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Abstract: CellML is an XML-based file format for describing mathematical models, with the aim of simplifying the 

creation, exchange and reuse of models. There are a number of software tools for modelling biological processes that can 

read and write CellML files. In this paper, we describe the ability of the OpenCell modelling environment to export 

CellML files to a number of different programming languages. We give an example of how OpenCell can be used 

together with MATLAB, a popular language for mathematical modelling, in cardiac cellular electrophysiology. 

Limitations and areas for future improvement in code export from OpenCell are also addressed. 
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INTRODUCTION 

 The aim of the CellML project is to improve the process 
of constructing mathematical models by making it easier to 
access, reuse and customise previously published models and 
to build new models. CellML is an open file format for 
describing mathematical models, based on the eXtensible 
Markup Language (XML) [1] and MathML [2]. It is able to 
describe a broad range of mathematical models; the CellML 
model repository (http://models.cellml.org/) currently 
includes electrophysiological, biochemical pathway, 
mechanical and other model types [3]. There is a modular 
structure to CellML models that allows reusing and building 
on previously constructed models [4]. CellML files can be 
edited with either a text editor, or with a specialised CellML 
editing tool. One popular CellML tool is OpenCell 
(http://www.opencellproject.org/), which was previously 
known as the Physiome CellML Environment (PCEnv). 
Features from the Cellular Open Resource (COR) tool [5] 
are being merged into the PCEnv code and PCEnv has been 
renamed to reflect this combining of tools. Some of these 
features have been added to the OpenCell code, and this 
process is currently ongoing. For a thorough list of tools that 
use CellML, see Garny et al. [6]. 

 OpenCell is a Free and Open Source cross-platform 
software package released under the Mozilla Public License. 
The OpenCell code is written in JavaScript and utilises 
Mozilla technologies including XUL and XPCOM. For 
reading, manipulating and solving CellML models, OpenCell 
uses the CellML Application Programming Interface (API; 
http://www.cellml.org/tools/api/). 

 The CellML API allows rapid construction of CellML 
based tools without having to replicate previously developed 
functionality.  It consists  of  a  core  interface that is required 
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by all applications working with CellML models, and a 
number of optional services that can be enabled when 
building the API. These services have a wide range of 
functions including validating, annotating and solving 
CellML models. A detailed description of the CellML API is 
provided by Miller et al. [7]. 

Code Export from CellML 

 The ability to generate programming code from a 
CellML file has a number of useful applications. People have 
different preferred computational environments, and the 
ability to download code generated from a CellML file 
allows the use of their preferred environment but also 
provides all the benefits of using CellML. Models in the 
CellML repository have a curation status that indicates 
whether a model accurately reproduces the results from the 
published paper it is based on, and will also list other 
problems such as unit inconsistencies if they exist. If a 
model is obtained from the CellML repository and has been 
curated and validated, users can be confident that the model 
will function as intended without having to manually write 
and test code using the published paper [3]. 

 Although OpenCell is a fully featured modelling 
environment that allows models to be constructed, solved 
and plotted, users may find that they require the use of tools 
available in another modelling or programming environment. 
In this situation, to be able to generate code from a CellML 
model is also important. 

 Previous versions of OpenCell provided the option of 
exporting code to the C programming language, and recently 
the ability to export code to MATLAB and Python has been 
added. Users can now also provide their own XML-based 
language definition files to add support for new languages or 
customise the export to an already supported language. A 
simplified example of a language definition file for 
MATLAB is given in Listing 1. The functionality for 
exporting models is implemented using the CeLEDS 
Exporter service in the CellML API [7]. Because this service 
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is designed to be able to export code for a number of 
different types of models to nearly any programming 
language, there are constraints on the structure of the 
generated code, and the code generated is often not as clean 
and simple as if it had been written by hand. An alternative 
for the user would be to do custom software development 
using the CellML API to work directly with the relevant 
CellML models; however, this requires a significant 
investment of time. Code export offers a more easily 
accessible alternative. Furthermore, the addition of 
customisable export also provides an advantage in that users 
can tailor the code export to their specific requirements. To 
illustrate the export of a CellML model to MATLAB 
(Version 7.9, The MathWorks Inc., Natick, Massachusetts), 
the following simple differential algebraic equation (DAE) 
will be considered: 

dy

dt
= y

d = y c
 

where y(0) = 1 and c = 2. 

 Apart from the variable of integration (in this example, t), 
all variables in the exported code are stored in one of the 
STATES, RATES, ALGEBRAIC or CONSTANTS arrays, 
where each array corresponds to different types of variables. 
In this example, y is a state variable as it has a rate of change 
specified, and dy/dt is the rate variable that corresponds to 
the state variable y. c is a constant as it does not depend on 
the other variables, and d is an algebraic variable as it 
depends directly on the values of y and c rather than being 
defined by a differential equation. 

 The generated code consists of five main functions. The 
first function is the primary M-file function. This calls the 
initConsts function to initialize constants and state 
variables then calls ode15s, a MATLAB ordinary 
differential equation (ODE) solver, to solve for the state 
variables, which uses the computeRates function to 
determine the rates of change of state variables. Following 
this, any decoupled algebraic variables are solved for by 
calling the computeAlgebraic function and finally a 
plot is produced of the solution. 

 In this example the initConsts function initialises the 
value of the state variable y, STATES(:,1), to 1, and specifies 
the value of the constant c, CONSTANTS(:,1), as 2: 

function [STATES, CONSTANTS] = initConsts() 

    CONSTANTS = []; STATES = []; 

    STATES(:,1) = 1; 

    CONSTANTS(:,1) = 2; 

end 

 The computeRates function is called by the ODE 
solver and is passed the value of the variable of integration 
and the values of all state variables and constants. It returns 
an array containing the calculated rates. Rate variables may 
depend on algebraic variables, in which case the algebraic 
variable will be required to be computed within this function.  
 

In this example the rate of change of y, RATES(:,1), is 
calculated: 

function RATES = computeRates(VOI,  

                 STATES, CONSTANTS) 

    STATES = STATES'; RATES = [];  

    ALGEBRAIC = [0]; 

    RATES(:,1) =  - STATES(:,1); 

    RATES = RATES'; 

end 

 The ODE solver returns a two-dimensional array of state 
variables. The columns of this array correspond to different 
state variables, and each row corresponds to a point in the 
integration domain. The computeAlgebraic function 
uses the state variables calculated over the entire integration 
domain to determine any remaining algebraic variables using 
element-wise vector operations from MATLAB. Algebraic 
variables previously calculated within computeRates 
must also be recalculated to obtain their values at the correct 
points in time. In the example code the algebraic variable d, 
ALGEBRAIC(:,1), is specified: 

function ALGEBRAIC =        

             computeAlgebraic(CONSTANTS,  

    STATES, VOI) 

    ALGEBRAIC = zeros(length(VOI),1); 

    ALGEBRAIC(:,1) = 

STATES(:,1).*CONSTANTS(:,1); 

end 

 All variable names are defined using a specified string. 
For the state variables in this example, the string is 
“STATES(:,%)”, where the % is replaced by an array index. 
The same naming convention is used throughout the code, so 
in the initConsts and computeRates functions, state, 
rate and algebraic variables are accessed by specifying a 
column of the STATES, RATES or ALGEBRAIC array. 
However, within these functions, the arrays are simply a row 
vector, so the operations are only performed on scalar values. 
This naming scheme is a limitation of the current code 
export and it would be preferable to access variables by their 
name rather than through an array index. In order to identify 
the array indices for different variables the exported code 
generates arrays of strings in the createLegends 
function, which is also used to generate a legend for the 
plotted solution. These arrays are named LEGEND_STATES, 
LEGEND_ALGEBRAIC, and so on. The value of each item 
in the LEGEND_STATES array will be a string containing 
the name of the corresponding variable in the STATES array. 

 In the previous example, the algebraic variable d was 
decoupled from the DAE system, and could be solved for 
separately once the state variable y had been determined at 
all points in the time domain. OpenCell also has 
experimental support for solving index-1 differential 
algebraic equations where the algebraic variables are coupled 
with the state variables. An example of such a system is 
given below, which has the analytic solution y = e

t
 and c = d 

= y/2: 
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dy

dt
= c + d

dc

dt
=
y

2

c d =
y2

4

 

where y(0) = 1 and c(0) = 0.5 and d(0) = 0.5. 

 In MATLAB the recommended method for solving this 
system is to use a mass matrix, with the equations in the 
form M·y' = f(t,y), where M is a matrix multiplying the 
vector of rates, y'. The above example can be solved using 
the following MATLAB code: 

function [t,y] = solveDAE() 

  M = [1, 0, 0; 0, 1, 0; 0, 0, 0]; 

  y0 = [1; 0.5; 0.5]; 

  tspan = [0, 1]; 

  options = odeset('Mass',M); 

  [t,y] = ode15s(@f,tspan,y0,options); 

 

  function r = f(t, Y) 

    y = Y(1); c = Y(2); d = Y(3); 

    r = [c + d; 

         y/2; 

         (y^2)/4 – c*d]; 

  end 

end 

 When generating MATLAB code from a CellML model 
using OpenCell, the structure of the generated code is similar 
to that for solving an ODE, however within the 
computeRates and computeAlgebraic functions, a 
rootfind function is called to solve for the algebraic 
variable d. There may be more than one rootfind function 
required for a model, so they are numbered. The 
computeRates and rootfind_0 functions for the 
above example are given below: 

function RATES = computeRates(VOI,  

                 STATES, CONSTANTS) 

    STATES = STATES'; RATES = [];  

    ALGEBRAIC = [0]; 

    RATES(:,2) = STATES(:,1)./2.0; 

    ALGEBRAIC = rootfind_0(VOI,  

    CONSTANTS, STATES, ALGEBRAIC); 

    RATES(:,1) =  

    STATES(:,2)+ALGEBRAIC(:,1); 

    RATES = RATES'; 

end 

function ALGEBRAIC = rootfind_0(VOI,  

    CONSTANTS, STATES, ALGEBRAIC_IN) 

    ALGEBRAIC = ALGEBRAIC_IN; 

    global initialGuess; 

    if (length(initialGuess) ~= 1), 

initialGuess = ones(1,1) * 0.1;, end 

        residualfn =  

       @(algebraicCandidate)residualSN_0  

       (algebraicCandidate, 

 ALGEBRAIC, VOI, CONSTANTS, STATES); 

        ALGEBRAIC(:,1) = 

fsolve(residualfn, initialGuess, options); 

        initialGuess = ALGEBRAIC(:,1); 

    end 

end 

function resid =  

        residualSN_0(algebraicCandidate,  

        ALGEBRAIC, VOI, CONSTANTS, 

 STATES) 

    ALGEBRAIC(:,1) = algebraicCandidate; 

    resid = 

(STATES(:,2).*ALGEBRAIC(:,1))-

((STATES(:,1).*STATES(:,1))./4.0); 

end 

 The rootfind_0 function, in this example, has been 
simplified to account for only scalar values of the algebraic 
variables. In the actual exported code the same function is 
also called from calculateAlgebraic using algebraic 
variables defined at all integration points. rootfind_0 
calls MATLAB's fsolve to solve a nonlinear system of 
equations which is defined in the residualSN_0 function. 

Cardiac Cell Modelling Example 

 MATLAB is currently a popular tool for cardiac 
modelling, and even if OpenCell or another CellML based 
modelling environment is not used, modellers should publish 
a complete description of their models in a standard format 
such as CellML to ensure that others have access to their 
models. 

 Modellers using MATLAB, or another environment, 
should consider adding OpenCell to their suite of tools, since 
it provides an excellent environment for cardiac modelling. 
The CellML model repository already contains a large 
number of cardiac models. Fig. (1) shows OpenCell editing 
one such model, Luo and Rudy's 1991 model of the 
ventricular cardiac action potential [8]. The figure also 
illustrates the code export menu that is available when right 
clicking on the model name. 

 One situation where a user of OpenCell may wish to 
export their model to MATLAB is to make use of the signal 
processing tools available in MATLAB. In a hypothetical 
example, a user may wish to model the effect of measuring 
the cardiac action potential by convolving the voltage signal 
from the Luo and Rudy model with the impulse response of 
a system representing the measurement apparatus used. To 
accomplish this using OpenCell and MATLAB is 
straightforward. Right clicking on the model in the left hand 
side model pane of OpenCell brings up a menu which 
contains an export option and allows selecting from a range 
of programming languages. Selecting MATLAB generates 
MATLAB code which can then be saved to a file. 
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 By default, the MATLAB code will return a variable of 
integration (VOI) array with irregular spacing as the solver 
dynamically adjusts the step size. In order to define variables 
with regular spacing in time, a line in the exported code, 
“tspan = [04000];” was changed to “tspan = 
[0:1:4000];”. 

 Switching to MATLAB, the exported code can then be 
run which will return four arrays, VOI, STATES, 
ALGEBRAIC and CONSTANTS. By examining the 
LEGEND_STATES array from the exported MATLAB code 
it can be seen that the first index of the STATES array is the 
membrane voltage. Ideally, there would be a simpler way to 
identify variables without having to read the exported code. 
A fifth-order Butterworth filter was constructed using 
MATLAB's butter function and was applied to the 
voltage signal using the filter function. The MATLAB 
code used is given below, where fs is the sampling 
frequency in Hz, fc is the cut-off frequency in Hz, b and a 
are the filter coefficients, order is the filter order, Vm is the 
membrane voltage calculated from the model and Vmf is the 
filtered membrane voltage. The frequency and phase 
response of the filter are shown in Fig. (2A), and the 
membrane voltage signal before and after filtering is shown 
in Fig.  (2B). 

[VOI, STATES, ALGEBRAIC, CONSTANTS] =  

luo_rudy(); 

Vm = STATES(:,1); 

% Design filter 

fs = 1000; 

fc = 10; 

order = 5; 

[b,a] = butter(order,2*fc/fs); 

Vmf = filter(b, a, Vm); 

freqz(b,a,[],fs) 

figure; plot(VOI, [Vm Vmf]) 

DISCUSSION 

 The main limitations of code export from OpenCell have 
already been illustrated. The naming of variables within the 
code is one issue which needs to be improved, and the way 
the code is generated limits the structure of the exported 
code and can prevent the use of preferred solution methods, 
as seen in the MATLAB example of an index-1 DAE where 
it would be preferable to use MATLAB’s mass matrix 
method. These are two areas which will be focussed on in 
future releases of the CellML API and OpenCell. A possible 
solution to the problem of variable naming is defining 
variable names as the corresponding array index. Rather than 
accessing the membrane voltage using “STATES(:,1)”, 
we would first define “membrane_voltage = 1” and 
similarly for all other variables, then use 
“STATES(:,membrane_voltage)” to access the value 
of the membrane voltage. 

CONCLUSION 

 The use of CellML facilitates simpler model 
development and exchange; however, modellers may prefer 
to use a different environment for model construction or may 
wish to take advantage of features available in another 
environment rather than use a dedicated CellML based 
application such as OpenCell. In these situations, the code 
export tool in OpenCell allows generation of code in 
MATLAB or another programming language, as well as 
providing the ability for users to customise the code export 
for their own needs. 

 

Fig. (1). A screenshot of OpenCell editing Luo and Rudy's 1991 model of the cardiac action potential. A list of variables is shown in the 

middle panel and plots of variables against time are shown in the right panel. To the left is the menu for exporting a model to C, Python or 

MATLAB code, which has been opened by right clicking on the model name. 
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Fig. (2). Filtering of the cardiac action potential. (A) shows the magnitude and phase response of the fifth-order Bessel function used to filter 

the membrane voltage signal, and (B) shows the modelled cardiac action potential before and after filtering. 

 

CODE LISTINGS 

Listing 1 

 A condensed version of the language definition file for the MATLAB programming language. Mal and CCGS refer to 
components of the CellML API that are used for code generation. 

<?xmlversion="1.0"encoding="ISO-8859-1"?> 
<language 
xmlns="http://www.cellml.org/CeLEDS/1.0#" 
xmlns:mal="http://www.cellml.org/CeLEDS/MaLaES/1.0#" 
xmlns:ccgs="http://www.cellml.org/CeLEDS/CCGS/1.0#"> 
<title>MATLAB</title> 
 

<mal:dictionary> 
<mal:mappingkeyname="abs"precedence="H">abs(#expr1)</mal:mapping> 
<mal:mappingkeyname="arccos"precedence="H">acos(#expr1)</mal:mapping> 
  ... 
  ... 
</mal:dictionary> 
 

<ccgs:dictionary> 
<ccgs:mappingkeyname="constantPattern">CONSTANTS(:,%)</ccgs:mapping> 
<ccgs:mappingkeyname="stateVariableNamePattern">STATES(:,%)</ccgs:mapping> 
  ... 
  ... 
</ccgs:dictionary> 
 

<dictionary> 
<mappingkeyname="preStateCount">% There are a total of </mapping> 
<mappingkeyname="postStateCount"> entries in each of the rate and state variable arrays.</mapping> 
  ... 
  ... 
</dictionary> 
 

<extrafunctions> 
<functionsearchname="arbitrary_log"><![CDATA[% Compute a logarithm to any base 
function x = arbitrary_log(a, base) 
    x = log(a) ./ log(base); 
end 
]]></function> 
   ... 
   ... 
</extrafunctions> 
 

</language> 
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