarcoma diagnosed before 45 years of age, and a first degree 
relative with any malignancy diagnosed before 45, and a first 
or second degree relative with a sarcoma diagnosed at any age 
or another form of malignancy prior to 45 years of age [53]. In 
Li-Fraumeni-like syndrome patients do not necessarily reach 
the same criteria [53, 54]. Bone tumours encountered with this 
syndrome are primarily osteosarcomas. While most cases are 
identified by means of clinical history, patients and relatives 
may be given the opportunity for testing by direct mutational 
analysis. 

 Classically, Li-Fraumeni syndrome is caused by mutations 
in p53 on 17p13.1 [55]; a smaller number of cases have been 
reported as attributable to mutations in CHK2 on 22q12.1 [56-
58], although this has recently been questioned [59]. A single 
report of an association between Li-Fraumeni and P16INK4A 
[60] has not been confirmed by others [61]. Li-Fraumeni-like 
syndrome appears to be caused by mutations in p53 in a lower 
percentage of cases [59, 62]; some instances have instead been 
shown to be due to mutations in BRCA2 [63, 64]. 

2.6. Multiple Osteochondroma Syndrome 

 Denoted by the presence of multiple osteochondromas, 
these lesions can be sessile or pedunculated [65]. The 
diagnosis is typically made on the basis of clinical and 
radiologic observations. 

 At least three variants of osteochondroma syndrome are 
recognized, and multiple osteochondromas can be observed as 
part of other unrelated syndromes [66, 67]. Multiple 
osteochondroma syndrome type I is caused by mutations in 
EXT1 encoding exostosin-1 at chromosome 8q24.11-q24.13 
[68]. For some time interstitial deletions near this region have 
been recognized as associated with Langer-Giedion syndrome 
(trichorhinophalangeal syndrome type II), which is also 
associated with multiple osteochondromas [69]. The type I 
form of multiple osteochondroma syndrome is believed to be 
more severe than its other variants, and is associated with a 
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higher rate of malignant transformation to chondrosarcomas 
[67]. Multiple osteochondroma syndrome type II is caused by 
mutations in EXT2 encoding exostosin-2 at chromosome 
11p11-p13 [70, 71]. Deletions in this region are associated 
with Potocki-Shaffer syndrome, which also presents with 
multiple osteochondromas [72]. Multiple osteochondroma 
syndrome type III is caused by mutations in EXT3 on 19p 
encoding an as yet unspecified protein [73]. 

2.7. Neurofibromatosis 

 Generally this is divided into type I (also known as von 
Recklinghausen disease and peripheral neurofibromatosis), 
and type II (central neurofibromatosis); additional, less well-
characterised variants with overlapping features, have also 
been described. Type I neurofibromatosis occasionally mani-
fests with lesions of the bones, hence it merits brief consi-
deration. For a more comprehensive review of neurofibroma-
tosis, the reader is referred to one of several excellent recent 
reviews [74, 75]. 

 Long recognized as leading to a multitude of bone changes 
[76] patients with type I neurofibromatosis may exhibit short 
stature [75], osteopenia [77], and lesions affecting the sphenoid 
wing, vertebrae and tibia [78]. Neurofibromatosis may also 
present with a cherubism phenotype [21, 22]. From the 
perspective of bone tumours, patients with neurofibromatosis 
type I may rarely develop some of the lesions traditionally 
found in the soft tissues, including: neurofibroma, malignant 
peripheral nerve sheath tumour, fibrosarcoma and malignant 
fibrous histiocytoma (pleomorphic undifferentiated sarcoma) 
[79-81]. Ossifying fibroma [82] and osteosarcoma [83] have 
also been reported in patients with neurofibromatosis; however, 
it is difficult in some instances to know whether such an 
association is spurious. 

 Type I neurofibromatosis is caused by a mutation in NF1, 
a gene encoding neurofibromin on chromosome 17q11.2 [84-
87]. Mutations in this same gene are also responsible for a 
variant of neurofibromatosis with a Noonan syndrome-like 
phenotype (Neurofibromatosis-Noonan syndrome; see below) 
[88, 89]. 

2.8. Noonan Syndrome 

 This represents a heterogeneous syndrome broadly 
characterised by multiple facial anomalies such as low-set and 
posteriorly rotated ears, downward slanting and hyperteloric 
eyes, in addition to bleeding diatheses, cardiac malformations, 
mental retardation, short stature and webbed neck [90]. 

 Roughly half of cases are due to missense mutations of 
PTPN11, corresponding to chromosome 12q24.1 [91]. A 
smaller number of cases are attributable to mutations in SOS1 
on chromosome 2p22-p21 [92, 93]; KRAS on chromosome 
12p12.1 [94]; and, RAF1 on chromosome 3p25 [95]. The 
aforementioned mutations have also been linked to a number 
of entities bearing remarkable phenotypic and genotypic 
overlap with Noonan syndrome, including: LEOPARD synd-
rome [96], and cardio-facio-cutaneous syndrome [97]. For this 
reason, classification of Noonan syndrome and the Noonan-
like syndromes may possibly evolve in the future, as a result 
of additional molecular characterization. 

 Noonan-like/multiple giant cell lesion syndrome contains 
phenotypic overlap with cherubism. Cases with this morpho-

logy have been linked to mutations in SOS1 [98], and PTPN11 
[26, 27]. To date, no cases of Noonan syndrome have been 
associated with SH3BP2 mutations [26]. Interestingly, 
Noonan-like/multiple giant cell lesion syndrome may be 
associated with tenosynovial giant cell tumours [99-101]. An 
explanation for this observation is not readily apparent. 
Cytogenetic studies on tenosynovial giant cell tumours are 
limited, but a translocation t(1; 2)(p13; q37) corresponding to 
the CSF1–COL6A3 gene product has been described [102, 
103]. Earlier work demonstrated several cases with t(1; 
2)(p11; q35-36) and individual cases with t(1; 5)(p11; q22) 
and t(2; 16)(q33; q24) [104]. Deletions of 1p10-1p31.3 have 
also been reported [105]. 

2.9. Retinoblastoma 

 This tumour typically occurs in the first decade [106]; 
roughly two thirds are unilateral and one third bilateral. So-
called trilateral retinoblastoma refers to the additional 
diagnosis of a pineoblastoma in a patient with retinoblastoma 
[107]. Patients with bilateral retinoblastoma have a significan-
tly increased risk of independent secondary primary tumours, 
with osteosarcoma being the most common [108]; other 
primary bone tumours include leiomyosarcoma [109-111] and 
Ewing sarcoma [112-116]. 

 Early cytogenetic evidence supported a location on 
chromosome 13 based on the presence of retinoblastoma in 
patients with 13q deletion syndrome [117, 118], and tumour 
cytogenetics [117]. This was subsequently found to corres-
pond to 13q14 [119], which lead to the identification and 
cloning of the RB gene [120, 121]. This gene is a tumour 
suppressor, binding the transcription factor E2F to limit 
progression into the cell cycle [122, 123]. 

2.10. Rothmund-Thomson Syndrome 

 This syndrome is characterised clinically by growth 
defects, dermatosis, premature aging and an increased risk of 
malignancy [124]. Patients have an increased risk of 
osteosarcoma and osteosarcomatosis with numerous cases 
identified in recent decades [125, 126]. The syndrome is 
caused by a mutation in RECQL4 [13]. 

2.11. Werner Syndrome 

 Patients with this syndrome are clinically short statured, 
exhibit premature aging and are predisposed to neoplasia [12]. 
These patients are prone to an array of early malignancies, 
including lymphoproliferative disorders, carcinoma, mening-
ioma, melanoma and sarcoma [127, 128]. In the bone, there is 
a predisposition towards osteosarcoma [128], and such cases 
may be associated with an atypical clinical presentation [129]. 

 Werner syndrome is due to a mutation in RECQL2 [12]. It 
is occasionally referred to as adult progeria; however, this 
should not be confused with Hutchinson-Gilford progeria 
syndrome, or atypical Werner syndrome, which are caused by 
mutations in the lamin A gene, LMNA [130]. 

3. NEOPLASMS OF PAEDIATRIC BONE 

3.1. Benign Paediatric Bone Tumours 

3.1.1. Aneurysmal Bone Cyst 

 Aneurysmal bone cysts (ABC) primarily occur in the first 
two decades [131], most often effecting the metaphysis of 
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long bones and the spine [132]. Aneurysmal bone cysts are 
benign lesions which histologically contain prominent blood-
filled cavernous spaces separated by fibrous septa. The septa 
frequently contain parallel bands of osteoid, and lack an 
endothelial lining. Spindle cells admixed with osteoclast-type 
giant cells are also frequently observed [131]. Lesions may be 
primary, or secondary; while many bone lesions can be 
associated with secondary changes, the most frequent causes 
include giant cell tumour, chrondroblastoma and chondromy-
xoid fibroma [133]. 

 The molecular alterations in primary ABC remain to be 
characterised fully; nevertheless, the presence of recurrent 
clonal karyotypic abnormalities support a neoplastic origin 
[134]. Cytogenetic studies have identified frequent changes 
involving 17p13.2 and 16q22, including a relatively common 
t(16; 17)(q22; p13) translocation, suggesting loci in these 
areas have the potential alone, or together, to contribute to the 
generation of ABCs [134-136]. The t(16; 17) translocation has 
been shown to generate a CDH11-USP6 fusion – drawing the 
cadherin 11 promotor to the ubiquitin-specific protease [137] 
– resulting in upregulation of USP6 [138]. The breakpoint at 
17p13.2 is capable of additional gene fusions, likely via a 
similar mechanism, including: t(1; 17), t(2; 17), t(3; 17), t(5; 
17), t(9; 17), and t(17; 17) [134, 139, 140]. Identification of 
the 17p13.2 breakpoint locus is amenable to detection using 
fluorescence in situ hybridization [141]. 

3.1.2. Bizarre Parosteal Osteochondromatous Proliferation 

 Also known as Nora’s lesion, this represents a benign 
osteocartilaginous lesion arising on the bone surface, typically 
of the digits of the hands and feet although lesions at other 
locations have been described [142-145]. Tumours tend to 
arise in the third and forth decades, with no apparent sex-
predilection [142]. Histologically, lesions are characterised by 
sheets of irregular bone and cartilage interfaces, and a spindle 
cell proliferation [142, 146]. The cartilage is hypercellular and 
undergoes heterotopic calcification, and the chondrocytes may 
be atypical, rendering the lesion worrisome for 
chondrosarcoma or parosteal osteosarcoma [146, 147]. 

 Cytogenetic studies have produced mixed observations for 
this tumour. There are reports of two normal karyotypes [148, 
149]. A case with a ring chromosome derived from 
chromosome 12 has been reported [148]. Two independent 
groups observed balanced t(1; 17) translocations [149, 150]. 
Fluorescence in situ hybridization confirmed a 17q21 break in 
an additional three cases [149]. The latter observation may 
serve to distinguish bizarre parosteal osteochondromatous 
proliferation from subungual exostosis [150]; however, report 
of a t(1; 17) translocation, in addition to t(X; 6) translocation, 
in a case of subungal exostosis may limit such an application 
[148]. 

3.1.3. Central Giant Cell Lesion 

 Also known as giant cell reparative granuloma, this is an 
intraosseous lesion affecting the maxilla and mandible, 
typically within the first two to three decades [151]. Lesions 
are also recognized at other sites, most notably the small 
tubular bones of the hands and feet [152, 153]. Histologically, 
lesions comprise a mononuclear spindle-to-polygonal cell 
population of proliferating fibroblast-like cells, admixed with 
osteoclast-type giant cells [154, 155]. Central giant cell lesions 
have been suggested to be smaller and to contain fewer nuclei 

than that of giant cell tumour of bone. Also frequently present 
are spicules of woven bone and haemosiderin deposition 
[155]. Differentiation of these lesions from hyperparathyroid-
ism, and/or giant cell tumour of bone can at times prove 
challenging; the clinical presentation along with the 
morphology of the lesion generally points to the correct 
diagnosis [155, 156]. Furthermore, the expression of p63 is 
helpful in making the diagnosis of giant cell tumour of bone 
[157]. 

 Limited cytogenetic studies have been performed on these 
tumours. Stable translocations of t(2; 10)(q23; q24)[158] and 
t(X; 4)(q22; q31.3) [159], and an unstable (8; 22) translocation 
[160] have been reported. A recent study identified a novel 
exon11 mutation in SH3BP2, a gene linked to cherubism, in 
one out of four cases of central giant cell lesion [161]. 
Mutational studies of other SH3BP2 exons failed to reveal 
exon 10 mutations in 15 cases of central giant cell lesion and 
11 cases of peripheral giant cell lesion [162]; or, exon 9 
mutations in nine cases of central giant cell lesion [163], or the 
peripheral blood of four patients previously diagnosed with 
central giant cell lesion [164]. 

3.1.4. Chondroblastoma 

 Also known as epiphyseal chondromatous giant cell 
tumour and calcifying giant cell tumour, this is a benign 
neoplasm occurring predominatly in the first to third decades, 
and affecting males slightly more than females [131, 165]. The 
majority of lesions occur in the epiphysis of long bones, 
although they may arise at almost any site of secondary 
ossification. Histologically the tumours are characterised by 
sheets of polygonal mononuclear cells with distinct cell 
membranes. The nuclei are round and cleaved longitudinally; 
mitotic activity is generally present, but not pronounced. 
Osteoclast-type giant cells are irregularly distributed amongst 
the neoplastic cells and lobules of cartilage with chicken-wire 
calcification are helpful morphologic features [165, 166]. 
These latter two features tend to decrease as the patient 
advances in age [131]. Expression of S100 generally allows 
immunohistochemical distinction from most other giant cell 
rich lesions. 

 Cytogenetics studies have yielded mixed results, including 
some cases with no reported karyotypic abnormalities [167-
169]. Others, however, have yielded varied and complex 
abnormalities involving chromosomes 2, 5, 8, 11, 17 and 18 
[167, 168, 170]. Breakpoints have further been identified at 
2q35, 3q21-23 and 18q21 [171]. A ring chromosome 4 has 
also been reported [172]. At present, there are no molecular 
features allowing reliable confirmation of this diagnosis. 

3.1.5. Chondromyxoid Fibroma 

 Described by Jaffe and Lichtenstein in 1948, these 
tumours tend to occur in the second and third decades, with no 
obvious sex predilection [173, 174]. Lesions predominate in 
the metaphysis of long bones [173, 174], but many sites can be 
involved [175-179]. Tumours are heterogeneous in appearance 
comprising lobules of myxoid material and areas of fibrous 
tissue. Islands of hyaline cartilage may be conspicuous, but 
not a predominant feature. Within the myxoid regions are 
medium-sized spindle-stellate cells containing eosinophilic 
cytoplasm. Some cells may contain enlarged, hyperchromatic 
and multiple nuclei, but mitotic activity is generally rare. The 
periphery of the lobules is typically well-demarcated and 
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characterised by increased cellularity. Multinucleated 
osteoclast-type giant cells and areas of calcification may be 
seen [174, 180]. 

 Numerous cytogenetic studies have revealed non-random 
chromosomal rearrangements involving chromosome 6 [48, 
169, 171, 181-184]. Less common rearrangements, including 
an unusual t(1; 5)(p13; p13) translocation [175], and insertion 
from the short arm of chromosome 2 to the long arm of 
chromosome 5 [185], have also been described. Based on their 
potential localization, it has been suggested that COL10A and 
PTH/PTHrP may be involved in the pathogenesis of these 
lesions [181]. Interestingly, an in vitro study observed less 
expression of PTHrP in chondromyxoid fibroma compared to 
articular cartilage [186]; whether this relates to the cytogenetic 
changes in this lesion remains unclear. At present, molecular 
studies further characterizing the aforementioned cytogenetic 
changes have not yet been developed. 

3.1.6. Desmoplastic Fibroma 

 Also known as desmoid tumour of bone, this is a benign 
neoplasm with histological semblance to that of the soft tissue 
desmoid [187, 188]. Lesions most frequently present in the 
second and third decades, with a slight male predilection 
[189]. Most bones can be affected, although the more common 
sites include the metaphysis and/or diaphysis of long bones 
and the mandible. Histologically the lesion is hypocellular and 
composed of slender fibroblasts/myofibroblasts separated by 
bundles of wavy collagen. Cellular atypia and mitotic activity 
is generally lacking [188, 190]. 

 Limited cytogenetic and molecular studies are published 
on this tumour. Trisomy 8 and trisomy 20 have been identified 
amongst a fraction of lesional cells [191]. 

3.1.7. Enchondroma 

 The reader is directed to above discussion of enchondromatosis. 

3.1.8. Fibrous Dysplasia 

 Fibrous dysplasia represents a benign osteofibrous 
proliferation arising within the intramedullary canal. Lesions 
may be monostotic or polyostotic, and can occur alone or as 
part of a constellation of entities such as McCune-Albright 
(polyostotic fibrous dysplasia, cafe-au-lait spots and endocrine 
disorders) or Mazabraud syndromes (polyostotic fibrous 
dysplasia and myxomas) [192]. There is no apparent sex 
predilection. Histologically, lesions are characterised by a 
background of sheets and lobules of bland spindle cells. 
Occasional areas with a storiform arrangement are 
encountered. The nuclei tend to be oval and hyperchromatic; 
mitotic activity is generally minimal. Irregularly shaped 
trabeculae [193] of disorganized woven bone are distributed 
throughout the lesion and are notable for a lack of prominent 
osteoblastic rimming [194]. Few cytogenetic studies have 
been reported in fibrous dysplasia, with no apparent features 
consistent amongst these cases [191, 195, 196]. 

 In both syndromic [197] and non-syndromic [198] forms 
of fibrous dysplasia a large percentage of cases are associated 
with a point mutation involving the GNAS1 gene, located at 
20q13.2. To date, activating missense mutations have been 
reported for codon 201 in exon 8 and codon 227 in exon 9 
[198]. Mutations are believed to arise at a post-zygotic stage, 
thus resulting in a mosaic distribution [199]. Most methods of 

detection have focused on lesional tissues; however, 
improvements in sensitivity can allow detection from 
circulating cells [199]. 

  Detection of GNAS1 point mutations can essentially be 
accomplished by one of several means. The traditional 
approaches have been to use allele-specific oligonucleotide 
hybridization [200], and mutation-specific restriction enzyme 
digestion on polymerase chain reaction (PCR) products [198, 
201]. Other methods include direct sequencing of amplified 
DNA products [202], COLD-PCR [203], and pyrosequencing 
[204]. The latter techniques have the advantage of providing 
more specific information regarding the nature of the detected 
mutation, but perhaps the disadvantage of increased cost. 

3.1.9. Langerhans Cell Histiocytosis 

 Also known as Langerhans cell granulomatosis, 
eosinophilic granuloma and histiocytosis X, this lesion 
represents a benign proliferation of Langerhans cells. Of note, 
in addition to eosinophilic granuloma, the clinical lexicon for 
this entity includes Letterer-Siwe disease and Hand-Schuller-
Christian disease; all may exhibit prominent bone involvement 
[205, 206]. The majority of cases arise within the first decade, 
although some reports extend to the elderly; males are affected 
roughly twice as frequently as females. This disease can affect 
virtually any bone; however, it most commonly involves the 
skull, pelvis and femur. Histologically, cases comprise nests 
and sheets of round-polygonal cells with abundant pale 
eosinophilic cytoplasm. The nuclei are oval and contain 
prominent clefts and grooves; mitotic activity may be 
prominent. Multinucleated giant cells may be a feature. 
Necrosis is not uncommon. The lesion is typically associated 
with eosinophils, and smaller numbers of lymphocytes, 
plasma cell and neutrophils [131, 207]. 

 The majority of cases of Langerhans cell histiocytosis are 
sporadic; however, familial clustering has been reported 
amongst monozygotic twins [208-211]. Cytogenetic studies 
are inconsistent. There are reports of normal karyotypes in 32 
cases [212, 213]. A lower number of patients demonstrate 
cytogenetic anomalies, including a case with a paracentric 
inversion of chromosome 13q, and another with some cells 
bearing a t(7; 12)(q11.2; p13) translocation [214]. Compara-
tive genomic hybridization in a case series revealed DNA loss 
in several regions, including chromosomes 1, 5, 6, 7, 9, 16, 17, 
and 22; deletions from arms 1p, 7p, 9p, and 22q were 
confirmed by loss of heterozygosity analysis [215]. Common 
to all cases in the latter study was a 1p35-p36.3 deletion, 
leading the authors to speculate this may be the site of genes 
contributing to the pathogenesis of Langerhans cell 
histiocytosis [215]. In contrast, a recent study failed to 
demonstrate genomic abnormalities using comparative 
genomic hybridization and single nucleotide polymorphism 
(SNP) arrays [213]. Interestingly, a role for IL-17A has 
recently been proposed in the pathogenesis of these lesions 
[216]. 

3.1.10. Non-Ossifying Fibroma 

 Also known as fibrous cortical defect, fibroxanthoma, 
fibrous osteomyelitis, metaphyseal fibrous defect and 
nonosteogenic fibroma, this represents a benign lesion 
involving the cortex in the metaphysis of long bones [217]. 
Most cases present during the first two decades with a slight 
male predominance [218]. While usually discovered 
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incidentally, pathologic fracture as the presenting symptom 
can occasionally occur [219]. Currently, most consider this to 
represent a non-neoplastic process; however, this remains to 
be fully established. Histologically, lesions comprise plump 
spindle cells arranged in a storiform pattern with variable 
numbers of interspersed osteoclast-type giant cells, foamy 
histiocytes and haemosiderin pigmentation. Mitotic activity 
may be noted. Multifocal non-ossifying fibromas have been 
reported in the setting of neurofibromatosis [220, 221] and the 
related Jaffe-Campanacci syndrome [222]. 

 Limited cytogenetic information is available on these 
lesions. There are reports of deletion in the short arm of 
chromosome 4, with del(4)(p14) [185] and a translocation 
producing t(1; 4)(p31; q34) [223]. 

3.1.11. Osteofibrous Dysplasia 

 This represents a benign fibro-osseous proliferation 
characteristically affecting the cortex of the anterior tibia [131, 
224]. These tumours arise in the first two decades, with a male 
predisposition [224]. Histologically, they are characterised by 
a hypocellular spindle cell proliferation admixed with 
curvilinear trabeculae of woven bone. The latter contains 
prominent osteoblastic rimming, a feature conspicuously 
absent in fibrous dysplasia [131, 225]. Scattered cytokeratin-
positive cells are found in these tumours supporting an 
association with adamantinoma [225]; that being said, it is 
unclear if osteofibrous dysplasia-like adamantinoma always 
develop into the classic variant of adamantinoma [226]. 

 Cytogenetics in a small number of cases of osteofibrous 
dysplasia have variably shown trisomy for chromosomes 5, 7, 
8, 12, 21 and 22 [191, 226, 227]. Of note, relatively similar 
findings have been reported in adamantinoma, with reports of 
trisomy for chromosomes 7, 8, 10, 12, 13, 19 and 21 
supporting an association with osteofibrous dysplasia [226, 
228-231]. More complex rearrangements have also been 
observed in adamantinoma [228, 232, 233]. 

3.1.12. Subungual Exostoses 

 Also known as Dupuytren’s subungual exostosis, these 
lesions lack a medullary connection to the underlying bone, 
thus are not true osteochondromas. Clinically these tend to be 
of rapid onset, associated with pain and/or ulceration [234]. 
Despite a broad age range, they predominate in the second 
decade, affecting females about twice as much as males [235]; 
approximately 80% occur on the dorsal-medial aspect of the 
great toe [234]. Histologically, these lesions demonstrate a 
spectum of morphologies. Initially they are composed of a 
proliferation of myofibroblasts at the site of the nail bed, 
which undergoes enchondral ossification. In time, this yields 
woven, then lamellar bone which extends to the phalanx 
[234]. 

 Initially thought to be reactive in nature, the presence of 
clonal cytogenetic abnormalities suggests a neoplastic origin 
[236]. Several karyotypic studies have revealed balanced 
translocations, including: a report of three cases with t(X; 6), 
with one case also containing t(1; 17) [148]; and, a single case 
demonstrating t(X; 6)(q25; q21), t(1; 12)(p35; q12), t(4; 
5)(q33; q12) and t(6; 14)(q13; q12) [236]. An additional report 
contributed two additional cases with t(X; 6) translocations; 
based on the location of the rearrangements, the authors 

propose that COL12A1 and COL4A5 genes contribute to the 
pathogenesis of these neoplasms [237]. 

3.2. Malignant Paediatric Bone Tumours 

 A number of soft tissue sarcomas that typically present in 
the soft tissues may also appear as primary lesions of bone. As 
these are frequently the subject of review, they are not discus-
sed herein. 

3.2.1. Adamantinoma 

 See above description of osteofibrous dysplasia. 

3.2.2. Ewing Family of Tumours 

 Presently considered together with primitive neuroecto-
dermal tumour [238], Ewing sarcoma affects children in the 
first and second decades; there is a predilection for males 
[131]. Tumours frequently arise in the diaphysis or meta-
physealdiaphyseal regions. Histologically they comprise of 
sheets of small round-polyhedral blue cells which generally 
have a scant amount of cytoplasm. The nuclei are round-oval 
and mitotic activity is not abundant [131]. 

 Few primary tumours of bone have proved more gratifying 
from the perspective of molecular diagnostics than Ewing 
sarcoma. Cytogenetic evidence initially pointed to a character-
istic t(11; 22) translocation [239, 240]. The identification of 
other, less common, cytogenetic abnormalities continues to 
follow [241-250]. 

 In the prototypic example of Ewing sarcoma, the EWS 
gene on chromosome 22q12 is paired with a member of the 
Ewing family of transcription factors. The most common of 
these is FLI1 on chromosome 11q24, followed distantly by 
ERG on chromosome 21q22 [251]; a number of less common 
genes together constitute roughly 1% of the remaining cases, 
including ETV1 on chromosome7p22, ETV4 on chromosome 
17q21, FEV on chromosome 2q36 and ZSG on chromosome 
22q12. Multiple breakpoints for each of the fusions result in a 
tremendous number of possible fusion products, thereby 
complicating detailed investigation into all fusion products 
[252]. Moreover, the rarer translocations may be highly 
complex and difficult to detect. 

 Diagnostically, the morphologic impression of Ewing 
sarcoma can be confirmed using cytogenetics, fluorescence in 
situ hybridization and/or reverse transcriptase-PCR (RT-PCR) 
based methods. Cytogenetics generally takes too long to be 
clinically useful [238]. Fluorescence in situ hybridization can 
be performed on metaphase spreads, and more conveniently 
on formalin-fixed paraffin-embedded tissue. It can be 
accomplished using either break-apart probes to demonstrate a 
chromosome break, or more specifically to identify translo-
cation products [253, 254]. Fluorescence in situ hybridization 
for the fusion product is more labour intensive, since it also 
requires testing for the less common products. Unfortunately, 
the break-apart probe has limited application by the fact that it 
identifies neither the fusion partner nor the location of the 
breakpoint. This can be a particular problem when the gene 
rearrangement involves EWS as this gene is rearranged in 
several soft tissue sarcomas. However, if the FISH result is 
interpreted in the light of immunohistochemistry, a diagnosis 
can be reached in most cases. This emphasises the need to 
report molecular pathology with the information derived from 
the histopathologist. 
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 RT-PCR-based methods can be applied to identify directly 
the fusion products. This can conveniently be performed on 
both fresh/frozen and paraffin-embedded tissues although 
older tissue blocks may suffer from RNA degradation [255]. 
In order to detect each of the possible fusion sites, separate 
primer sets are necessary. 

3.2.3. Conventional osteosarcoma 

 Also known as osteogenic osteosarcoma, this tumour 
primarily occurs in the second decade and occurs more often 
in males than females [256]. While the long bones are the 
most common site of involvement, this is not invariably the 
case. Several histological variants of conventional osteosar-
coma are recognized by the World Health Organization, 
including osteoblastic, chrondroblastic and fibroblastic [256]. 
Despite broad differences in cell morphology amongst the 
histological subtypes, as evidenced by their names, common 
amongst them is an atypical pattern of osteoid matrix 
deposition associated with malignant cells. This, for example, 
may take the form of a delicate filigree and/or ribbon pattern 
[257]. 

 Numerous studies have investigated the cytogenetic and 
molecular features of osteosarcoma. While beyond the scope 
of the present work, it should suffice to say these changes are 
complex [258-260] and frequently lack a consistent abnor-
mality [261-263]. Some of the more frequent sites of 
rearrangement appear to be 1p11-13, 1q10-12, 1q21-22, 1q42, 
6p12-p21, 7q11, 11p15, 12p13, 14q32, 17p11-13, 19q13, and 
22q11-13 [262, 264-266]. There are frequent chromosomal 
gains in number. Array CGH has shown gains in a number of 
cases in 1p36.32, 6p12.1, 6p21.1, 8q12-21.3, 8q22-q24, 8q24-
23, 12q14.3, 16p13, 17p11.2-17p12; and, losses at 17p13 
[267-270]. 

 Efforts, particularly with studies integrating familial 
predispositions to this disease, have led to some advancement 
in understanding the pathogenesis of these neoplasms. At the 

same time these efforts have spawned numerous molecular 
markers with possible prognostic significance. Despite this 
wealth of information, it is perhaps surprising that no single 
diagnostic molecular marker for osteosarcoma exists to date 
[271]. 

4. CONCLUSIONS 

 Tremendous gains in elucidating the molecular basis of 
many lesions of paediatric bone have been obtained from a 
multidisciplinary approach to these disorders. Important leads 
have been derived from investigation into familial patterns of 
disease inheritance and cytogenetics. Additional studies in 
molecular biology have extended these observations to better 
our understanding of the pathogenesis of many of these 
entities; moreover, it has provided targets for diagnostic 
consideration. At present, clinical markers exist to confirm the 
diagnosis of numerous familial patterns of disease, and a 
modest number of tumours affecting paediatric bone. Clearly, 
many exciting opportunities remain to further our 
understanding of the pathogenesis and diagnosis of these 
entities (Table 1). 
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