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Abstract: A novel methodology is proposed for continuous monitoring of efficacy data in ongoing antidepressant clinical 

trials and for decision making to support progression or discontinuation of the trial or one of the treatment arms. 

The Posterior Probability of Superiority (PPS) resulting from the application of Monte Carlo Markov Chain approach to a 

longitudinal model describing the time course of placebo and antidepressant drugs was used to estimate criteria to 

discontinue a treatment arm or the trial for futility, and to predict the treatment effect at study-end while the trial was still 

ongoing. 

The decision to stop the study was based on PPS, Predictive Power and on risk analysis based on a non-parametric 

bootstrap trial simulation. The performance of the Bayesian monitoring was evaluated by the retrospective analysis of 3 

clinical trials. The Bootstrap-based methodology was compared to the Conditional Power and the Predictive Probability 

approaches. 

The application of the proposed methodology showed the possibility to stop a trial for futility when about 50% of total 

information was available and to detect signal of a treatment effect when limited information (<40%) was available. The 

comparisons with the Condition Power and the Predictive Probability approaches indicated that the Bayesian Bootstrap 

method, based on data-driven assumptions for priors, provided a better control for the risk of inappropriate decisions. 

The results suggest that the proposed methodology to monitor the accumulating information and to provide a scenario-

based risk analysis could constitute a valuable approach to re-engineer the development process of novel drugs. 

Keywords: Bayesian monitoring, posterior probability of superiority, bootstrap, trial simulation, futility stopping rule. 

INTRODUCTION 

 Failed and negative trials are a recognized problem for 

the clinical development of novel antidepressant treatments. 

A trial is considered failed when the active treatment does 

not differentiate from placebo. 

 The reasons for the increasing number of negative or 

failed efficacy studies in Major Depressive Disorders 

(MDD) are poorly understood [1]. Contributing factors 

include, among other reasons, escalating placebo response 

rates, suboptimal dosing regimens, poor sensitivity of the 

clinical scores used to evaluate clinical efficacy (HAMD, 

MADRAS) and the inherently high statistical variance of 

studies, especially in the case of massive multi-centre trials 

[2, 3]. 

 Another confounding factor specific to clinical trials in 

MDD is the lack of accurate and specific diagnosis criteria. 

This lead to a wide margin of subjectivity in patient selection 

and to an increased heterogeneity (inter-individual 

variability) in the MDD patient population enrolled in the 

trials; all factors that increase the risk of study failure by  
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preventing the detection of a signal of a clinical response for 

novel antidepressant treatments. 

 Traditionally, the clinical trial design used to assess 

antidepressant efficacy is a randomized, double-blind, 

parallel-group, placebo-controlled study. This study design 

may not be the most efficient way to conduct a trial in MDD 

given the wide range of factors affecting the final study 

outcomes. For this purpose alternative strategies have been 

proposed based on the use of an adaptive approach [4]. 

Flexible or adaptive designs can offer an opportunity to the 

implementation for a learning/confirming paradigm [5] in 

the early stage of development of antidepressant drugs. 

 The data that accumulate during an ongoing clinical trial 

contain information about study outcomes already at a 

relatively early stage. The current approaches for data 

analysis rarely consider the use of this information to 

improve the overall efficiency of clinical trial. In contrast the 

Bayesian methodology could represent an ideal approach to 

capture early information that accrues during a trial, offering 

the opportunity to modify the study design, to stop or expand 

accrual, to unbalance randomization in favour to better-

performing therapies, to drop treatment arms, or change the 

trial population to focus on patient subsets that are 

responding better to the experimental therapies [6, 7]. The 

availability of reliable electronic data capture technology is 
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making monitoring approach feasible in the conduction of 

current clinical trials [8]. 

 Interim monitoring is currently recognised as an 

important tool for early decision-making during the 

conduction of clinical trials [9, 10]. Most commonly, interim 

assessment is implemented using the group sequential [11] 

or stochastic curtailment approaches [12-14]. The Bayesian 

methodology has been used both in the group sequential [15] 

as well as stochastic curtailment frameworks [16]. Most 

Bayesian stochastic curtailment tests discussed in the 

literature are examples on mixed Bayesian-frequentist 

strategies known as predictive power tests. Choi [17] and 

Spiegelhalter [16] introduced early termination rules for 

binary endpoints based on a mixed Bayesian-frequentist 

approach. Berry [15] studied the use of futility rules in 

clinical trials with a binary outcome which are adjusted for 

important covariates. Johns [18] considered predictive power 

methods as well as methods relying on a comparison of 

sample proportions in clinical trials with binary outcomes. 

Under Bayesian and non-Bayesian assumption Spiegelhalter 

[19] proposed to use the Conditional Power to trigger 

decision at interim monitoring time. This approach is based 

on the conditional probability of rejecting the null hypothesis 

at the end of the trial. This probability can be computed 

under either the null or various alternative hypotheses. 

Recently, a generalisation of the predictive method [20, 21], 

called the Bayesian predictive or Predictive Probability 

approach has been proposed [22] to evaluate the interim 

monitoring outcomes. 

 One of the main reasons for the growing interest in 

Bayesian methods is the increase in computing power and 

the development of simulation based approaches such as 

Markov chain Monte Carlo (MCMC) methods [23-26]. 

Many of these models include hierarchical data structures 

where between-subject variation is modelled using random 

effects. Examples can be found in meta-analysis and 

generalised synthesis models [27], cluster randomised trials 

[28, 29], genetic epidemiology [30], institutional ranking 

[31] and subgroup analysis [32]. 

 One important component of the Bayesian approach is 

the definition and selection of the appropriate ‘prior 

information’. According to Spiegelhalter [33], there are 

several possible sources of prior distributions, i.e. the 

Reference prior, the Sceptical prior and the Enthusiastic 

prior. The Reference prior or ‘non-informative’ represents 

minimal prior information. The Skeptical prior formalizes 

the belief that large treatment differences are unlikely. This 

can be set up, for example, as having a mean of no treatment 

effect, and only a small probability of the effect achieving a 

clinically relevant value. By contrast, the Enthusiastic prior 

can be specified, for example, with a mean effect equivalent 

to a clinically relevant effect, and only a small probability of 

no effect. The Reference prior, Skeptical prior, and 

Enthusiastic prior are essentially mathematical constructs, 

calibrated using an empirical approach. By contrast, a 

Clinical prior is intended to represent the current state of 

knowledge and it is generally based on good evidence, such 

as a meta-analysis of relevant randomised controlled trials 

[34]. 

 Recently FDA has recommended criteria for the 

assessment of scientifically valid prior information in the 

preparation of novel trials for the use of medical device. In 

this guidance, priors were considered acceptable only if the 

novel trial shares the same protocol design, endpoints, target 

population, recruitment centres of previous trials [6, 35]. 

These requirements are rarely fulfilled in clinical trials for 

the development of novel antidepressants, mostly related to 

logistic problems [36]. When the transferability of prior 

information from other studies is questionable, an alternative 

approach consists in building priors based on partial data 

accrual within a given trial. In this case uninformative prior 

can be used to start the Bayesian monitoring process of data 

accrual. 

 The objective of this paper was to implement a bootstrap-

based methodology for decision-making based on continuous 

monitoring of data accumulated during clinical trials for 

novel antidepressants and to compare the performance of the 

proposed methodology with the outcomes of other 

approaches, such as the Conditional Power and the 

Predictive Probability. 

MATERIAL AND METHODS 

 In a depression trial the primary clinical endpoint is 

usually defined by the changes on HAMD-17 score over 

time. The partial longitudinal set of measurements collected 

for each individual up to the monitoring time (t) constitutes 

the information available for data analysis represented as the 

information score (IS): 

[IS]t = time(i,ji )
i,j

           (1) 

where i is the subject index and ji is the sequence of 

measurement time-points for subject i. For example, a 

subject with partial data collected at week 0, 1, 2 and 4 will 

provide [IS]4=7. Similarly, the total expected information 

score [IS]T can be estimated using the total number of 

subjects planned together with an estimate of the drop-out 

rate. Therefore, using the [IS]t/[IS]T ratio, the fraction of the 

total information available at a given monitoring time-point 

can be computed. 

 Within the Bayesian framework, the trial’s result is 

driven by the posterior probability of a clinically relevant 

treatment effect given the available data. Based on 

monitoring assessment, the trial’s outcome is expected to be 

positive if the Posterior Probability of Superiority (PPS) of 

the active drug versus placebo is greater than a pre-specified 

threshold. PPS is defined as the probability that the 

difference between active and placebo ( ) will be greater 

than 0 given X(n) (the samples observed at the monitoring 

assessment): 

PPS = Prob(  > 0| X(n), prior on ) >  (with 0 <  < 1)        (2) 

 The PPS can be calculated at the different monitoring 

time-points during the study progression, providing  
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estimates of the treatment effect (separation from placebo) at 

study-end. Moreover, the amount of cumulated information 

at the time of monitoring assessments can be used to decide 

trial termination for futility. According to Gould, decision to 

stop the trial for futility requires at least 40% of the total 

planned information [37]. After this time the predictive 

power (PPW, estimated using the method proposed by 

Dmitrienko [22]), i.e., the probability of rejecting the null 

hypothesis of no treatment effect at completion of the trial 

based on available information can be effectively used to 

support a decision. If this probability is sufficiently low, then 

the trial could be terminated and resources redirected more 

productively, otherwise the trial can be progressed [38, 39]. 

 On this basis we can define the time for futility stopping 

criteria as the time when the 3 following conditions are 

simultaneously satisfied: 1) at least 40% of the planned 

information is accumulated; 2) PPS is lower than the agreed 

risk level of accepting superiority when this is not true (e.g. 

< 0.90) and 3) PPW is lower than the agreed risk level of 

rejecting a superiority when it is true (e.g. < 0.2). 

Conditional Power and Predictive Probability 

 Conditional Power and Predictive Probability are 

estimated using a Bayesian framework by combining the 

data collected up to the monitoring time and a range of 

alternative prior assumptions. Table 1 shows the four 

alternatives normal priors used to evaluate the depression 

trials in the present analyses. These data were derived from 

the study design setting of the 810 trail (case 1). This trial 

was powered to demonstrate a clinically meaningful 

difference (3.5 points in the 17-item HAM-D) between 

paroxetine (two doses) and placebo. Sample size calculation 

was based on a standard deviation of 8 and normally 

distributed errors with a two-sided nominal significance 

level of 5% (actual significance level of 2.5%, adjusting for 

2 treatment comparisons). The Reference prior assumes a 

uniform distribution and no difference between placebo and 

active treatments. The other priors assume a nominal 

difference of 3.5 in the HAMD-17 at week 8; while the 

standard deviation varies according to different level of 

expectation, i.e., arbitrarily, large for Skeptical prior, driven 

by sample size calculation for Clinical prior and arbitrarily 

small for Enthusiastic prior. Conditional Power and 

Predictive Probability priors were estimated using the SAS 

macros [39]. 

Table 1. Parameters of the Normal Priors for the Mean 

Change in the HAMD-17 Score in the MDD Clinical 

Trial 810. Mean-1 and Mean-2 Represent the 

Expected HAMD-17 Change from Baseline at Week 

8 in the Placebo and Active Treatment Arms and 

‘SD’ Represent the Common Standard Deviation 

 

Prior Mean-1 Mean-2 SD Effect Size 

Reference -10 -10 1000 0 

Skeptical -10 -13.5 12 0.29 

Clinical -10 -13.5 8 0.44 

Enthusiastic -10 -13.5 4 0.88 

Bootstrap and Trial Simulation for Risk Assessment 

 Sometimes the decision to stop the trial for futility based 

on data not completely representative of the trial may lead to 

erroneous recommendations. This may occurs when a 

significant heterogeneity exists in the data remaining to be 

collected up to the study-end with respect to the data 

accumulated up to the monitoring time. For example, this 

may happen when the different centres have different 

starting time of recruitment, different recruitment rate and/or 

different quality of data. 

 To control the risk of a false negative decision to stop the 

trial, we propose a trial simulation method that uses the 

information available at various monitoring time points. This 

simulation estimates the expected PPS at the study-end for 

different typologies of subjects’ response providing a 

framework to assess a scenario-based risk analysis. 

 The data remaining to be collected at the various 

monitoring time points were simulated using a non-

parametric bootstrapping approach by resampling with 

replacement the original data collected up to the monitoring 

time [38, 40]. Two scenarios were considered: 1) the worst 

case scenario, where all the remaining subjects are assumed 

to show a placebo-like response, and 2) the best case 

scenario, where all the remaining subjects in the treatment 

arm are assumed to be antidepressant drug responders. 

Alternative intermediate scenario can be easily considered. 

 The Partial Database at Monitoring Time (PDMT) was 

initially split by treatment and only patients with a complete 

set of information (completers) were retained. Then, only 

patients responding to the treatment in the active treatment 

groups were selected (a responder is a patients with a 

HAMD-17 score reduction from baseline >=50%). These 

data constitute the Resampling Database (RD). 

 The number of unobserved patients in each treatment 

group was computed as the difference between the planned 

sample size and the number of patient included at the 

monitoring time (ex. Np for the placebo and Nt for the active 

treatment group). At this stage, bootstrap and trial simulation 

was implemented in a 4-step process: 

1. Resample Np and Nt subjects with replacement from 

the Resampling Database. 

2. Combine the Partial Database at Monitoring time 

with the simulated patients resampled in step 1 in a 

Working Database (WB) 

3. Estimate the Posterior Probability of Superiority 

analysing the data in the Working Database 

Repeat step 1 to 3 a number of time (100 for the 

present analysis) 

4. Compute the proportion of positive trials (the trials 

for which the PPS value is > 0.90). A schematic of 

the bootstrap process is shown in Fig. (1). 

 Once the futility stopping criteria has been satisfied (at 

least 40% of the total information, PPS < 0.90 and PPW < 

0.20), a typical decision making based on the bootstrap could 

be: 
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1. Stop the study (or terminate one arm) if the 

proportion of the expected positive trials in the best 

case scenario is lower than 80%. The threshold was 

arbitrarily set based on our experience regarding 

study team expectation for a clinically relevant signal. 

2. Progress the study if the proportion of the expected 

positive trials in the best case scenario is greater than 

80%. In this case, there is a reasonable chance to 

reverse the findings observed at monitoring time if 

the data remaining to be collected are particularly 

good. 

Bayesian Longitudinal Model 

 The longitudinal structural model was defined as the 

combination of a Weibull and linear equations [41]. This 

model was used to fit the population HAMD-17 time-course 

using a Markov Chain Monte Carlo (MCMC) technique as 

implemented in the WinBUGS software package [25, 42]. 

The individual model parameters vector i was assumed to 

follow a normal distributions with population parameters . 

Specifically,  was assumed diagonal and arising from 

Gamma distribution ( ) characterised by a relatively 

uninformative prior distribution (0.001, 0.001). This choice 

was motivated by the lack of rationale to transfer prior 

information from historical studies. The Bayesian analysis 

involved the estimation of the joint distribution of all 

parameters conditional on the observed data: p( , 

|HAMD_data). Generating random samples from the joint 

posterior distribution allows the marginal distribution of 

each parameter to be completely characterized. 

Retrospective Analysis of Clinical Trial Cases 

 The performance of Bayesian monitoring and trial 

simulation was evaluated on the retrospective analysis of 3 

randomized, double-blind, parallel-group, placebo 

controlled, multi-center clinical trials (810, GSKX, and 002) 

on subjects suffering from MDD, including a total of 967 

subjects. The primary efficacy measure was the change from 

baseline to study endpoint (week 8 for study 810 and GSKX 

and week 6 for study 002) as measured by the HAMD-17 

total score. 

 Case 1 (Study 810): Efficacy and safety of paroxetine 

controlled release (CR) (12.5 and 25mg/day) versus placebo 

(N= 156, 154 and 149 respectively) were evaluated in this 

trial [43]. The primary efficacy analysis revealed that both 

the 12.5mg and the 25mg paroxetine CR treatment groups 

were associated with significant therapeutic effects (change 

in HAMD score) from baseline to study endpoint (LOCF:  

p = .038, 95% CI = -3.38 to -0.09 and p = .005, 95%  

CI = -4.06 to -0.74, respectively). 

 Case 2 (Study GSKX): Efficacy and safety of fix doses 

of Compound X or paroxetine (20mg) to placebo (N= 125, 

117 and 118 respectively) were evaluated in this trial. This 

study did not meet the primary objective of demonstrating 

statistically significant efficacy of the Compound X and 

paroxetine compared to placebo for the primary efficacy 

endpoint with an adjusted mean difference 0.25, 95%  

CI (-1.74, 2.23), p=0.808 for Compound X and an adjusted 

mean difference –0.16, 95% CI (-2.18, 1.87), p=0.879 for 

paroxetine. While not significant at the Week 8 observed 

case (OC) endpoint, numerical superiority of paroxetine over 

placebo was observed (adjusted mean difference -1.45, 95% 

CI (-3.88, 0.99), p=0.243). 

 Case 3 (Study 002): Efficacy and safety of flex dose 

paroxetine (10-50mg/day) versus placebo (N= 138 and 135) 

were evaluated in this trial [44]. The primary efficacy 

analysis showed a significant difference between paroxetine 

and placebo from week 2 to week 6 on HAMD-21 change 

from baseline. The mean changes were -7.5, -9.4, -11.6 and  

 

Fig. (1). A schematic representation of the process of bootstrapping for a two arm trial (placebo and active treatment). 
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-12.7 estimated on the LOCF dataset. This trial was 

conducted in 4 centres providing a different response. The 

HAMD-21 scores at week 6 failed to separate from placebo 

in centre 3 in contrast to what was observed in the other 3 

centres. In addition a strong unbalance in subject recruitment 

was observed: centres 4 start the recruitment when the 

recruitment in the first 3 centres was almost completed (Fig. 

6, right panel). 

RESULTS 

 The longitudinal model used for a three arms study 

(Placebo, Active-1 and Active-2) was: 

fi (t) = Aie
(t /tdi )

bi

+ hreci t           (3) 

where A is the baseline HAMD-17 score, td is the time 

corresponding to 63.2% of the maximal change from 

baseline, b is the shape or sigmoidicity factor, hrec is the 

recovery rate, i is the treatment arm index assuming the 

value of 0 (for placebo), 1 and 2 for the active arms. A total 

of 12 fixed-effect (μ j, j=1 to 12) parameters were estimated 

together with their random components j). The treatment 

effect (Pred) and the treatment differences (Dpred) with their 

posterior distribution were then estimated using the μj and j 

values: 

Predi (t) = μAi
e
(t /μtdi )

μbi

+ μhreci
t           (4) 

Dpred1(t) = Pred2 (t) Pred1(t)            (5) 

Dpred2 (t) = Pred3(t) Pred1(t)           (6) 

where Dpred1 and Dpred2 are the predicted separation from 

the active arm 1 and 2 from placebo. 

 This model was applied to the analysis of selected 

clinical trials (Case 1, 2 and 3). For brevity, detailed results 

of individual and population longitudinal model fitting will 

be presented only for the Case 1 (study 810). For Case 1, 2 

and 3 summary tables and graphical representation of the 

Bayesian monitoring and bootstrap analysis will be shown. 

The analysis of the Case 3 (study 002) was conducted on the 

HAMD-17 scores to ensure comparability of the results 

across the other trials presented. 

Case 1 (Study 810) 

 The final population parameter distribution (fixed and 

random effect) estimated by fitting the longitudinal model to 

the HAMD-17 scores are shown in Table 2. 

 All parameters were estimated with acceptable average 

precision. The treatment groups have comparable baseline 

values either in term of mean (fixed effect) or inter-

individual variability (random effect). The treatment effect 

was well captured by the reduction of td (the time at which a 

drop of 63.2% from baseline is observed) as well as by the 

increase in the sigmoidicity factor (b) in the paroxetine arms. 

 The time-course of the observed (blue) and predicted 

HAMD-17 scores of representative subjects are shown in 

Fig. (2). Red lines indicate the median model predicted curve 

and the 95% credible intervals (precision of the estimate). 

These results illustrate the flexibility of the longitudinal 

model to describe individual HAMD-17 time-course profiles 

showing heterogeneous patterns, such as linear 

increase/decrease, sigmoid decline, bell-shape time-course 

and exponential decrease. 

Table 2. Case 1: Mean Fixed and Random Effect Model 

Parameters with their Standard Deviation (Std) 

 

Fixed Effect Random Effect 
Parameter 

Mean Std Mean Std 

A [Placebo] 23.59 0.32 0.11 0.01 

A [12.5mg] 23.18 0.29 0.09 0.01 

A [25mg] 23.24 0.32 0.11 0.01 

td [Placebo] 6.21 1.14 0.86 0.11 

td [12.5mg] 4.46 0.39 0.71 0.07 

td [25mg] 4.60 0.40 0.67 0.07 

hrec [Placebo] 0.46 0.16 0.90 0.31 

hrec [12.5mg] 0.59 0.09 0.73 0.11 

hrec [25mg] 0.43 0.08 0.66 0.16 

b [Placebo] 0.96 0.08 0.57 0.10 

b [12.5mg] 1.07 0.07 0.46 0.07 

b [25mg] 1.10 0.07 0.37 0.06 

 

 The results of the Bayesian monitoring (median 

separation from placebo in the 12.5 and 25mg paroxetine 

arms) conducted at different time-points with different levels 

of information are shown in Table 3. The number of day 

from the enrolment of the first subject and the percentage of 

subjects remaining to be enrolled up to study termination are 

also shown at each monitoring time. 

 In this study the threshold defined by the futility stopping 

rule (>40% of the total information, PPS<0.90 and 

PPW<0.20) was never reached at any time-point. The two 

treatments displayed different behaviour, showing lower 

signal of response (separation from placebo) in the 12.5mg 

paroxetine arm. 

 In presence of a strong drug effect, as delivered by the 

25mg paroxetine arm, the median separation from placebo at 

the study-end was already anticipated when only 18% of the 

total information was available. The robustness of the 

predicted treatment effect for each arm made at each 

monitoring time using the longitudinal model was illustrated 

by an example, i.e., the comparison of the predictions 

obtained with the complete and the partial dataset (18% and 

100% of total information, referring to monitoring day 80 

and 172, respectively) (Table 2). The good agreement 

between the median curves estimated using the complete and 

partial dataset indicates the robustness of the proposed 

longitudinal model to describe the HAMD-17 time-course. 

 Bayesian inference on treatment effect at various time-

points was obtained by analysing the posterior distribution of 

the time-course of the difference between placebo and 
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paroxetine in the 12.5mg and 25mg arms. As an example, 

the estimated time-course of these differences with the 

associated 95% credible intervals are shown at monitoring 

day 110 (51% of total information) in Fig. (3). The good 

predictive performance of the model is illustrated by the 

location of the median response and by the size and location 

of the credible intervals. In fact, the median curves defined 

by the incomplete dataset (monitoring day 110, blue lines) 

consistently overlaps with the median curves estimated with 

the full dataset (monitoring day 172, red line) and the 95% 

credible intervals of the full dataset (cyan shaded area) are 

included in the 95% credible intervals of the incomplete 

dataset (grey shaded area). As expected, the size of the 95% 

credible interval is function of the amount of the 

information, showing larger spread in the estimation done at 

monitoring day 110. The distance of the upper bound of the 

95% credible interval from the zero line is a graphical 

indicator of the clinical relevance of the separation from 

placebo. In Fig. (3) the upper bound of the 95% credible 

interval of the 25mg arm estimated at monitoring day 110 is 

just above or overlapping the zero line suggesting a strong 

signal of clinical efficacy at the study-end. 

 The probability of observing HAMD-17 separation from 

placebo of the paroxetine treatment at study-end was 

estimated using the bootstrap-based trial simulation approach 

at each monitoring time. This probability was estimated as 

the percent of positive out of 100 simulated trials 

(probability of success). Scenario analysis was carried out 

assuming that the ‘Worst Case’ and the ‘Best Case’ were 

close to the ‘Skeptical’ and the ‘Enthusiastic’ assumptions, 

respectively. Fig. (4) shows the percent of positive trials by 

treatment for a given PPS in the best and the worst case 

scenario evaluated when 35% of the total information 

(monitoring day 96) were available. Assuming an agreed 

target PPS of 80% for detecting treatment superiority, the 

probability of success in the Worst Case scenario (left panel) 

was 85% for the paroxetine 25mg arm (red curve) and 42% 

for the paroxetine 12.5mg arm (blue curve). In the Best Case 

scenario (right panel) the probability of positive results was 

> 95% for both arms. This result indicates that even in the 

unlikely event that all the subjects remaining to be enrolled 

in the active treatment arms will respond as those receiving 

placebo (Worst Case scenario), there is still a high 

expectation of positive outcome for the 25mg paroxetine arm 

 

Fig. (2). Case 1: Typical individual observed HAMD-17 response profiles (blue curve) with the median model predictions (solid red line) 
and the 95% credible intervals (red dotted lines) 
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at study-end when this assessment is performed with very 

limited information (<40%). 

 The performance of the bootstrap approach was 

compared with the outcomes of the Conditional Power and 

Predictive Probability when 35% of the total information 

was available (Table 4). All methods provided similar 

estimates of the outcome for the 25mg paroxetine, a well-

known clinically effective dose [45]. Conversely, when the 

sub-clinical dose of 12.5 mg paroxetine was analysed, in 

presence of a weaker signal, only the bootstrap approach was 

sensitive to the different priors. Instead, Conditional Power 

systematically overestimated the rate of positive treatment 

results, while Predictive Probability systematically 

underestimated them. 

Table 3. Case 1: Results of Bayesian Monitoring 

 

Parox.12.5 mg - Placebo 

Week 8 

Parox.25mg - Placebo 

Week 8 

% of patient 

Remaining 

 to be Enrolled Monitoring 

Day*  

%Total 

Info  

Median 

Separation 

2.5% - 97.5% 

Credib.  

Interval 

PPS PPW 
Median 

Separation 

2.5% - 97.5% 

Credib.  

Interval 

PPS PPW Plac 
Com

pX 
Parox 

0 0% - - - - - - - - 100 100 100 

66 9% - - - - - - - - 62 69 59 

80 18% -1.02 [-5.20, 3.35] 0.67 0.67 -4.35 [-8.54, 0.26] 0.97 - 41 50 50 

96 35% -1.60 [-5.30, 1.82] 0.82 0.43 -3.47 [-6.50, -0.16] 0.99 - 20 28 18 

110 51% -1.70 [-4.73, 1.13] 0.87 0.20 -2.80 [-5.43, -0.31] 0.98 - 8 8 7 

127 67% -2.10 [-4.37, 0.16] 0.97 - -2.66 [-5.03, -0.32] 0.99 - 0 0 0 

141 83% -1.99 [-4.28, 0.25] 0.96 - -2.82 [-5.14 -0.50] 0.99 - 0 0 0 

158 94% -1.69 [-3.80, 0.33] 0.95 - -2.49 [-4.67, -0.28] 0.99 - 0 0 0 

172 100% -1.87 [-3.97, 0.25] 0.96 - -3.02 [-5.11, -0.94] 1.00 - 0 0 0 

* Number of days from the date of the enrolment of the first subject, - PPW not computed when PPS>0.90. 

 

Fig. (3). Case 1: Median separation from placebo for the 12.5mg and 25mg arm with the 95% credible intervals. The solid blue and red lines 

represent the median separation from placebo at monitoring day 110 and 172. The grey area corresponds to the estimate done at the end of 

the study (monitoring day 172) while the cyan area corresponds to the analysis conducted when 51% of the data were collected (monitoring 
day 110). 
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 As a conclusion, if the bootstrap-based monitoring 

approach were applied to Case 1 the recommendation at each 

monitoring time would have been to progress recruitment up 

to the planned study-end. This recommendation resulted 

from the combined evaluation of the PPS, the application of 

the futility stopping rule, and the bootstrap-based risk 

analysis. 

Table 4. Bootstrap Analysis vs Conditional Power and 

Predictive Probability 

 

Conditional  

Power 

Predictive  

Probability 
Bootstrap 

 

12.5mg 25mg 12.5mg 25mg 12.5mg 25mg 

Reference 0.19 0.56 0.37 0.96     

Skeptical 0.87 0.99 0.38 0.97 0.42 0.85 

Clinical 0.98 1 0.39 0.97     

Enthusiastic 1 1 0.43 0.97 0.8 1 

 

Case 2 (Study GSKX) 

 The results of the Bayesian monitoring (median 

separation from placebo in paroxetine and Compound X 

arms) conducted at different time-points with different levels 

of information are shown in Table 5. The number of day 

from the enrolment of the first subject and the percentage of 

subjects remaining to be enrolled up to study termination are 

also shown at each monitoring time. 

 The futility criteria (>40% of the total information, 

PPS<0.9 and PPW<0.2) for both arms were met at 

monitoring day 208, when 54% of the total information was 

available. 

 Data up to day 208 were used to estimate the time-course 

of the median separation from placebo for the Compound X 

and paroxetine arms with the associated 95% credible 

intervals (Fig. 5). The location of the median separation from 

placebo, the size of the 95% credible intervals and the 

distance of the upper bound of the 95% credible interval 

from the zero line clearly indicate that there is no reasonable 

expectation for a clinical effect of Compound X. Similar 

considerations apply to paroxetine, but to a lesser degree, 

since the median change showed a trend towards clinical 

improvement. 

 Subsequently, the bootstrap trial simulation was 

performed to assess the risk of a false negative decision. The 

results of this analysis indicated that the percentage of 

expected positive trials in the worst and best case scenario 

for Compound X were 0% and 16% and for paroxetine were 

6% and 100%, respectively. The performance of the 

bootstrap approach was compared with the outcomes of the 

Conditional Power and Predictive Probability when 54% of 

the total information was available (Table 6). 

 These data support the decision to terminate the 

Compound X arm (and by the consequence the entire study) 

considering that, even in the very optimistic event to include 

only responders (best case scenario), the final study outcome 

Fig. (4). Case 1: Bootstrap trial simulation of the final study results by treatment arm (red line: 25mg and blue line: 12.5mg) and worst/best 
simulation scenario, when 35% of the data were available. 

Bootstrap trial simulation of the final study results
 when only 35% of the data were available: Red=25mg, Blue=12.5mg
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is expected to have a success rate of only 16%. The 

paroxetine arm showed a signal of superiority from placebo 

(as expected), but weak in intensity and high in variability. 

These data differ from the significant clinical effect reported 

in study 810 by paroxetine (see Case 1). The lack of 

expected clear clinical effects of paroxetine in Case 2 is 

indicative of failed trial. 

Table 5. Case 2: Results of the Bayesian monitoring. Bold Values Indicate when the Futility Stopping Criteria is Reached 

 

CompX-Placebo 

Week 8 

Paroxetine-Placebo 

Week 8 

% of Patient Remaining 

 to be Enrolled Monitoring 

Day*  

%Total 

info  
Median 

Separation 

2.5% - 97.5% 

Credib. Interval 
PPS PPW 

Median 

Separation 

2.5% - 97.5% 

Credib. Interval 
PPS PPW Plac CompX Parox 

0 0% - - - - - - - - 100 100 100 

147 26% -0.46 [-4.98, 4.64] 0.56 0.48 -4.70 [-9.12, 0.80] 0.97 - 60 61 59 

177 39% 1.46 [-2.40, 5.88] 0.24 0.10 -1.46 [-5.50, 3.00] 0.75 0.35 42 51 41 

208 54% 1.65 [-1.84, 5.40] 0.18 0.01 -1.86 [-5.45, 1.97] 0.83 0.17 28 28 28 

238 69% 1.68 [-1.36, 4.89] 0.14 0.00 -1.58 [-4.87, 1.83] 0.82 0.02 12 16 20 

269 85% 1.06 [-1.70, 3.87] 0.22 0.00 -2.02 [-5.07, 0.95] 0.90 0.00 2 3 3 

300 96% 1.80 [-0.77, 4.48] 0.09 0.00 -1.21 [-4.01, 1.61] 0.80 0.00 0 0 2 

324 100% 1.89 [-0.87, 4.54] 0.09 0.00 -1.36 [-4.32, 1.39] 0.83 0.00 0 0 0 

* Number of days from the date of the enrolment of the first subject, - PPW not computed when PPS>0.90. 

Table 6. Bootstrap Analysis vs Conditional Power and Predictive Probability 

 

Conditional Power Predictive Probability Bootstrap 
 

CompX Parox CompX Parox CompX Parox 

Reference 0.008 0.23 0.005 0.41     

Skeptical 0.14 0.74 0.006 0.42 0 0.06 

Clinical 0.36 0.91 0.006 0.43     

Enthusiastic 0.96 1 0.009 0.49 0.16 1 

 

Fig. (5). Posterior probability of separation from placebo for the Compound X and the Paroxetine arm with the 95% credible intervals. The 

solid blue and red lines represent the median separation from placebo. The grey area corresponds to the estimate done at the end of the study 
on all the available data while the cyan area corresponds to the analysis conducted when 54% of the total data were available. 
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Case 3 (Study 002) 

 The results of the Bayesian monitoring (median 

separation of paroxetine from placebo) conducted at different 

time-points with different levels of information are shown in 

Table 7. The number of day from the enrolment of the first 

subject and the percentage of subjects remaining to be 

enrolled up to study termination are also shown at each 

monitoring time. 

 The futility criteria (>40% of the total information, 

PPS<0.9 and PPW<0.2) was met at monitoring day 312, 

when 51% of the data were available. At this time, a 

consistent fraction of subjects remained to be recruited (49% 

in the placebo and 43% in the paroxetine arm). Therefore, it 

was decided to collect extra information (~10%) to increase 

the confidence in the decision process. At monitoring day 

373, when 61% of the data was collected, the futility 

stopping criteria was again confirmed. At this time-point 

only 3 centres had been recruiting. 

 Data up to day 373 were used to estimate the time-course 

of the median separation of paroxetine from placebo with the 

95% credible intervals (Fig. 6, left panel). In this figure, the 

location of the median separation from placebo, the size of 

the 95% credible intervals and the distance of the upper 

bound of the 95% credible interval from the zero line 

indicate a trend for clinical improvement, supporting the 

decision indicated by application of the futility rule to stop 

the study. The results of the bootstrap trial simulation 

conducted at monitoring day 373 showed that the percentage 

of the expected positive trials was 100% in the best case 

scenario (all responders) and 21% in the worst case scenario 

(all subjects showing a placebo-like response). The 

performance of the bootstrap approach was compared with 

the outcomes of the Conditional Power and Predictive 

Probability when 61% of the total information was available 

(Table 8). 

 These data indicated that, by study-end, there is a 

reasonable chance to obtain a clinically relevant separation 

from placebo. In fact, recruitment in the 4
th

 centre started 

only after day 380 (Fig. 6, right panel), significantly 

contributing to the final success of the study. Therefore, the 

results of the bootstrap trial simulation (as well as of the 

other methods) supporting the progression of the trial 

reversed the recommendation to stop the trial based on the 

application of the futility rule at monitoring day 373. 

Table 8. Bootstrap Analysis vs Conditional Power and 

Predictive Probability 

 

 
Conditional  

Power 

Predictive  

Probability 
Bootstrap 

Reference 0.99 1   

Skeptical 1 1 0.21 

Clinical 1 1   

Enthusiastic 1 1 1 

 

DISCUSSION 

 A model-based approach has been proposed as a tool for 

decisions making on termination, progression or adaptation 

of clinical trials in MDD by monitoring data accrual during 

the conduction of a trial. 

 The mixed Weibull/linear equation was identified as the 

most accurate model to describe the HAMD-17 longitudinal 

scores, consistently with recent analysis of placebo response 

in MDD trials [41]. This model adequately described not 

only the average treatment response but also the individual 

HAMD-17 time-course as shown by the comparison of the 

observed and model predicted scores, the goodness of fit 

plots, and the accuracy of the estimated parameters. The 

individual model predictions provided evidence supporting 

the flexibility of the model for the description of 

heterogeneous HAMD-17 time-course patterns (trajectories), 

such as linear increase/decrease, bell-shape and exponential 

decrease observed in the different treatment arms. In 

addition, the analysis conducted on the truncated databases 

at different calendar dates before study-end (simulating the 

accrual process) demonstrated the good predictability 

Table 7. Case 3: Results of the Bayesian monitoring. Bold Values Indicate when the Futility Sopping Criteria is Reached 

 

Paroxetine-Placebo 

Week 6 

% of Patient Remaining 

 to be Enrolled Monitoring 

Day*  

%Total 

Info  
Median 

Separation 

2.5% - 97.5% 

Credib. Interval 
PPS PPW Plac Parox 

0 0% - - - - 100 100 

161 20% 1.28 [-2.26, 4.91] 0.24 0.491 73 75 

253 45% -2.19 [-6.65, 1.99] 0.84 0.33 53 52 

312 51% -1.66 [-5.45, 2.11] 0.80 0.19 49 43 

373 61% -2.16 [-5.63, 1.36] 0.89 0.12 39 33 

434 73% -2.81 [-5.71, 0.25] 0.97 - 25 24 

526 90% -2.98 [-5.20, -0.77] 0.99 - 12 9 

810 100% -2.96 [-5.12, -0.64] 0.99 - 0 0 

* Number of days from the date of the enrolment of the first subject, - PPW not computed when PPS>0.90. 
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properties of the model when only partial data were 

available. 

 The good predictability properties of the model were 

used to implement a monitoring strategy aimed to support 

decision making during clinical trials in MDD. Data 

monitoring is today an established component of good 

practice in clinical trials [46-48]. Many statistical approaches 

have been proposed to data monitoring. Frequentist methods 

entail calculating critical values for the interim analyses that 

ensure maintenance of the desired Type I error over the 

repeated significance tests [49-51]. In contrast to these 

approaches, Bayesian methods provide a framework for 

incorporating and updating prior beliefs about drug/placebo 

effects as a function of the accumulated data [52]. The most 

commonly used Bayesian methods are the Conditional 

Power [34] and the Predictive Probability [22]. The 

decisions driven by the Conditional Power and Predictive 

Probability approaches remain highly correlated with the 

degree of subjective judgment employed to define the prior 

distribution settings. In alternative to these approaches, the 

bootstrap-based method tries to overcome these limitations 

by using data-driven priors. These priors were derived from 

the accrued data during the progression of the trial. 

 The decision making process is often based on a scenario 

analysis. This methodology provides an assessment of the 

risk of study success/failure by using boundaries for possible 

outcomes estimated with the best and the worst expectations 

and beliefs. In the Bayesian framework, the best case 

scenario is associated with optimistic expectation (i.e., 

Enthusiastic) while the worst case scenario is associated with 

pessimistic expectation (i.e., Skeptical). 

 In the Bootstrap-based method, the ‘Skeptical’ scenario 

assumes that the data remaining to be collected at the various 

monitoring time-points show a placebo-like response while 

the ‘Enthusiastic’ scenario assumes that all the remaining 

subjects in the treatment arm are drug responders. The 

method does not require parametric assumption on the shape 

of the distributions. Individual data are generated using non-

parametric bootstrapping approach by resampling with 

replacement the original data collected up to the monitoring 

time. In the present work we compared the performances of 

three methods: Conditional Power, Predictive Probability, 

and Bayesian bootstrap. 

 In case of strong clinical signal (25mg paroxetine arm in 

study 810), all methods provided similar estimates of the risk 

to continue/discontinue the trial with no differences between 

worst and best scenarios. In case of week clinical signal 

(12.5mg paroxetine arm in study 810), only the bootstrap 

approach was sensitive to different priors, while Conditional 

Power systematically overestimated the rate of positive 

treatment results, and Predictive Probability systematically 

underestimated them. The results of the analysis are consistent 

with results recently published, showing that predictive 

probability decision rules based on ‘Enthusiastic’ priors are 

more likely to trigger an early stopping in futility monitoring 

[22]. Thus, over-Enthusiastic prior would be required for an 

appropriate decision making. In contrast, the Conditional 

Power overestimates the rate of positive trial outcomes 

(including when a ‘Skeptical’ scenario is considered), leading 

to unjustified recommendations to progress trial [22]. 

 In the present work, the decision to discontinue a 

treatment arm or a trial for futility was based on the 

availability of about 40% of the total information and on the 

joint assessment of PPS and the predictive power (PPW), 

estimating the probability of rejecting the null hypothesis of 

equal treatment effects at the study-end given the interim 

 
Fig. (6). Case 3: Left panel: Posterior probability of separation from placebo for paroxetine with the 95% credible intervals. The grey area 

corresponds to the estimate CI done at the end of the study while the cyan area corresponds to the analysis conducted after 373 days when 

61% of the total data were available with no subject enrolled in centre 4. Right panel: Cumulative number of subjects recruited versus time 
by centre. 
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observations and the assumptions about the prior distri-

butions of the treatment effects. 

 This decision-making methodology was tested by 

conducting a retrospective analysis of 3 clinical trials. In the 

first trial (810) the conditions for discontinuing arm/trail for 

futility were never reached at any monitoring time-points. The 

strong signal of separation of the 25mg paroxetine arm from 

the placebo arm was estimated using bootstrap trial simulation 

with <35% of the total information collected in the trial. In the 

second trial (GSKX) a novel compound (Compound X) was 

tested in MDD. The criteria for discontinuing the Compound 

X arm was met at both 39% and 54% of total information. The 

bootstrap trial simulation estimated a success rate of 16% in 

the best case scenario, triggering the recommendation to stop 

the Compound X arm and, hence, to an early discontinuation 

of the trial. In the third trial (002) we provided an example of 

deviation from the exchangeability assumption due to the late 

inclusion of an extensively recruiting centre. The criteria for 

futility discontinuation were reached at both 51% and 61% of 

total information. However, the bootstrap trial simulation 

estimated a success rate of 100% and 21% in the best and the 

worst case scenario, respectively, recommending the continu-

ation of the trial. 

 One of the critical issues in antidepressant drugs 

development is the complexity and relatively long duration 

of clinical trials (2 years on average). These factors represent 

serious drawback for the implementation of an effective 

portfolio management strategy. In early clinical develop-

ment, ‘Proof of concept' and signal detection trials are 

carried out to determine if a treatment is clinically active or 

inactive before commitment of investment in late phase drug 

development. In this framework, the possibility of an early 

detection of lack of efficacy can trigger the decision to 

terminate the trial, to discontinue the development of the 

drug under investigation, and, more effectively, to redirect 

resources more productively. If the estimated probability of 

success is high, the clinical development plan can be 

accelerated by an early initiation of confirmatory trials 

without affecting the course of the PoC trial in any way. On 

this basis, the proposed methodology can constitute a novel 

alternative decision-making tool to improve the overall 

productivity of drug development by re-directing the 

(sometime limited) resources in the most promising projects. 

 In conclusion, the comparisons of Condition Power and 

Predictive Probability approaches indicated that the Bayesian 

bootstrap method, based on data-driven assumptions for 

priors, provided a better control for the risk of inappropriate 

decisions. These results suggest that the proposed approach 

to monitor the accumulating information could constitute a 

valuable alternative to the re-engineering of the development 

process of novel antidepressant drugs. The WinBUGS code 

for longitudinal models and the code used to implement the 

bootstrap trial simulation can be provided upon request from 

the authors. 
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