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Abstract: Calcium carbonate scale formation is a well known problem for water producing wells. Although there are several types of
scale forming processes, we investigate the case of calcium carbonate precipitation when the degassing of CO2 causes the calcium
equilibrium concentration to decrease towards a production well. We study a simplified system of carbonate chemistry, which allows
for analytical expressions for the porosity loss as a function of time. The precipitation process normally goes from flow-limited away
from the well to precipitation-limited close to the well. We derive an expression that estimates the transition zone between these two
regimes. Furthermore, we present analytical estimates for the porosity reduction at a given radius as a function of time, including an
estimate for each of these precipitation regimes. These analytical results are tested against numerical solutions for the porosity loss,
which account for the full  set  of equations of the model.  The analytical  models give an accurate estimate of the linear porosity
reduction with time, until at least half the porosity is lost. Examples of scale formation are given for the two regimes. Reasonable
values for the precipitation kinetics indicate that most production operations have a kinetics-limited regime close to the well. The
models also show that this type of scale formation takes place very close to the wells, typically within a few well radii from the walls
of the well.

Keywords: Analytical estimates of scale formation, Calcium carbonate precipitation, Degassing of CO2, Scale formation.

1. INTRODUCTION

“Scale” formation is the precipitation of a solid mineral from a brine [1]. The production of water in petroleum
wells with a high water cut or brine production from geothermal wells often leads to scale formation in the near-well
area [2 - 5]. EOR operations with CO2 injection will likely lead to scale formation, especially for fields with a history of
water injection prior to CO2 injection. There are at least two different types of processes that cause scale formation. One
process is the mixing of incompatible formation waters from different parts of a reservoir, such as the mixing of barium
brine with sulfate rich brine, as they approach the production well. This mixing leads to the formation of barium sulfate
scale. The other process of scale formation results from a reduction in the equilibrium concentration of mineral forming
ions in the brine as they approaches the production well. A decreasing equilibrium concentration is typically caused by
a reduction in the fluid pressure. It is the latter process we study here, i.e. when the brine is produced together with a gas
phase rich in CO2. We present models for the loss of porosity caused by calcium carbonate scale formation, when the
brine pressure and the partial pressure of CO2 decrease towards a production well.

The  clogging  of  the  near-well  area  of  a  production  well  with  calcium carbonate  is  a  multi-phase  flow process,
whereby the mineral precipitates from a brine containing a number of salt-forming cations and anions. The precipitation
is controlled by the super-saturation of calcium bearing minerals and by the kinetics of the precipitation. At the same
time, the absolute permeability decreases as a result of the reduction in porosity.
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In order to treat this process analytically we need to make some simplifications. The model assumes that the water
phase is saturated with CO2 and that it is in contact with a CO2 dominated gas phase. The case where the water phase is
not saturated with CO2 may not necessarily lead to scaling and is, therefore, not a part of this study. An oil phase could
be  present,  but  the  rock  surface  needs  to  be  in  contact  with  the  water  phase  for  fluid-rock  reactions  to  occur.  The
degassing of CO2 from the water phase takes place as the fluid pressure decreases towards the production well. It is
assumed that the capillary pressure difference between the water phase and the gas phase is negligible. Since the gas
phase is dominated by CO2 we approximate the partial pressure of CO2 in the gas phase with the pressure of the water
phase. By assuming the reservoir rock is initially saturated with the water phase, the relative permeability of the water
phase decreases from 1 with an increase in the gas phase. Assuming that water phase occupies most of the pore space,
we approximate the relative permeability of the gas phase to be 1. A value less than one could have been used, but
considering the uncertainty associated with the absolute permeability we use the value of 1 for simplicity. We assume a
simple brine with dissolved CO2 and CO2+. This approach is similar to that of Satman et al. [2], where they also assume
that the partial pressure of the CO2 is the same as the pressure of the water phase. Satman et al. [2] assumed that the
relative permeability of the water phase decreased as the gas saturation increased with the liberation of CO2 from the
brine, while keeping the fluid pressure and the fluid pressure gradient constant. Here we make an alternative assumption
that relative permeability of water phase remains close to 1, while the absolute permeability changes with the clogging
of the pore space. Therefore, we consider a simple water dominated system in equilibrium with a CO2 gas phase at low
saturation.

The reservoir rock is assumed to contain both calcite and aragonite, and to be initally in equilibrium with the brine.
Even though we consider a relatively simple system, we think that much of what we can learn from it is useful for more
complex systems. The modelling we present here bridges numerical simulations of laboratory experiments over days
with near-well predictions on a time scale of years [6, 7]. It should be mentioned that calcite precipitation by degassing
is a common process in nature [8].

Roberts [9] and Satman et al. [2] both assumed that the kinetics of the calcium carbonate precipitation is sufficiently
fast for the concentration of calcium ions to be close to the equilibrium concentration all  the way to the well.  This
equilibrium  assumption  simplifies  the  modelling,  because  the  calcium  ion  concentration  is  then  obtained  from
knowledge of the fluid pressure. The Darcy flux increases towards the production well as 1/r, where r is the radius from
the center of the well. Close to the well the Darcy flux may easily become too large for the precipitation rate to keep the
calcium ion concentration close to its equilibrium value. It is uncertain if the assumption of equilibrium is sound in the
near well area. It is therefore reasonable to expect that there is a transition from a regime away from the well, where
flow is the rate limiting process, to a regime close to the well, where kinetics becomes the rate limiting process. Here
we derive an expression for the position where the flow-limited regime ends and the kinetics-limited regime begins. The
estimate is based on a solution of the stationary convection-reaction equation, which is a special case of the full non-
linear convection-diffusion equation for geochemical modelling [10, 11]. Mineral precipitation behaves differently in
the two regimes of scale formation described above. We derive analytical expressions for the porosity loss at a given
radius as a function of time for scale formation in both regimes. These expressions are tested by comparing them with
numerical solutions.

The paper is organized as follows: The basic equations behind the scale formation model are presented, followed by
a short resume is of calcium carbonate equilibrium. Then, a derivation is given for the position of the transition zone
between  the  flow-limited  and  the  precipitation-limited  regimes.  Finally,  analytical  expressions  for  the  porosity
evolution  are  formulated  and  demonstrated  for  both  regimes.

2. THE BASIC EQUATIONS IN THE MODEL OF SCALE FORMATION

Our aim is to model calcium carbonate scale formation driven by a decrease in the equilibrium concentration of
calcium  ions  towards  the  production  well.  We  assume  that  the  gas  phase  is  dominated  by  CO2  and  that  the  water
saturation is much higher than the gas saturation. Furthermore, we assume that the capillary pressure between the gas
phase and the water phase is negligible, implying that the gas pressure is the same as the brine pressure. The model then
involves three main equations. The first is the pressure equation in cylinder coordinates

(1)0=
)(1



















r

pk
r

rrt

p


  



180   The Open Petroleum Engineering Journal, 2016, Volume 9 Wangen et al.

for  a  horizontal  aquifer  with  constant  thickness  and  radial  symmetry  around  the  well.  The  radius  is  r,  β  is  the
effective compressibility, µ is the viscosity and k(Ø) is the absolute permeability as a function of porosity ϕ given as

(2)

where k 0 is the initial permeability and ϕ 0 is the initial porosity. The exponent n controls how the permeability depends
on the porosity, where n=3 corresponds to the Kozeny-Carman model. The exponent n may take different values for
different types of rocks [12]. Boundary conditions for the pressure equation (1) is a constant well pressure at the well
radius rw and a constant pressure pmax at a distant radius rmax. We assume that the system stays close to a stationary state,
which is likely the case for geothermal systems operated with a fixed injection and production pressures, as well as for
oil  and gas  producing wells  with  a  high water-cut  maintained by pressure  support  from water  injection at  constant
pressure. The numerical solution of pressure equation (1) is initialized with a stationary reservoir pressure. The solution
for the fluid pressure (1) gives the Darcy flux

(3)

which is important for the transport of ions. The transport-reaction equation for calcium ions is [10]

(4)

where the calcium ion concentration is denoted as C.  The left-hand-side expresses the transport of calcium ions by
means of advection with a radial Darcy flux, vD, towards the well and by diffusion with diffusivity, D. The right-hand-
side of equation (4) is the precipitation rate [10, 13].

(5)

The precipitation rate Rp is proportional to the reaction constant kp, the specific surface area S of the pore space and
the difference from equilibrium expressed by the saturation index W given as

(6)

The exponent m takes values from around 1 to more than 3 for different precipitation modes [14]. We let m=1 as
suggested  by  Stamatakis  et  al.  [7].  Both  the  surface  area,  S,  and  the  diffusivity,  D,  will  decrease  as  the  porosity
decreases.  These effects are not accounted for and the modelling is,  therefore,  less reliable for a substantial  loss in
porosity. Boundary conditions for the concentration equation (4) are the equilibrium of calcium ions and a zero gradient
at  the  outer  boundary  (r=rmax).  The  reaction  term  in  the  concentration  equation  gives  the  rate  of  calcium  ions  that
precipitates from the brine. The time-rate of change of porosity is proportional to the precipitation rate (5), and is

(7)

where Vs  is  the molar volume of calcite.  The pressure equation (1),  the concentration equation (4) and the porosity
equation (7) form the basis for the modelling of scale formation. The numerical solutions have as initial conditions a
steady state pressure and concentration. The equations are solved numerically in a sequential manner, by first solving
for  pressure,  then  for  concentration,  and  finally  for  porosity.  The  pressure  dependent  equilibrium  concentration  is
updated before the concentration equation is solved, and the permeability is updated with the porosity after a new time
step. Both the pressure and concentration equation are solved with an implicit standard finite difference scheme, where
the reaction term is linearized and taken implicitly. The equilibrium concentration of calcium ions and other aqueous
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species are also a part of the model. The next section explains how the equilibrium concentration and the saturation
index are computed.

3. CALCIUM CONCENTRATION IN THE BRINE

It is assumed that the aqueous CO2 is in equilibrium with a CO2 gas phase. The capillary pressure between the brine
and the gas phase is assumed to be negligible and the partial pressure of CO2 is therefore assumed to be the same as the
fluid pressure. Although the ions in the brine have an effect on the ionic strength, it is simply assumed that the activity
coefficients are equal to one. CO2 will initially be in a supercritical state if pressure and temperature are beyond the
critical point. There are 6 unknown aqueous species to be solved for in the aqueous system, which is made as simple as
possible

(8)

Equilibrium is expressed by the following five reactions [15],

(9)

where the equilibrium constants are shown in the column to the right.  The corresponding mass action laws and the
expression of electro neutrality are given as follows

(10)

(11)

(12)

(13)

(14)

(15)

A numerical solution of these equations is shown in Fig. (1), which shows the calcium concentrations as a function
of the partial pressure of CO2 at the temperature T=20 °C. Recall that the CO2-pressure is taken to be equal to fluid
pressure, p, and we therefore have that the carbonic acid is proportional to the fluid pressure. It is seen from the charge
balance that [HCO-

3] is close to 2[Ca2+], since these two concentrations dominate. This approximation is reasonable in
the acidic regime, which applies when CO2 is dissolved in the water phase. The use of [HCO-

3]≈[Ca2+] allows for an
approximate expression for [Ca2+] as a function of fluid pressure. The equilibrium expressions from (12) to (14) can be
combined into the following expression for [Ca2+]
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(16)

by  inserting  [H+]  from  equation  (12)  into  equation  (13),  which  then  gives  [CO2-
3]  expressed  with  [HCO-

3].  The
approximation 2[Ca2+]≈[HCO-

3] then leads to [15]

(17)

where

(18)

and where the mass-action constants Kh, K1, K2, Kw and Ks depend on temperature. The temperature dependence of the
mass-action  K-functions  is  found  in  the  Appendix.  This  is  a  simple  expression  between  the  calcium  equilibrium
concentration  and  the  fluid  pressure,  which  is  sufficiently  accurate  considering  other  uncertainties  like  reservoir
permeability and precipitation rate. The solubility (17) is in agreement with the correlation used by Satman et al. [2],
which  covers  a  pressure  up  to  6  MPa.  In  addition  to  the  calcium  ion  concentration,  we  can  also  express  the
concentration  of  the  other  species,  in  particular  [H+],  as  a  function  of  pressure  [15].

Fig. (1). The Ca2+-concentration in the aqueous phase as a function of the partial pressure of CO2. The analytical concentration (17) is
shown by the circular markers.

It is not always possible to assume equilibrium when both reaction and transport take place. However, the carbonate
species are assumed to be in equilibrium and the mass action laws (10) to (14) apply together with electro neutrality
(15).  The  difference  introduced  by  kinetics  is  that  the  mass  action  law  for  calcium  equilibrium  is  replaced  by  a
precipitation rate for calcite. The precipitation rate depends on by how much the saturation index (6) exceeds one. The
saturation index can be rewritten as

(19)

where the mass action constant Ks is replaced by the product of the equilibrium concentrations of Ca2+ and CO2-
3. We
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can express the saturation index in terms of calcium ion concentrations by first using the two mass action laws (12) and
(13) to replace [CO2-

3] by [HCO-
3]

2. These mass action laws apply both for the equilibrium and the non-equilibrium
state. From electro neutrality we have the approximation 2[Ca2+]≈[HCO-

3], which then gives

(20)

where  Ceq  is  the  calcium  equilibrium  concentration.  The  reaction-transport  equation  (4)  for  calcium  ions  is  then
decoupled from CO2-

3 and the other aqueous species.

4. SLOW OR FAST KINETICS RELATIVE TO TRANSPORT

The Darcy flux increases towards the well proportional to 1/r in a sealed horizontal aquifer, when the pressure field
is  stationary.  The  1/r  dependency  gives  a  steep  increase  in  the  Darcy  flux  close  to  the  well.  The  calcium  ion
concentration stays close to equilibrium as long as the Darcy flow is “slow”, meaning that the precipitation kinetics
keep pace with the Darcy flux. In this case, it is straightforward to compute the amount of calcite that precipitates from
knowledge of the equilibrium concentration. Since we cannot be sure that the system is in equilibrium close to well, we
need to decide in which regime we are at a certain distance from the well; equilibrium or non-equilibrium. We can
derive a condition for when a near equilibrium condition prevails, starting from the reaction-transport equation for the
Ca2+-ions.

It is therefore assumed that the reaction and transport are in a stationary state and that diffusion is negligible relative
to convection. An eventual transient phase leading to the stationary state is assumed to be less important. The reaction-
transport equation (4) then reduces to

(21)

The volume production rate Q gives that the radial Darcy flux vD under stationary conditions is

(22)

where  h  is  the  thickness  of  the  aquifer.  Although  equation  (21)  looks  simple,  it  appears  to  be  difficult  to  solve  it
analytically, because of the non-linearity in C combined with the dependency of vD on r. Fortunately, a solution of the
linear equation (for m=1/3) is useful and can be used to approximate the solution for m=1 by increasing the reaction rate
by a factor of 3. The assumption that m=1 is therefore the value that is used in the numerical solutions. The analytical
treatment  of  the  case  using  m=1  is  based  on  expressions  for  m=1/3  and  a  reaction  rate  that  is  3  times  faster.  A
dimensionless  version  is  obtained  by  introducing  the  dimensionless  radius  ȓ=r/r  0  and  dimensionless  calcium
concentration Ĉ=C/C 0, where r 0 and C 0 are the characteristic length and concentration of the system, respectively. The
reaction transport equation (21) for m=1/3 becomes

(23)

where Ĉeq=Ceq/C 0 and N is the Damköhler-number

(24)

with respect to the characteristic radius r 0, and where v 0 is the Darcy flux at distance r 0 [16]. The Damköhler-number N

3

eq












C

C
 

=D dr

dC
v 





 )(=

eq
p C

C
Sk 





1)3m

hr

Q
vD 2

=

r
C

C
N

rd

Cd
ˆ1

ˆ

ˆ
=

ˆ

ˆ

eq










  

QC

rSkh

vC

rSk
N pp

0

2
0

00

0 2
==


 



184   The Open Petroleum Engineering Journal, 2016, Volume 9 Wangen et al.

is a measure of the reaction rate relative to the convective mass transport rate [16]. Reaction dominates transport when
the Damköhler-number is much larger than 1, and the reaction rate is sufficiently fast to bring the calcium concentration
to almost equilibrium. In the opposite regime, transport by convection dominates reaction, and the supersaturated fluid
moves through the system too fast to experience noticeable reaction. The definition of the Damköhler-number shows
that  the  Damköhler-number  increases  away from the  well  with  the  characteristic  distance  r2

 0.  This  dependence  on
distance reflects the decrease in the Darcy flux with an increasing radius in cylinder coordinates. The dimensionless
reaction-convection equation (23) has the solution for the calcium ion concentration

(25)

where Ĉin is the calcium concentration at radius r 0 (ȓ=1). In other words, Ĉin is the boundary condition at the entrance of
the radial domain from r 0 to rw. Solution (25) shows the expected behaviour of the model in terms of the Damköhler-
number, N. Reaction kinetics are fast relative to flow when N>>1, and the concentration (25) thus becomes close to the
equilibrium concentration, Ĉ≈Ĉeq. The other regime (N<<1), where the reaction is slow relative to flow, results in the
concentration (25) becoming close to the input concentration, Ĉ≈Ĉin. This behaviour is seen in Fig. (2), which compares
the numerical solutions of (21) for m=1 and Damköhler-numbers N=0.1, 1 and 10 with the approximation (25). The
approximation is  based on m=1/3 and makes use of  a  Damköhler-number N  that  is  increased by a factor  of  3.  The
stationary concentration equation (21) is solved numerically using up-stream discretization and Newton’s method to
handle the non-linearities in the reaction term.

Fig.  (2).  (a)  The  flow-limited  regime  is  N>>1  and  the  precipitation  limited-regime  is  N<<1  Kinetics  with  m=1/3  is  a  good
approximation for kinetics with m=1, when the Damköhler-number is increased by a factor of 3. (b) The transition from flow-limited
to  reaction-limited  concentration  when  the  equilibrium  concentration  decreases  in  a  step-wise  manner  towards  the  well.  The
concentration is close to the equilibrium concentration when the characteristic length gives N>>1. The concentration does not follow
the equilibrium concentration close to the well where N<<1.

Calcite scale formation is driven by an equilibrium concentration that decreases towards the well due to a decreasing
fluid pressure. We can use equation (23) to find the solution for the case of a step-wise decrease in the equilibrium
concentration by chaining together a series of solutions (25); each with a proper characteristic length.

From the definition of the Damköhler-number it follows that there is a distance rN=r(N) for each number N. We will
now  look  at  an  example  that  has  Ĉin=Ĉeq=1  for  r>r(N=100).  In  this  case,  the  characteristic  concentration  C  0  is,
therefore, the equilibrium concentration for r>r100. The dimensionless equilibrium concentration drops as a piece-wise
constant as follows

(26)

))ˆ(1
ˆ2

(exp)ˆˆ(ˆ=)ˆ(ˆ 2

eq

eqineq r
C

N
CCCrC   

eĈ
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The solution for the concentration is split into different intervals, with different constant equilibrium concentrations.
The input  concentration for  an interval,  Ĉin,  is  the solution at  the same position as the preceding interval.  The first
interval has Ĉin=1 and each interval has its own characteristic length and Damköhler-number. The solution is shown in
Fig. (2). The solution is shown in Fig. (2). The interval between r(N=100) and r(N=10) is covered by the solution with
N=100 and the concentration decreases to the equilibrium concentration at the beginning of the interval. In this regime
flow is the rate limiting processe. The same can be said about the next interval with N=10. The interval N=1 becomes
the transition between the flow-limited and the reaction-limited processes. Finally, for the interval N=0.1 reaction is
clearly the rate limiting.

5. SCALE FORMATION IN THE FLOW-LIMITED REGIME

Mass conservation of calcium ions gives that the rate of change of porosity is

(27)

where Vs is the molar volume of calcite, ∂C/∂r is the calcium ion concentration gradient towards the well, and vD is the
Darcy flux. Equation (27) applies regardless of whether the regime is flow-limited or precipitation-limited, since it
follows directly from mass conservation. In the flow-limited regime, where N>>1, the calcium ion concentration is
close to equilibrium. It is then possible to use the equilibrium concentration directly in (27) to compute the porosity
change. This approach is used in the models proposed by Roberts [9] and Satman et al. [2]. Equation (17) shows the
calcium concentration as a function of the partial pressure of CO2. The pressure is assumed to be stationary, as done by
Satman et al. [2], and is given in cylinder coordinates

(28)

where rw is the well radius, pw is the well pressure and Q  0 is the initial production rate. It is now straightforward to
integrate equation (27) to obtain the porosity as a function of time at a given radius

(29)

where the time constant is

(30)

and the function f is

(31)

The porosity function (29) shows that the pore space at the well (r=rw) is fully clogged at time t 0. The characteristic
time t 0 is similar to the time obtained by Satman et al. [2] for the complete plugging of the pore space next to the well,
where their dC/dr is replaced by explicit expressions for (dC/dp)(dp/dr). Another difference is that Satman et al. [2]
included a brine formation factor and a factor for the relative permeability of the water phase.

The linear decrease in the porosity with time assumes that the pressure field and flow rate remain constant. This is
not the case when the porosity and the permeability approach zero. On the other hand, we expect the linear behaviour to
be a useful approximation of moderate porosity reductions; for instance to half the initial porosity. The time it takes to
reach the porosity ϕ1 at radius r and to clog a fraction ϕ1/ϕ 0 of the initial porosity becomes

(32)
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Here we use the term half-life for the time needed for the initial porosity to be reduced by half (t 0/2). The porosity
expression (29) can be used to estimate the width of the zone around the well where scale formation takes place. The
width is defined by the radius where 5% of the porosity is lost, at the time t 0/2, which is when half the initial porosity is
lost at r=rw. The solution of the equation f(r/rw)(r/rw)=10 gives that flow-limited scale formation takes place mainly in
the interval

(33)

It is only a thin area around the well that becomes clogged by the precipitation process, and it is less than three times
the well radius. The porosity relationship (29) can also be written in a dimensionless form using dimensionless time
t=t/t 0 and dimensionless radius r=r/rw as

(34)

where the dimensionless porosity is ϕ=ϕ/ϕ 0.

Fig.  (3)  shows an  example  of  calcium carbonate  scale  formation  in  the  flow-limited  regime (N>>1),  when this
regime extends all the way to the well. The curve named analytical porosity (1) is computed with equation (29) and the
curve analytical porosity (2) is the same equation, but with f=1. The numerically computed porosity is also shown. The
latter takes into account that the permeability decreases with decreasing porosity. Fig. (3) also shows the situation after
t=4080 days, when half the numerically computed porosity is lost. The characteristic time of t 0=8833 days results in a
half-life of t 0/2=4417 days, which is quite close to the numerical result. The match between the two different analytical
expressions and the numerical porosity is good because in this case p 0/pw<<1, forcing the f-function (31) close to one.

Fig. (3). The porosity in the flow-limited case. The markers show the position of the nodes in the numerical solution.

The Damköhler-number N is proportional to the kinetics parameters kpS and inversly proportional to the flow rate Q
0. Fast kinetics and a low production rate assure that N>>1 and that the flow-limited regime applies for all r≥rw. The
Damköhler-number  is  shown  in  Fig.  (4).  It  increases  by  two  order  of  magnitude  from  r=rw  to  r=10rw,  because
Damköhler-number is proportional to r2. Notice that parameters kpS are not included in the porosity function (29) for
scale formation in this regime. The parameters used in this example are listed in Table 1.

Table 1. The parameters used in the two case examples.

Info Symbol Case N>>1 Case N<<1 Units
Well radius rw 0.15 0.15 m
Max radius rmax 50 50 m
Production rate Q 0 1.10-5 1.10-4 m/s
Reservoir thickness h 10 10 m

wrr 3.2<  
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Info Symbol Case N>>1 Case N<<1 Units
Well pressure pw 5.106 1.106 Pa
Initial permeability k 2.10-16 1.10-15 m2
Initial porosity ϕ 0.25 0.25 -
Permeability exponent n 3 3 -
Compressibility α 1.10-8 1.10-8 1/Pa
Viscosity µ 1.10-3 1.10-3 Pa
Molar volume Vs 0.0369188 0.0369188 liter/mole
Kinetics exponent m 1 1 -
Reaction constant kp 1.10-7 1.10-8 mole/m2/s
Specific surface area S 1.104 1.103 m2/m3

Fig. (4). The log10 (N) in the flow-limited case. The Damköhler-number is N>>1 for all r>rw.

Fig. (5) shows that the chosen permeability (k 0=2.10-16) results at a stationary pressure with a steep gradient towards
the well. Fig. (5) also shows the numerical stationary pressure that takes into account the reduced permeability from the
reduced porosity shown in Fig. (3). The numerical stationary pressure and the analytical stationary pressure are close,
because the porosity is only reduced by half next to the well, which has a moderate impact on the permeability field. A
decreasing permeability close to the well implies a decreasing production rate, since the well pressure and the outer
boundary pressures are kept constant. In the current example, the initial production rate decreased by 30%, when the
initial porosity was reduced by half.

Fig.  (5).  The  pressure  in  the  flow-limited  case.  The  analytical  expression  shows  the  initial  pressure.  The  numerical  pressure
corresponds to the numerical porosity in Fig. (3), where half the porosity is lost close to the well.

We also notice that the pressure gradient gets steeper close to the well, where the permeability is reduced, and that it
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gets less steep where the permeability is intact. The large pressure gradient near the well also gives a steep decline in
the calcium equilibrium concentration, as seen in Fig. (6). The continued scale formation after half the initial porosity is
lost becomes progressively non-linear, and the scaling process moves towards the well since it follows the increasing
pressure decline towards the well.

Fig. (6). The calcium ion concentration in the flow-limited case. The numerically computed concentration is nearly equal to the
equilibrium concentration, because the kinetics are fast compared to the flow. The markers show the position of the nodes in the
numerical solution.

The  porosity  functions  (29)  and  (34)  do  not  account  for  the  feed-back  from  the  reduced  porosity  on  the  fluid
pressure, which in turn has a feed-back on the equilibrium concentration and the scale formation rate. Nevertheless, the
numerical solutions show that the linear estimate of porosity reduction is reasonably good to at least half the initial
porosity. The modelling of scale formation, when porosity approaches the percolation threshold and the pore space
becomes almost impermeable, is beyond the current modelling efforts.

6. SCALE FORMATION IN THE KINETICS-LIMITED REGIME

The rate of change of porosity is given by equation (27), which follows from the mass conservation of the calcium
ions. This equation is useful in the flow-limited regime, where the kinetics are sufficiently fast to keep the calcium
concentration close to the equilibrium. The rate of change of porosity can then be computed with only the knowledge of
the equilibrium concentration.

On the other hand, in the kinetics-limited regime we need the kinetics, because we are not close to equilibrium. We
can use the reaction-advection equation (21) to obtain an expression for the rate of change of porosity

(35)

The pressure dependent calcium equilibrium concentration is given by (17), but we do not know the concentration
C, without a full solution for the transport-reaction equation. It is, however, possible to estimate the concentration in the
regime N<<1 by using the knowledge of where the system has a transition from flow-limited to precipitation-limited.
The equilibrium concentration at the radius of N=1 is a good estimate. The concentration is almost in equilibrium at the
flow-limited regime (N>>1), but the kinetics cannot keep pace with the flow when the fluid approaches the well, and N
becomes much less that one. The kinetics then become the rate limiting process for the interval between this radius and
the well. The flow increases as 1/r towards the well and the regime becomes increasingly more kinetics-limited. The
concentration at the radius of N=1 will, for this reason, not decrease much from this position during the brine’s flow
towards the well. The drive for precipitation is that the fluid and CO2 pressure continue to drop towards the well, which
creates an increasing super-saturation. The radius at N=1 is denoted by r1 and we therefore have
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(36)

after a straightforward integration in t. Expression (36) for porosity as a function of time at a given radius leads to the
time needed to clog the pore space as

(37)

The  time  estimate  is  inversely  proportional  to  the  precipitation  constant  kp  and  the  specific  surface  area  S.  An
uncertainty of at least one order of magnitude in these two factors is more important than the error introduced by taking
the equilibrium concentration at the radius of N=1 for the precipitation-limited regime.

Fig. (7) shows the porosity when precipitation kinetics is the rate limiting process in the near well area, while the
data for the case is listed in the Table 1. The precipitation rate kp is based on data from Noiriel et al. [14] for saturation
indices  less  than  6.  The  rate  kpS,  which  includes  the  specific  surface  area  of  the  pore  space,  is  nearly  an  order  of
magnitude less than what was measured by Stamatakis et al. [7] for saturation indices in the range from 15 to 216. Fig.
(10) shows that the precipitation kinetics is the rate limiting process, because the Damköhler-number decreases towards
the well and becomes 1 at the distance of r1≈2 m. The Damköhler-number decreases to much less than one from r1 until
the  well  at  rw.  The  same  behaviour  is  also  seen  from  the  concentration  plot  shown  in  Fig.  (9).  The  calcium  ion
concentration is close to equilibrium until r1  is reached (N=1), but then the equilibrium concentration drops steeply
towards the well and the concentration continues to decrease slightly. The porosity plotted by curve (1) in Fig. (7) is a
combination  of  the  flow-limited  porosity  estimate  (29)  and  the  estimate  (36)  for  the  kinetics-limited  regime.  The
transition takes place at the radius for N=1/2, which is where there is a discontinuity in porosity. The analytical porosity
curve (2) is the simplified version of expression (29) where the function f is equal to 1.

Fig. (7). The porosity in the kinetics-limited case. (a) The porosity for the kinetics-limited case close to the well. (b) The porosity in
the entire domain.

The  analytical  approximations  are  very  close  to  the  numerical  computed  porosity,  which  involves  a  numerical
solution for the fluid pressure and concentration coupled to the changing porosity. Fig. (7) shows the porosity at time
t=1660  days,  when  the  numerical  porosity  is  reduced  by  half.  The  time  scale  for  the  kinetics  gives  a  half-life  of
tk/2=1055.5, which is less than that calculated from the numerical model. The analytical estimate gives a shorter half-
life  than  the  numerical  model,  because  it  overestimates  the  super-saturation  close  to  the  well.  It  should  also  be
mentioned  that  assuming  a  flow-limited  regime  near  the  well  would  strongly  overestimate  the  rate  of  kinetics  and
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strongly underestimate the porosity half-life. The half-life for the case of the flow-limited regime is t
 0
/2=75 days.

Fig. (8). The pressure in the kinetics-limited case. The numerical pressure corresponds to the numerical porosity in (Fig. 7). The
analytical pressure is the same as the initial pressure.

Fig. (9). The calcium concentration and the calcium equilibrium concentration in the kinetics-limited case. The transition from flow-
limited to kinetics-limited regimes, defined by N=1, is at r1=2.2 m. The difference between the curves is noticeable in the interval
from rw to r1.

Fig. (10). The log10 (N) in the kinetics-limited case. The transition from flow-limited to kinetics-limited regimes, defined by N=1, is
at r1=2.2 m.

The steep drop in the equilibrium concentration towards the well is a direct result of the steep pressure gradient, as
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seen  in  Fig.  (8).  The  stationary  numerical  pressure  is  compared  with  the  stationary  analytical  pressure,  when  the
numerical porosity has dropped to roughly the half, and the difference is moderate.

The parameters used in this study are listed in (Table 1). The characteristic time tk is inversely proportional to the
parameters for the kinetics, kp and S, which both carry large uncertainties. In addition, the initial permeability is also an
important,  but  uncertain  parameter,  since  it  controls  the  fluid  pressure,  which  in  turn  controls  the  equilibrium
concentration.

This paragraph shows numerical results for the evolution of porosity, pressure and calcium ion concentration, when
the porosity decreases towards zero. Fig. (11) shows the porosity at the later time, 3790 days, when only 5% of the
initial porosity is left according to the numerical simulation. The zone of scale formation has increased little in width
and only the porosity very close to the well has decreased. This behaviour is caused by the decrease in the permeability
near the well. The corresponding numerical fluid pressure in Fig. (12) shows that most of the pressure drop is over the
thin zone clogged with minerals. The fluid pressure, therefore, leads to a decreasing equilibrium concentration next to
the well, where the porosity and permeability are lowest. The numerical calcium concentration is close to equilibrium,
except for the thin zone with substantial mineral scale, as seen in Fig. (13). Fig. (14) shows the decrease in production
rate  with  increasing  time  and  loss  of  permeability  from mineral  precipitation.  The  initial  production  rate  has  been
reduced to roughly 20% of its initial value because of the scale formation, which in turn leads to an increase in the
Damköhler-number. The flow-limited regime, therefore, approaches the well with increasing precipitation and loss of
porosity and permeability.

Fig. (11). The numerically computed porosity at the time when the initial porosity is reduced by 50% and 80%.

Fig.  (12).  The fluid pressure at  5 equidistant  times between the beginning and the end of the simulation.  The pressure gradient
increases steeply over the near well area with time.
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Fig. (13). The equilibrium concentration follows the fluid pressure, and it gets increasingly steep towards the well.

Fig. (14). The brine production rate decreases with time.

CONCLUSION

We present models for the formation of calcium carbonate scale near production wells, when the produced fluid is a
brine of dissolved CO2 and Ca2+. It is also assumed that the reservoir contains a minor portion CO2 rich gas, which is
produced  with  the  brine.  It  is  the  pressure  drop  in  the  gas  phase  that  leads  to  a  drop  in  the  calcium  equilibrium
concentration in the brine, and it is the decreasing equilibrium concentration that drives the precipitation process.

Two analytical estimates for the porosity reduction are presented for this system. The first estimate applies to the
regime where kinetics is sufficiently fast to keep pace with the Darcy flow, which results in the flow being the rate
limiting process. The calcium concentration is also close to equilibrium in this regime. The second analytical estimate
applies in the opposite regime, where kinetics is the rate liming process because it cannot keep pace with the flow. The
brine is initially in the flow-limited regime far from the well, but as the flux increases towards the well, the brine will
most likely at some point enter the kinetics-limited regime. We have derived an estimate for the position where the
scale formation regime changes from flow-limited to kinetics-limited. The analytical results predict the porosity at any
radius as a function of time. The porosity decreases linearly with time in these models. The analytical expressions for
porosity and the half-life predictions are tested against numerical computations. The analytical expressions compare
well with the numerical results until half the initial porosity is lost close to the well. Scale formation, when the porosity
approaches the percolation threshold, however is not a part of the modelling. The half-life estimates for the porosity
give an indication of how long one can expect production wells to operate before scale formation becomes a problem.
The analytical expressions for scaling from a simple brine containing CO2 and Ca2+ can be a useful reference for scale
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formation from real brine solutions.

APPENDIX

The mass-action parameters are taken from Stumm and Morgan [15], where the temperature is in Kelvin and the
pressure that is multiplied with Kh is in units atm.
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