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Abstract: A new method for calculating matrix elements of the collision integral is presented. This method is applied 
both for the determination of ion mobility on atom background and the construction of the ion distribution function in the 
case when an electric field or crossed electric and magnetic fields are switched on instantaneously. The limits of the non-
stationary moment method are explored. Five interaction models are studied in detail, and the evolution of the distribution 
function is presented for various electric field strengths. It is shown that the angle and energy dependence of the cross-
section strongly influences the distribution especially in the high velocity domain. In particular, the runaway of ions for 
the Coulomb interaction is determined. Moreover, the mobility vector is shown to move along a spiral to its stationary 
value when an electric and cross magnetic field are switched on.  
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INTRODUCTION  

 The moment method advanced by Burnett [1] is one of 
the main methods for solving the Boltzmann equation. 
Nevertheless, there has been only a slow progress in the 
development of this method mainly because the matrix 
elements (ME) of the collision integral remained to a large 
extend unknown especially in the nonlinear case. In [2-4] a 
number of relationships among the MEs has been uncovered. 
Recurrence procedures have been proposed in which all 
nonlinear MEs can be calculated in terms of the much 
simpler linear isotropic MEs. In the course of these 
calculations the linear MEs with large indices could be 
obtained, as well. Solving exemplarily the nonlinear 
relaxation of isotropic distribution functions (DFs), it was 
shown that the moment method not only can be used to build 
up the moments but also the DF itself, even for strong 
departures from equilibrium up to 5–10 times the thermal 
velocity [2, 3].  

 In the present work the moment method is applied to get 
the ion DF for both, an electric field and an electric and cross 
magnetic field, where use is made of an appropriate number 
of MEs. The motion of an admixture of charged particles in a 
quasi-neutral gas under the influence of external fields has 
been considered already half a century ago. Earliest kinetic 
approaches for solving the transport problem of charged 
particles can be found in the works of Sena [5], Wannier [6], 
Perel [7], and Smirnov [8]. General theoretical and 
experimental results, accomplished during the 70–80s of the 
last century, have been discussed in [9, 10]. In these 
monographs a classification of problems is given also but it 
should be kept in mind that the majority of results has been 
obtained for two extreme cases only, namely very weak or  very 
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strong electric fields. A review of further works stemming 
from the last decades can be found in [11, 12].  

 Many papers on charged particle kinetics were initiated 
by Kumar [13], who advanced the original calculation of 
MEs using the Thalmi coefficients. A number of results have 
been obtained in [14], which has developed the methods for 
solving the Boltzmann equation in case of charged particles 
further. A cycle of works, which mainly developed such 
ideas in the theory of electron transport, was carried out by 
Robson, White, Ness and Li [11, 12, 15, 16].  

 Due to the complexity of the collision integral the 
approximated moment-transport theory (MTT) for solving 
problems of ion kinetics under an electric field has been 
widely used [17, 18]. It often achieves good accordance with 
experimental data concerning transport coefficients. 
Problems at the kinetic level have been generally attacked by 
the moment method by the use of polynomial expansions of 
the DF, namely by spherical Hermite polynomials (Burnett 
functions). In spite of the linearity of the collision integral 
much success could, however, not be made till now except 
for some models, which took into account a sufficient 
number of DF expansion terms.  

 The two-temperature method [10], replacing the standard 
one, places new hopes in overcoming these difficulties. 
Whereas in the standard method the temperature of the basic 
Maxwellian, about which the expansion is carried out, 
coincides with the neutral gas temperature, in the two-
temperature (non-standard or modified) method these two 
temperatures are different from each other. Now, with linear 
MEs of large indices one can use the standard method in a 
new way. It should be emphasized that the application of 
MEs of large indices gives rise to ten thousands of DF 
moments whereas in the above mentioned works only about 
ten moments are involved. Since there are no further 
restrictions on the MEs, the limits in the application of the 
standard method can be investigated. In the following, we 
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advance the non-stationary moment method for solving the 
Boltzmann equation. The central part of this method will be 
the solution of the ion evolution after a sharp switching on of 
an electric field at the moment of time t = 0. As a result, not 
only the stationary state is found but also non-stationary 
features of the transient process. Note that the ion velocity 
DF at t = 0 is the equilibrium (Maxwellian) distribution with 
the temperature equal to the atom temperature.  

 The structure of the present work, which includes two 
large parts, is as follows: in the first part the spatially 
uniform case of ion evolution under a sharp switching on of 
an electric field is treated, whereas the non-stationary 
process triggered by a sharp switching on of an electric and 
cross magnetic field is treated in the second part.  

 The first part (Sections 1.1 and 1.2) begins with various 
interaction models and the necessity of getting non-
stationary solutions of the Boltzmann equation. Section 1.3 
describes the solution method in detail. It includes the 
differential operator, corresponding to the left hand side of 
the Boltzmann equation, and the calculation of the matrix 
elements of the collision integral. In Section 1.4 the CEM-
model is under consideration. It refers to the ion resonance 
charge exchange process of atoms with cross-sections 
decreasing inversely proportional to the relative velocity. For 
this model the analytic solution for the DF is built up 
together with the moments for the non-stationary problem. 
With the help of the analytical solution a convergence study 
of the moment method is made. It is shown that there are 
insurmountable difficulties in building up the stationary 
solution via the stationary method even in the domain of 
moderate electric fields. In Section 1.5 the non-stationary 
problem is solved for several interaction models. It is shown 
that the interaction model strongly influences the physical 
moments and the behavior of the DF especially in the high 
velocity region. Under Coulomb interaction and not so weak 
electric fields the phenomenon of ion runaway is 
investigated. In Section 1.6 two methods to improve 
convergence are considered. It is shown that the transition to 
the two-temperature method results in a better convergence. 
The new matrix elements, which arise by the transition to the 
non-standard method, can be built up with the known 
nonlinear MEs from the standard moment method. An 
essential improvement in the convergence can be achieved if 
only spherical harmonics are involved in the expansion of 
the DF and not Sonine polynomials. For the hard-sphere 
model, the kernels of the corresponding integral operators 
have been constructed in [19, 20]. Using these kernels, we 
extend the study of the DF into the domain of high velocities 
in the case of a weak electric field. With this method the DF 
can be calculated up to arbitrarily high velocities and, hence, 
stationary DFs can be found.  

 The second part (Section 2.1) begins with the 
construction of the system of moment equations describing 
the ion kinetics in an electric and cross magnetic field. It is 
shown that for models with diagonal interaction matrix an 
exact analytic solution can be obtained. A nice coincidence 
between analytical and numerical solutions is shown for 
pseudo-Maxwellian molecules. In Section 2.2 the notion of 
reduced physical moments is introduced, being calculated in 
Section 2.3.  Particular  emphasis is laid on their behavior for 
 

very weak electric fields, i.e. on the area where the 
Chapman-Enskog method is applicable. It is shown that with 
increasing magnetic field the moments approach non-
monotonously the stationary value, passing an oscillatory 
stage with the ion Larmor frequency as the main frequency. 
With an increase of the electric field the peculiarities of the 
non-stationary process pertain. The runaway effect is 
diminished by the magnetic field in case of Coulomb 
interaction. For very strong magnetic fields the convergence 
of the moment method is restored at large time values and 
very strong electric fields. In Section 2.4 the ion distribution 
function is calculated for an electric and cross magnetic field 
for different interaction models. Interesting features of the 
DF are found in the domain of high velocities for the 
Coulomb interaction.  

1. Electric Field Switch-On  

1.1. Statement of the Problem  

 Consider a small ion admixture in a gas with Maxwellian 
velocity distribution at fixed temperature. The electric field 
E switch-on results in arising the ion flow along the field 
direction.  

 Kinetic theory of a neutral gas is well-developed at the 
weak deviations from equilibrium. Such is the Chapman-
Enskog method as well as calculation of the transport 
coefficients for neutral gases [21, 22]. This method involves 
the linearization of Boltzmann equation with a small 
correction of DF to the equilibrium (Maxwellian) 
distribution.  

 Under electric field, transferring to the linear equation for 
a small admixture of charged particles is easier as compared 
with a neutral gas. Here, two eventual sources of non-
linearity exist: the direct (due to ion-ion interactions) and 
non-direct (due to possible distortion of atomic distribution 
by ions and its reverse effect on distribution of the ions). 
Both sources are sufficiently small if ion density is very 
small versus background gas density.  

 For the case under consideration, the general transport 
processes are diffusion and mobility. A relation of ion flow J 
with density gradient n at a small quantity of n is governed 
by the Fick’s law  

J = D n.  (1)  

Here, D is the diffusion coefficient.  

 If the electric field is applied to spatially uniform 
mixture, an ion flow also arises. The velocity of mass center 
of ion cloud (mean ion velocity) is called a drift velocity vd. 
If the field is sufficiently weak, the drift velocity is directly 
proportional to the field strength:  

vd = KE.  (2)  

For the case of a weak external field, the mobility K and 
diffusion coefficient D are related by Einstein relationship  

  

K =
eD

kT
,  (3)  

where e is ion charge, k is Boltzmann constant, T is gas 
temperature.  
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 If the strength is increased in such a manner that a mean 
energy of ions is commensurable (or even larger) with 
thermal energy of atoms, the situation will change. First, a 
mobility K in (2), strictly speaking, is not constant but 
depends on E. Nevertheless, it is of use to involve (2) for 
determination of K at any electric field. Second, the 
diffusion coefficient becomes a tensor. Signify, that when 
calculating diffusion of ions even at the strong fields, it is 
assumed that the density gradient is of a small value. Note, 
that a study of diffusion is out of scope of the present paper.  

 The very fact that, for ion admixture in a neutral gas, the 
collision integral is a linear operator, does not assume a 
smallness of deviation from equilibrium. Moreover, one can 
assert that an extent of deviation from equilibrium turns out 
to be extremely high under the strong electric field.  

 The strongly non-equilibrium process is described by the 
Boltzmann equation which, in the case under consideration, 
is  

   

f

t
+ v

f

r
+

eE

m
i

f

v
= J ( f ).  (4)  

Here, f(v,r,t) is the DF of ions, E is the electric field 
strength, J(f) is the linear collision integral of ions with the 
Maxwellian distribution of atoms, mi is ion mass. The 
Boltzmann equation in the spatially uniform case is  

   

f

t
+

eE

m
i

f

v
= J ( f ).  (5)  

 As a rule, a steady state, which occurs due to a balance of 
ion acceleration between its collisions with atoms and its 
deceleration during collision process, is under consideration 
in literature. The steady-state distribution function fst satisfies 
the stationary Boltzmann equation  

   

eE

m
i

f
st

v
= J ( f

st
).  (6)  

 Involving the stationary DF, the stationary drift velocity 
and mobility are found. If one needs a diffusion tensor, it can 
be built up only knowing fst(v). As far as under strong 
electric field due to the gradient the DF deviation occures not 
from the Maxwellian distribution but from the strongly non-
equilibrium stationary DF. Thus, the building-up of (6) 
solution is the necessary condition for obtaining all the 
transport coefficients for the ions in a neutral gas and, hence, 
presence of the field term results in essential distinctions 
from the Chapman-Enskog method concerning a neutral gas.  

 The question now arises of whether there is always a 
solution of equation (6). This point was discussed in [14]. If 
for rather hard potentials (e.g., for hard-sphere model) the 
theorem of solution existence and uniqueness is approved for 
equation (6), then for Coulomb interaction it is far from 
being evident. For Coulomb interaction, the runaway effect 
for ions can take place, when a portion of ions consuming 
large energy from the field, subsequently are accelerated 
infinitely.  

 An answer on a question of existence of the steady state 
can be obtained when building up the solution of the non-
stationary equation (5). Let at first the ions are in equilibrium 

with atoms, and for a time t = 0 the electric field E is 
switched on. Then a transient process arises. If at large time 
the constant DF maintains, it will be a solution of the 
stationary Boltzmann equation (6). On the contrary, if the 
process is not finished yielding the steady state, then, solving 
the non-stationary equation, the outgoing ion flow formation 
can be followed up. The DF building-up for transient stage is 
of primary interest, especially, if can be followed up a 
change in the features of this process when changing the ion-
atom scattering cross-section. Generally, the steady-state 
transport coefficients are under investigation in literature. 
We have proposed more intricate problem, namely, to study 
a DF behaviour in the non-stationary process when the 
electric field is involved. Our main problem, i.e., the study of 
application limits of the moment method, is being solved 
simultaneously.  

 Let the ion mass mi is equal to that of an atom ma. Note, 
that this case is more difficult one, because the collision 
integral is essentially simpler in the limiting cases mi/ma  0 
and mi/ma  . Besides, assuming mi = ma, the processes of 
the resonant charge exchange of the ions on atoms, inherent 
for ion kinetic in their own gas can be considered.  

1.2. Models of Interaction  

 The list of interaction models and their descriptions 
involved in calculation is shown below.  

 For power potentials when an interaction potential V 

depends on a distance r as a power function 
   
(V

1

r
v
),  a 

scattering cross-section is presented as follows 

(g, z) = g 1F(z),     z = sin2( /2),      = (  4)/ .  (7)  

 Here, g is a value of relative velocity,  is a scattering 
angle, and F(z) is the angular part of scattering cross-section 
which is unequivocally determined by a parameter . 
Remember that for the hard-sphere model the scattering is 
isotropic, i.e., F(z)= const. The model of pseudo-power 
potential is often used in kinetics. In such model the 
scattering by angles is assumed to be isotropic, and 
dependence of cross-section on velocity module is the same 
as for power potential.  

 A set of models of “quasi-power potentials” can be 
determined with a fixed value of  (or ) for which is 
conserved a dependence on g for power potential and the 
angular dependence is supposed to be arbitrary. The 
temperature dependence of -integrals is the same for all the 
models of quasi-power potentials with a fixed . Hence, all 
MEs are also equally dependent on a temperature, namely, 

T , where  = /2 = (  4)/(2 ). E.g.,  = 0 for the 
Maxwellian molecules,  = 0.5 for hard spheres,  = 1.5 
for the case of Coulomb interaction.  

 In ion kinetics, under interaction with atoms of the same 
kind (in their own gas), a resonant charge exchange of ions 
on atoms plays an essential role. This phenomenon occurs 
during electron exchange: ion flows past atom and obtains an 
electron, the atom is conversed into ion and the ion into 
atom. This phenomenon occurs at the collisions with a large 
impact parameter and practically has no effect on a direction 
of the heavy particle motion, i.e. the angular part of cross-
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section is equivalent to 180  scattering in the case of resonant 
charge exchange.  

 Consider several models of interaction:  

1.  Pseudo-maxwellian molecules, the total cross-section 
is inversely proportional to relative velocity (  = 
C/g), the angular part of cross-section is isotropic.  

2.  The CEM-model, the total cross-section is also 
inversely proportional to the relative velocity, the 
angular part of cross-section – resonant charge 
exchange – corresponds to 180  scattering.  

 Collision frequency does not depend on velocity, for 
these two models. So, they are called the models “  = 
const”.  

3.  The HS-model – hard-spheres model, the total cross-
section does not depend on velocity (  = const), 
angular part of cross-section corresponds to isotropic 
scattering.  

4.  The CEHS-model, the total cross-section does not 
depend on velocity (  = const), the angular part of 
cross-section corresponds to resonant charge 
exchange.  

 A mean free path does not depend on velocity for HS 
and CEHS models. So, they are called the models “  
= const”.  

5.  Coulomb interaction, V  1/r. Scattering cross-section 
is determined via Rutherford formula. 

 A rapid decrease in a scattering cross-section with an 
increase in a relative velocity and divergence at small 
scattering angles is inherent for this model. To remove this 
divergence, screened Coulomb potential with a screening 
radius equal to Debye radius D is used:  

  

(g, ) =
e

4

m
2
g

4
sin

4

2

 (8)  

 Here, n is plasma density. As a result, the collision 
integral turns out to be proportional to the Coulomb 
logarithm  

  
ln = ln(12 n

D

3 ).  

 In our calculation the Coulomb logarithm is assigned to 
be 5. When calculating the MEs in the standard 
normalization, in the case of the Coulomb interaction, the 
time unit is assigned to be  

  
r = 16(kT / m)3/2 / (J

1
n), J

1
= 8 e

4 ln / m
2 .  (9)  

1.3. Method of Solution  

 We use the moment method in solving the Boltzmann 
equation. Perform the DF expansions in terms of the 
spherical Hermite polynomials (Burnett functions) [1], [3]  

   
f (c,r,t) = M ( ,c) C

rlm

i (r,t)H
rlm

i (c),
m

i

2KT
,  (10) 

   
H

j
= Y

lm

i ( , )cl S
l+1/2

(r ) (c2 ), i = 0,1; c = (v u),  (11) 

  

Y
lm

0 ( , ) = P
l

m (cos )cos m , Y
lm

1 ( , ) = P
l

m (cos )sin m ,

0 m l.
(12) 

 Here, an index j includes four indices (r, l, m, i), M is 
the weight Maxwellian of a temperature T and mean velocity 

u, 
 
Y

lm

i  ( , ϕ) are the real spherical harmonics, 
 
P

l

m (cos ) are 

the associated Legendre polynomials, and 
  
S

l+1/2

(r ) (c2 )  are the 

Sonine (Laguerre) polynomials. The distribution function 
should satisfy a condition 

  
f 2 exp(c2 )d 3c < ,

0
 (13)  

for (10) convergence. We call (13) the Grad criterion. The 
constraint, related with the Grad criterion, arises when 
expanding in terms of the Sonine polynomials but not the 
spherical harmonics as the Sonine polynomials do to be 
orthogonal with Maxwellian weight.  

 In the most general case, a behaviour of gas mixture is 
described by a system of non-linear Boltzmann equations. In 
order to avoid extra indices and cumbersome calculations 
let’s write out the non-linear Boltzmann equation for one-
component gas:  

   

f

t
+ v

f

r
+

F

m

f

v
= Î( f , f ).  (14)  

 Here, Î(f, f) is the non-linear collision integral, F is a 
vector of external force, m is a particle mass. In the moment 
method, an equation (14) is replaced by the infinite system 
of moment equations:  

  

D(C
i
)

Dt
= K

j ,k

i C
j
C

k
.

j ,k

 (15) 

 An operator D/Dt in (15) refers to the differential (left) 
side of the Boltzmann equation. It was studied in [1] in the 
absense of external forces.  

1.3.1. Matrix Elements of the Collision Integral 

 Non-linear matrix elements 
  
K

j ,k

i  are determined as 

follows: 

  
K

j ,k

i
= H

i
I( MH

j
, MH

k
) d 3 / g

i
, g

i
= MH

i

2d 3 .  (16) 

 The linear MEs correspond to the linear collision integral 

and can be of the first 
  
(K

j ,0

i )  and second 
  
(K

0,k

i ) kinds. They 

are denoted by . In the axially symmetric case (m = 0) we 
have 

  
r ,r

1
,l

(1)
= K

r
1
,l ,0,0

r ,l ;
r ,r

1
,l

(2)
= K

0,0,r
2

,l

r ,l .  (17) 

 When calculating a small ion admixture on atom 
background, the linear matrix elements of the first kind are 
needed.  

 In 1D-spatial problems, the velocity DF is axially-
symmetric and may be expanded by the spherical Hermite 

polynomials with two indices r and l: Hrl = 
  
S

l+1/2

r
P

l
.  It was 

shown in [3] that 3D matrix elements are proportional to the 
corresponding axially symmetric MEs and the coefficients of 
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proportionality are easily expressed via the Klebsh-Gordon 
coefficients. 

 The invariance of the collision integral relative to a 
choice of a basis functions set, in terms of which the DF 
expansion is carried out [3, 4] is laid as a base in obtaining 
the relationships between the MEs. The bases considered are 
distinct in the parameters of the weight Maxwellian. In the 
axially symmetric case those are a temperature T and a mean 
velocity value u, which are denoted by unique letter W. The 
expansion coefficients of the DF in the bases W0 and W1 are 
interrelated via transport matrix D:  

  

C
j

1
= D

j ,k
(W

1
,W

0
)C

k

0

k=0

.  (18) 

 Amatrix D was built up in [3] using   u-representation 
of the Boltzmann equation [23]. It follows from the 
invariance principle of the collision integral relative to a 
choice in the basis functions that the MEs of the collision 
integral in two different bases are mutually expressed in this 
way  

   

K
k , j

i (W
1
) = D

i ,i
(W

1
,W

0
) K

k , j

i

k , ji

(W
0
)D

k ,k
(W

0
,W

1
)D

j , j
(W

0
,W

1
).  (19) 

 If this expression is differentiated with respect to T1 or u1 

and set W1 = W0 (u1 = u0, T1 = T0), we obtain the 
“temperature” recurrence relationships  

  

(T
d

dT
R)K(

a,b

a )
r
1
,l

1
,r

2
,l

2

r ,l
= rK(

a,b

a )
r
1
,l

1
,r

2
,l

2

r 1,l

(r
1
+1)K(

a,b

a )
r
1
+1,l

1
,r

2
,l

2

r ,l (r
2
+1)K(

a,b

a )
r
1
,l

1
,r

2
+1,l

2

r ,l ,

 (20) 

where R= r1 + r2  r + (l1 + l2  l)/2 and the “velocity” 
recurrence relationships  

  

(l 1)K(
a,b

a )
r
1
,l

1
,r

2
,l

2

r ,l 1
+ (r 1, l +1)K(

a,b

a )
r
1
,l

1
,r

2
,l

2

r 1,l+1

(l
1
)K(

a,b

a )
r
1
,l

1
+1,r

2
,l

2

r ,l (r
1
, l

1
)K(

a,b

a )
r
1
+1,l

1
1,r

2
,l

2

r ,l

(m
b

/ m
a
) (l

2
)K(

a,b

a )
r
1
,l

1
,r

2
,l

2
+1

r ,l(
(r

2
, l

2
)K(

a,b

a )
r
1
,l

1
,r

2
+1,l

2
1

r ,l ) = 0,

 (21) 

  
(l) =

l +1

2l +1
, (r, l) =

(r +1)l

2l +1
.  

Here, the matrix elements 
  
K(

a,b

a )
r
1
,l

1
,r

2
,l

2

r ,l  correspond to a 

mixture of two kinds of the particles a and b with masses ma 
and mb, the particles of a kind being scattered on the 
particles of b kind. A relationship (20) becomes the simplest 
for the power potentials (7), when the MEs are proportional 
to T . In this case, a left side of (20) takes on a form 

  
(T

d

dT
R)K(

a,b

a )
r
1
,l

1
,r

2
,l

2

r ,l
= (μ R)K(

a,b

a )
r
1
,l

1
,r

2
,l

2

r ,l  (22) 

 For arbitrary potentials, in [3], an independent on 
interaction cross-section, universal recurrence formulas for 
the expansion coefficients of the non-linear MEs are deduced 
in terms of –integrals well-known in kinetic theory. A 
simple relation for –integrals, which includes the 
derivative with respect to temperature, turns out to be very 
important in derivation of these relationships.  

 Note, that the recurrence relationships (20) and (21) are 
valid also for the MEs of the gain and loss terms separately.  

 The recurrence procedures were developed. It was shown 
that all non-linear (and linear) MEs can be found, if the 
linear isotropic (l = 0) MEs of one kind are known. Simple 
formulas [2] and [3] are obtained for linear isotropic MEs of 
the first kind as well as of the second kind. The software 
package for calculation of all MEs up to those of very large 
indices for arbitrary masses of colliding particles was 
created.  

 It should be noted, that the linear MEs with l  0 are 
found using only a full recurrence procedure for nonlinear 
MEs. So, when building-up any (even the linear ones) MEs, 
the total collision integral in the Boltzmann equation should 
be considered.  

1.3.2. System of Moment Equations  

 In the presence of external forces, the left side of moment 
equations (15) was deduced by us in [24] both in global and 
in arbitrary local bases. Here, we present only a final form of 
the moment system in the global basis  

   

C
J

t
+ u

C
J

r
+

1
1/2 x

kk=1

3

G
j

(k )
+

1/2
F

k

m
0k=1

3

L
j

(k )
= K

j
1
,k

j

j
1
,k

C
ji
C

k
.   (23) 

Remember that 

   

C
j
(r,t) =

1

g
j

f (v)H
j
(c)d 3 .  (24) 

 A normalization factor gj is as follows [3] 

  

g
j
= y

lm rl
, y
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=

2 (1+
m0

)(l + m)!

(l m)!(2l +1)
,

rl
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(r + l + 3 / 2)

2 3/2r!
. (25) 

 For 
  
G

j

(k )
 and 

  
L

j

(k ) ,  the expressions are obtained as stated 

below  
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1
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=

( 1)i+1

2(2l + 3)
(l + r + 3 / 2)d

m 1
C

rl+1m 1

1 i( rd
m 1

C
r 1l+1m 1

1 i

+(l + m+ 2)(l + m+1)((l + r + 3 / 2)C
rl+1m+1

1 i rC
r 1l+1m+1

1 i ))

+
( 1)i+1

2(2l 1)
d

m 1
(( C

rl 1m 1

1 i C
r+1l 1m 1

1 i )

+(l m)(l m 1)(C
rl 1m+1

1 i C
r+1l 1m+1

1 i ),

(27) 

  

G
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=
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=
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j

(2)
= ( 1)i+1 1
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L

j

(3)
=

2

2l + 3
r(l + m+1)C

r 1l+1m

i 2

2l 1
(l m)C

rl 1m

i .  (31) 

Here, has been used a denomination dm =1+ m0. 

1.3.3. System of Moment Equations for Ion Admixture  

 For the ion DF f in the dimensionless form, the 
Boltzmann equation (5) is as follows  

  

f

t
+

f

c
z

= Ĵ ( f ).  (32) 

 Here, thermal velocity T = 
  

2kT / m
i  is taken as 

velocity unit. Definitions mentioned above remain for the 

dimensionless DF and time: f(c,t). 
  
Ĵ ( f )  is the 

dimensionless collision integral,  is the dimensionless 
electric field strength. The direction of z-axis coincides with 
that of the electric field in equation (32). Time between 
collisions  is taken as a time unit. The selection of time unit 
is evident for the models with  = const. Transferring to 
these units, we obtain for the dimensionless electric field 

  

=
eE

m
i T

eE

2kTm
i

.  (33) 

 However, for other interaction cross-sections, collision 
frequency depends on relative velocity, and selection of time 
unit is not evident. E.g., for the hard-sphere model, scattering 
cross section does not depend on velocity. Thus, the collision 
frequency  turns  out  not  to be constant but a mean free path  
 = (Na d2) 1, where Na is density of atoms and d is a 

diameter (in general case, a sum of colliding particles’ radii). 
For the models with  = const, naturally,  can be taken as 
length unit.  

 With these units of length and velocity the time  is 
determined unequivocally as  = / T. Then, for  we have  

  

=
eE

2kT
.  (34)  

 The moment method in which the expansion of 
distribution function is carried out about the Maxwellian 
with atom temperature we will call the standard moment 
method. In this paper we generally demonstrate capabilities 
of the standard moment method when a large set of MEs is 
known.  

 The system of dimensionless moment equations 
corresponding to the Boltzmann equation (32), takes a form  

  

C
r ,l

t
+

2

2l + 3
r(l +1)C

r 1,l+1

2l

2l 1
C

r ,l 1
=

r ,r
1
,l
C

r
1
,l

r
1

(35) 

 It is easy to verify by substituting an expression (31) into 
general moment system (23), taking into consideration no 
spatial derivatives and symmetry of the  problem  relative  to  
 

z-axis (m = 0). If the terms involving time derivatives are 
omitted in the moment equations (35) and the distinctions in 
determination of collision frequency as well as in 
normalization choice are taken into consideration, the system 
coincides totally with the stationary system in [9], for which 
solution Kihara [25] advanced the iteration method.  

 As a rule, when solving the kinetic equations for ions at 
the external field, one seeks the stationary state of the 
system. We advance the non-stationary approach, reserving 
the terms with time derivative in the system of moment 
equations. When solving the non-stationary moment system, 
the 4th-order Runge-Kutta method is used.  

1.4. CEM-Model  

 When studying the moment method convergence, it is of 
importance to have the analytical solutions of the problem if 
only for particular cases. The very simple model is CEM-
model. For this model, a collision operator takes a form  

   
J =

M (c) f (c)
.  (36) 

 It apparently coincides with BGK-model [26], which is 
often used to obtain the analytical and calculated solutions in 
a gas of a single component. If BGK-model is aimed to 
simplify the collision integral and has no physical 
foundation, CEM-model arises from a choice of the well 
determined scattering cross-section. At the same time, CEM-
model has all advantages of BGK-model and can be used to 
build up analytical solutions.  

1.4.1. Analytical Solutions  

 It should be noted that CEM-model attracts a number of 
authors [14, 27, 28] due to its simplicity in the transport 
theory of charged particles. However, the DF was built up 
only for a cold gas or for the stationary case. Our purpose is 
to build up the non-stationary analytical solution for arbitrary 
temperature and to explore the capabilities of the non-
stationary moment method by the example of the non-
stationary analytical solution. For this model the matrix 
elements r,r1,l, in the moment system (35) take a form  

r,r1,l = ( l0 r0 – 1) rr1
. (37) 

 One can see that the ME matrix is diagonal at any l and 
its eigen values, besides 0,0,0, are equal to 1. The system 
(35) for such interaction matrix is recurrently solvable and, 
at r = 0 and l = 1, we have  

C01 = 2 (1 exp( t)). (38) 

 A drift velocity of ions is ud = C01/2. Thus, the mobility in 
taken units at any electric field for CEM-model is  

K = 1  exp( t). (39) 

 The Boltzmann equation for CEM-model takes form 

  

f

t
+

f

c
z

+ f = M .  (40) 

 The derivative with respect to t is omitted in (40) in the 
stationary case. One can show, primarily, solving the 
uniform equation, that equation (40) has the following 
solution in the stationary case 
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f (c ,c
z
) = M (c ) f (c

z
),

f (c
z
) =

2
M (c

z
)

1
exp(Z 2 )(1+ erf (Z )),

Z = c
z

1

2
.

 (41) 

 Consider a non-stationary process when the electric field 
is switched-on instantaneously. In this case, the field is 0 at   
t < 0 and is a constant value  at t  0. At taken initial 
conditions, the DF for transverse component (c ) remains 
always the Maxwellian one. Divide both parts of (40) by 
M(c ) and retain a notion f for the rest of DF. To solve the 
equation obtained, we use the method of characteristics and 
transfer from the variables t, cz to the variables t, Y = cz t. 
After certain transformations (see details in [29]), we obtain  

  

f (c
z
,t) =

2
M (c

z
)eZ 2 1

(erf ( t Z )+ erf (Z ))

+e t M (c
z

t).

 (42) 

 At t   the DF goes toward the stationary solution 
built up above (41). Note, that for CEM-model the solution 
can be obtained for other non-stationary processes as well. 
E.g., to describe ion behaviour in the periodical external 
electric field. Here also the method of characteristics can be 
used.  

 In Fig. (1) the calculation results for DF are shown via 
analytical formulas (42) at  = 2. One can see the spreading 
of the front in a velocity space along the electric field, which 
is followed by stationary DF. It is seen in Fig. (1) that 
relaxation in a domain of positive values of cz proceeds very 
slowly and the stationary solution output occurs with a large 
delay in this velocity range. When studying the moment 
method convergence, it is of principle the Grad criterion to 
be held, for which a rapid decrease of the DF at infinity is 
necessary. It is shown that the stationary solution for the 
interaction model under consideration does not satisfy the 
Grad criterion. However, the DF in a domain of high 
velocities during a non-stationary process at any finite time t 
decreases so fast that the Grad criterion holds, and there are 

no crucial constraints on the moment method convergence. 
As a result, during a non-stationary process a larger part of 
the stationary DF can be built-up. 

 Besides the analytical solution directly for the DF in the 
case of CEM-model, we gain the analytical solution of the 
moment system (35). Starting from C00 = 1, we obtain easily 
a solution for a moment C01 (38). Next, we find the solutions 
in the layers N = l + 2r = const, consequently increasing N. 
It can be shown that the analytical solution of a system (35) 
takes a form  

Cr,l(t) = Br,l
NSN(t),     N = l + 2r, (43) 

where a coefficient Br,l equals 

  

B
r ,l
= ( 1)r (2l + 4r)!!(2l +1)

2r (2r + 2l +1)!!
.  (44) 

 A function SN(t) is the same for a whole layer N = l + 2r: 

  

S
N

(t) = 1 exp( t)
t

k

k !
.

k=0

N 1

 (45) 

 This function turns out to be zero at t = 0 and unity at t 
 . However, a time delay for the saturation attainment 

increases with an increase in N.  

1.4.2. Study on the Moment Method Convergence by CEM- 
Model Example  

 For CEM-model, one can compare always the DF 
restored via its moments with the exact solution and assert 
objectively the moment method convergence. Conclusions 
for CEM-model turn out to be true also on numerous 
occasions, for other interaction potentials. Also, question of 
convergence of DF restored via its moments built up 
analytically can be separated from the study of the 
calculation errors in the very moment system solution.  

 When solving numerically the kinetic problems by the 
moment method, the cut-off of the system of moment 
equations occurs inevitably a finite domain which contains 
the indices l and r, being preferred. We study in what 
manner a shape of this domain affects the convergence. 

        

Fig. (1). Distribution functions at axis of symmetry at different times at  = 2: f(cz ,t) (a) and fr(cz, t) = f(cz, t)/f(cz, ) (b). Analytical solution. 
CEM-model. t = 0 for Curve 1, 0.5 (2), 1 (3), 2 (4), 3 (5), 4 (6), 5 (7), 10 (8). 
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Performing a cut-off, it is necessary to obtain an increment 
of the moment situated at the domain boundary to be 
depended on only the moments within this domain. In this 
case, substitution of zero values for the moments situated out 
of the domain does not affect the increments of the moments 
within it. The comparison of calculations at different 
domains of summation is carried out:  

• a triangular domain REG1: l  N0 r,  

• a triangular domain REG2: r  (N0 l)/2  

• and a rectangular domain REG3: r <R0, l <L0.  

 Here, R0 is the number of the Sonine polynomials, L0 is 
the number of the Legendre polynomials in the DF 
expansion. For CEM-model, the domain REG2 is more real. 
The calculations show that, with the same amount of 
moments, the results are not worse than those for a domain 
REG1. The calculations for the triangular domains are more 
optimal than for the rectangular one. Nevertheless, to 
exclude the largest values of l and thereby to diminish 
further amount of moments, summation can be carried out 
for a trapezoidal domain REG4  

  
l N

0
r, l L

0
L

0
N

0
 (46) 

with a relevant selection of N0 and L0. As a rule, further 
calculations are carried out with summation over a domain 
REG4. To build up the DF via moments, first of all fl(c) (DF 
in l subspace) are to be calculated via the formula 

  

f
l
(c) = M (c) cl S

l+1/2

r

r

(c2 )C
r ,l

,  (47) 

then, via a formula 

  
f (c) = f

l
(c)P

l
(cos( ))  (48) 

the DF is obtained. 

 Consequently, the numerical studies are carried out for 
the cases of the weak, moderate, and strong electric fields. 
These ranges are determined as follows:  

• Weak electric field –   0.1,  

• Moderate electric field – 0.1 < < 1,  

• Strong electric field –   1.  

 First, we dwell on the capabilities of the stationary 
moment method. In a domain of weak electric field, with the 
moment method, the stationary DF can be built-up in a rather 
wide range down to very small values of 10 22 order of 
magnitude. It is possible to perform in spite of the Grad 
criterion violation, but it is necessary to determine exactly a 
cut-off domain on (r, l) plane when restoring the DF via its 
moments. An attempt to widen a convergence range beyond 
the optimum value of R0 results in an opposite effect – 
narrowing the convergence range. The optimum value of R0 

is within a neighbourhood of the minimum on a dependence 
|Cr,l|(r). Transferring to the moderate field domain, the very 
fast decrease in minimum depth on a dependence |Cr,l|(r) 
occurs with an increase in . An attempt to build up the 
stationary DF via the stationary moments gives no 
satisfactory results already at  = 0.25. In Fig. (2) a ratio of 
approximate DF f  to exact solution is presented for  = 
0.25. It shows the results of summation over domains REG2 

at N0 = 1 and N0 = 2. The best result turns out to be when 
summing over REG3 domain at R0 = 2. With an increase in 
R0 and L0, whole deal is only poorer. One can see that there 
is no success in approximation to the exact solution 
anywhere. The results obtained at larger values of  turn out 
to be much worse. In iteration method advanced by Kihara 
[25] to built up the stationary solution, the moments are 
sought. Emphasize that, for CEM-model, the stationary 
moments are known analytically. Nevertheless, the 
restoration of stationary solution is not possible with them. 
Hence, no hope exists to build up the stationary DF in a 
domain of moderate fields via iteration method.  

 

Fig. (2). The ratio of f (cz) to exact solution in the stationary state,  
= 0.25, CEM-model. Summation occurs in the domains REG2: 
Curve 1 – N0 = 1; Curve 2 – N0 = 2; Curve 3 refers to summation in 
a domain REG3 R0 = 2, L0 = 6. 

  The other deal is to restore the DF via its moments for 
the non-stationary process. It is demonstrated at switch-on of 
a field  = 0.5 when the DF can not be restored via 
stationary moments.  

 At t = 3, within a whole range 10 < cz < 10, one can 
obtain a full coincidence with the exact solution for which 
purpose it is needed REG3 with R0 = 30, L0 = 50. By a 
moment t = 3, within a whole domain of negative velocities, 
the DF reaches its stationary value limit and it experiences 
no changes at further increase in time. So, in the non-
stationary method, there is no need in convergence in a 
domain of negative velocities. Hence, the summation region 
decreases essentially, i.e., R0 and L0 values. The dependences 
f(cz,t) on t at constant cz are built up via exact formulas in 
Fig. (3) to demonstrate in what manner the establishment of 
stationary value f(cz) occurs. It is seen in Fig. (3) that in a 
domain of negative cz including cz = 0 a monotonous decrease 
in DF occurs in a course of relaxation process. The time 
needed for obtaining the stationary value does not exceed 3 
and it is well below this value at the large negative values of 
cz. For positive cz, the relaxation process is non-monotonous 
with inherent delay of its start, and, at large cz, longer time is 
necessary for obtaining the stationary value, e.g., at cz = 5, 
the process is over at t  10. Hence, the stationary solution 
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yield occurs nonuniformly over cz. This relaxation feature is 
due to perturbation wave spreading in velocity space along a 

characteristic cz = 
  
c

z

0  +  · t. This characteristic is obtained 

for the left differential side of the kinetic equation and then 
does not depend on a model of ion-atom interaction. So, one 
can expect that the relaxation process described above with 
front spreading in velocity space takes place not only in the 
case of CEM-model but at arbitrary ion-atom interaction 
potential.  

 

Fig. (3). Dependences of a ratio f(cz,t)/f(cz) on t at different cz,  = 
0.5: Curve 1 – cz = –10, 2 – cz = –5, 3 – cz = 0, 4 – cz = 0.5, 5 – cz = 
1, 6 – cz = 3, 7 – cz = 5. 

 An increase in the electric field  as well as in time t 
results in poorer convergence of DF restoration process via 
its moments. It seems that the cause is in |Cr,l|(r) 
representation. At any finite time, starting with certain r, the 
moments decrease. The maximum is observed on the 
dependences |Cr,l|(r). With an increase in t, a coordinate of 
maximum and its height increase both with no limits. For a 
series (47) convergence to the exact solution, when summing 

over r, it is necessary to go across the maximum and enter 
the r domain where the values of |Cr,l| are sufficiently small. 
At the longest times, when the coordinates of maximum are 
large, such a summation becomes questionable. However, in 
a domain of moderate electric fields, the DF can be 
successfully restored up to sufficiently long time. In a 
domain of strong electric field, to overcome the maximum 
becomes more complicated problem. The cut-off domain 
should be strongly enlarged in (r,l)-plane for convergence.  

 It is maintained that the dependences |Cr,l|(r) turn out to 
be very similar to each other if  and t are changed 
simultaneously but the product  · t being constant all the 
way. Thus, a similarity parameter  · t is found. It is shown 
that a good convergence over all velocity range 10  cz  10 
under consideration takes place at  · t < 5.  

 The DF for CEM-model is presented on the axis of 
symmetry (c  = 0) at different times at  = 2 in Fig. (4). It is 
shown in what manner the number of the Sonine 
polynomials R0 and the Legendre polynomials L0 increases 
with a time increase to be taken into consideration for the DF 
expansion. For cz > 4, there is a fine coincidence with 
relevant ratio of the analytical solutions. For cz < 4, the 
very fast outcome of the stationary solution occurs but with 
an increase in t the solution via moment method becomes 
more difficult to build up. When a value in maximum 
|Cr,l|(r) is higher than 1016, it becomes non-surmountable 
obstacle for summation in (47) using the standard 
computations. The procedures with larger decimal digits 
make possible to go farther (dashed curves in Fig. (4)).  

 Thus, using the non-stationary moment method, the 
solution in a domain of moderate and sufficiently strong 
electric fields is successfully obtained. The value of  (for 
which the DF is successfully built up for the stationary state) 
has been increased at least by one order of magnitude.  

1.5. Numerical Calculations for Different Models  

 Consider all interaction models described in Section 2 
consequently at the weak, moderate, and strong fields.  

 

Fig. (4). Distribution function on axis of symmetry at different times for CEM-model at  = 2.0. (a) – f(cz,t). (b) – f(cz,t)/f(cz , ). Curves 1-5 
refer to times t = 0.5 (L0 = 35, R0 = 23); 1.5 (L0 = 30, R0 = 26); 2.5 (L0 = 37, R0 = 70); 3 (L0 = 75, R0 = 100); 5 (L0 = 100, R0 = 280). 
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1.5.1. Weak Electric Field  

 Over all range of weak fields (   0.1) for all models 
under consideration, mobility practically does not depend on 

 and coincides with its value obtained via Chapman-
Enskog method. This is not for case of the distribution 
function which turns out to be more sensitive to a value .  

 In the Chapman-Enskog method the DF is found at very 
small  as follows  

f(c)= M(c)(1 + (c)). (49)  

 Along with (49), (c) can be determined with a f(c) 
obtained numerically as follows  

   

(c) =
1 f (c)

M (c)
1 .  (50)  

 There is a domain of very small values of  where , has 
been built up in such a way, that it does not depend on . 
We will call it the universal Chapman-Enskog correction. 

We are certain that, the value  = 10 4 for all interaction 
models is well within the domain where universal Chapman-
Enskog correction is built up. In Fig. (5) evolution of 
universal  for four models is presented. For all models, a 
scale (unit for time measurement) has been chosen in such a 
way that mobility tends to unity at   0 and t  . We 
called this non-standard normalization.  

 Note, for CEM-model at t  , mobility K  1 at all 
values of . For all other models we are doing the following: 
first, the non-stationary problem is solved with taken 
standard normalization (see subsection 1.3.3) and at 
sufficiently small . In a wide range of small , a limit 
(stationary) value K is constant.  

 Knowing this value K, it is easy to find the new 
frequency unit for which the stationary K turns out to be 
unity. When transferring to this new frequency unit, all the 
standard MEs should be multiplied by the same constant 
denoted by A. Respectively, the time unit  changes as well 
as a value of dimensionless electric field. In Table 1, the 

 
Fig. (5). Evolution of universal  at c  = 0. Non-standard normalization. (a) – CEM-model, (b) – pseudo-Maxwellian molecules, (c) – 
CEHS-model, (d) – HS-model, Curves: 1 – t = 0, 2 – t = 0.5, 3 – t = 1, 4 – t = 3, 5 – t = 5, 6 – t = 6, 7 – t = 9.5, 8 – t = 12, 9 – t = 24. Curves 
5 – 9 coincide with each other in this Figure. 
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values of a coefficient A are presented for different 
interaction models. From Table, one can see that a 
coefficient A is strongly affected by the angular dependence 
of scattering cross-section. Thus, for the models with  = 
const, a transfer from 180 -scattering to the isotropic one 
gives two-time rise in coefficient A. There is approximately 
twofold (exactly, 1.985) increase in A when transferring from 
CEHS-model to HS-model. 

Table 1. Transfer Coefficient from Standard to Non-

Standard Normalization A for Different Interaction 

Models. PMM Stands for Pseudo-Maxwellian 

Molecules  

CEM-model PMM CEHS-model HS-model Coulomb 

1 2 0.4826 0.9578 0.28128 

 

 In Fig. (5a,b) one can see a coincidence of the results of 
CEM-model and pseudo-Maxwellian molecules in this 
normalization. This is due to the same dependence of the 
cross-section on velocity. In Fig. (5c,d), a comparison of two 
models with equal dependences of scattering cross-section 
on velocity (namely CEHS-and HS) is presented. Inherent 
for these models is a non-diagonal form of interaction 
matrix. Here, in spite of similar behaviour of , there is no 
identity of solutions.  

 For both models at long times, a tend to saturation is 
relevant at larger cz. However, a value of such saturation is 
approximately 1.5 times smaller for CEHS-model compared 
with HS-model.  

 Nevertheless, of more important is the similarity of these 
solutions: first, very similar behaviour at small times; 
second, universal (cz) does not tend to  with an increase in 
cz but to saturation, in contrast to the Maxwellian models. So, 
the Grad criterion is held for the DF at the stationary state for 
these models.  

 From the analytical solution of moment system for CEM-
model, we can conclude that  = 2cP1(cos ) = 2cz, 
coinciding with Fig. (5a). Universal Chapman-Enskog 
correction  is determined only by those moments Cr,l which 

are proportional to . This subset is called 
  
C

r ,l

(1) .  

 For numerical solution of moment system, a subset 
  
C

r ,l

(1)
 

is sought as follows. The problem is solved at two values of 
 being within a domain of very small  (we select 1 =10 3 

and 2 =10 4). Then all Cr,l are divided by the corresponding 

. Those, for which Cr,l/ , do not depend on  and refer to 

the original subset 
  
C

r ,l

(1) .
 In addition, the groups Cr,l of orders 2, 

3 and so on are obtained. If only moment C01 contributes to 

the universal , for the case of the models with diagonal 

matrix, all the moments Cr,1 contribute to  in the cases of 

other models. All Cr,l at l  1 have not any influence on .  

 In the case of weak field, in [9], a Kihara formula is 
involved for a ratio of mobilities in second and first 
approximation in terms of r. For HS-model it has a form  

  

[K]
2

[K]
1

= 1+
1

56
= 1.01785.  (51)  

 From our calculations for HS-model at t  , [K]2/[K]1 

= 1.01727 is obtained, being in a fine accordance with the 
result (51). If the cut-off of system of moment equation at R0 

= 1,2 in the case of weak field is valid to calculate mobility, 
it is needed R0 to be rather large for DF building-up. The 
study on effect of R0 (the limit of summation over r) on  
over the subspace l = 1 is presented in Fig. (6).  

 

Fig. (6). Restoring (cz) for HS-model at different R0. Non- 
standard normalization. Curves: 1 – R0 = 0, 2 – R0 = 2, 3 – R0 = 4, 4 
– R0 = 8, 5 – R0 = 32, 6 – R0 = 128. 

 In Fig. (6) one can see that, even at R0 = 128, there is a 
progress in building-up the Chapman-Enskog correction  
up to 8.5 thermal velocities. The calculations show that, with 
an increase in R0 from 128 to 250, a |cz| domain widening to 
|cz| = 9.8 occurs in which a good convergence is observed. 
Consider a matrix r,r1

,1 for HS-model. A deflection from the 
diagonal is featured by a parameter  = r r1.  

 In Fig. (7a) the dependences r,r1
,1 on r1 are built up at 

several values of . One can see that, with an increase in r1, 
the diagonal MEs r1

,r1
,1 increase monotonously in absolute 

value, reaching value   36 at r1 = 500.  

 The MEs (  = 1,2) nearest to diagonal, being even 
slightly smaller, than the diagonal ones, increase 
monotonously also with an increase in r1. The MEs become 
rather small at  = 3 and 4. The MEs decrease with larger 
distances from the diagonal. The matrix elements r,r1

,1 are 
the differences of MEs of the gain and loss terms of the 
collision integral. In Fig. (7b) the MEs of a gain term are 
built up with the same values of  as those for the full MEs 

in Fig. (7a). One can see that 
  

r ,r
1
,1

+  are much smaller than 

r,r1
,1 and the gain MEs decrease as r,r1,1 increase with an 

increase in r1. Hence, the main contribution in MEs is due to 
the loss MEs at large r1.  

 A somewhat doubtful situation arises: the difficulties in 
building-up the solutions via moment method occur because 
of an increase in MEs of a loss term. At the same time, a loss 
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term and its MEs are the simplest part of the collision 
integral. In Chapman-Enskog approximation, a correction  
is proportional to P1(cos ). As a result, (cz) turns out to be 
an odd function on the axis of symmetry. Naturally, the 
question arises: up to what values of  a function  
conserves this property? Already at  = 10 2, the symmetry 
relative to a point 0 vanishes. At t = 10 we have (8) = 5.59 
and ( 8) = 5.08. Now, this is due to non-insignificance of 

0 and 2. A more significant deflection from universal  is 
observed at  = 5 · 10 2:now, at t = 10, we have (8) = 6.75 
and ( 8) = 4.32. It means that contribution from 0 and 

2 becomes even larger, and other l can influence too at l > 
2.  

1.5.2. Moderate and Strong Electric Fields  

 Conditionally speaking, the boundary of the transfer from 
weak to moderate electric field is  = 0.1, and a lower 
boundary of strong field domain is  = 1. The calculation 

results for different models are given. First, we follow 
mobility evolution, then consider the distribution functions. 
For the models with  = const, the proportionality of a drift 
velocity ud(t) to the electric field  is relevant, i.e., 
independence of mobility K on . For pseudo-Maxwellian 
molecules in standard normalization, the stationary value of 
mobility turns out to be two and a process toward stationary 
state is strongly dragged out compared with CEM-model. In 
non-standard normalization not only the stationary value of 
K equals unity but a dependence K(t) coincides totally with 
analogous dependence for CEM-model.  

 Go to the models with  = const. For such models the 
interaction matrix is non-diagonal. Consider HS-and CEHS-
models.  

 One can see in Fig. (8), in non-standard normalization, 
that mobility tends to the standard value of unity at small . 
However, with an increase in  the stationary value of 

 
Fig. (7). Dependences of MEs of collision integral on r1 for hard-sphere model. Curves: 1 –  = 0, 2 –  = 1, 3 –  = 2, 4 –  = 3, 5 –  = 4.  

 

Fig. (8). Mobility K(t) for several , (a) CEHS-model. (b) HS-model. Non-standard normalization. Dashed curve refers to CEM-model. 
Curves 1 –  = 0.1, 2 –  = 0.5, 3 –  = 1, 4 –  = 2, 5 –  = 3.  
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mobility decreases. A new interesting phenomenon is 
observed at sufficiently large value of . Non-monotonicity 
arises on the dependences K(t) in contrast to the models with 
diagonal interaction matrix. The dependence K(t) for  = 1 
is presented for CEHS-model in Fig. (9) on enlarged scale. 
At the beginning, the mobility reaches its maximum with rise 
in time, then, goes across the minimum. A similar picture is 
observed in the case of HS-model. It can be assumed that the 
switch-on process is accompanied by exciting oscillation 
rapidly damped. The maximum moves toward smaller times 
and the value of maximum-minimum drop increases with an 
increase in . Till now we have considered a temporal 
dependence of mobility. Now, dwell on a behaviour of 
stationary mobility.  

 

Fig. (9). K(t) for  = 1 on an enlarged scale, CEHS-model. Non-
standard normalization. 

 The mobility dependences on  at the stationary state in 
non-standard normalization are presented in Fig. (10). It can 
be noted a well pronounced dependence of K on the electric 
field strength for both models. Mobility decreases 
monotonously always being below the standard ones. The 
analytical solution of the stationary Boltzmann equation is 
obtained for CEHS-model in the case of cold background 
gas in Perel’s study [7]. In this case, a background gas 

temperature tends to zero corresponding to the very strong 
field, the Maxwellian of the background being substituted by 

-function and a collision operator being strongly simplified. 
The DF and mobility of ions was built up in [7]. In our 
denominations, this solution takes a form  

  
K( ) =

2
.  (52) 

 In Fig. (11) it is shown in what manner the stationary 
mobility K( ), built up via moment method, tends to the 
mobility limit determined by a formula (52).  

 

Fig. (11). Stationary mobility K( ) for CEHS-model. Comparison 
with Perel’s solution. Standard normalization. Dashed curve refers 
to cold gas mobility. 

 Emphasize, that for four models under consideration 
mobility tends to saturation at large t. A totally different 
situation occurs in the case of Coulomb interaction. A 
mobility behaviour is shown at different  in Fig. (12). For 
this model, mobility turns out to be higher than standard. 

 
Fig. (10). Stationary mobility K( ). Solid curve refers to HS- 
model. Dashed curve – CEHS-model. 

 
Fig. (12). Dependences K( ) for Coulomb interaction at different 

. Dashed curve refers to the standard mobility. 1 –  = 0.1, 2 –  
= 0.5, 3 –  = 0.8, 4 –  = 1, 5 –  = 1.5, 6 –  = 2.  
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Moreover, according to the calculations, it tends to an 
infinite growth already at  = 0.3; at smaller values of , 
this effect does almost not show itself; being more 
pronounced at  > 0.3.  

 As was mentioned above, this effect is because of ion 
runaway and it occurs due to strong decrease in scattering 
cross-section with a growth of relative velocity (   g 4).  

 Thus, mobility evolution is investigated for different 
interaction laws from the most rigid interaction potential 
(hard-sphere model) to the softest (Coulomb interaction).  

 In a domain of weak electric field, in non-standard 
normalization, mobilities are very similar to each other at all 

scattering cross-sections. In the case of Coulomb interaction, 
runaway of ions takes place. This process enchances with 
increase in .  

 Now to the distribution function. Here are given the 
calculation results on the DF for above mentioned models. 
The DF is built up not only on axis of symmetry at c  = 0 but 
over an angle  at several fixed values of a velocity c. All 
calculations are performed in non-standard normalization. In 
the case of CEM-model we follow evolution of a ratio of the 
DF to that at stationary state. Such representation of solution 
gives opportunity to clarify the interesting processes, 
particularly, in a domain of high velocities. For CEM-model, 
such ratio is built up very simple as the analytical solution 

 
Fig. (13). Comparison of relative DFs at axis of symmetry at different times for CEM and HS-models at  = 0.5 in standard normalisation. 
L0 = 64, N0 = 128. Dashed curve refers to t = 0. Curves: 1 –  t = 1, 2 – t = 3, 3 – t = 5, 4 – t = 8, 5 – t = 10.5.  

 

Fig. (14). Distribution function on axis of symmetry at different times for HS-model at  = 2.0 in non-standard normalization. L0 = 128,N0 = 

128. (a) – f(cz, t), (b) – f(cz, t)/f(cz, ). Curves: 1 – t = 0.1, 2 – t = 0.5, 3 – t = 1, 4 – t = 2, 5 – t = 2.5, 6 – t = 3, 7 – t = 3.5. Dashed curve 
refers to t = 0. Curves 5 – 7 coincide in (a).  
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exists for the stationary state. When building up the relative 
DF for other models, we use the numerical solution for 
sufficiently large time as the stationary one.  

 In the case of HS-model, the DF relaxation within 
velocity range under consideration (c  =0, 8  cz  8) 
proceeds clearly more uniformly compared with CEM-

model. Thus, at  = 0.5 (Fig. (13a)) in a domain of negative 
velocities, by t = 1 the relaxation process has already 
terminated and the DF has reached its stationary state, as for 
HS-model (Fig. (13b)) in a domain cz < 0, the relaxation 
terminates only at t = 8. By a time t = 11, in the case of HS-
model, relaxation is over within all the velocity range. But, 
in the case of CEM-model, an approach to the stationary 
state terminates only by a time t = 15.  

 At  = 1.5 the DF can not be built up successfully at t = 
10. There is no convergence over all velocity range under 
consideration. The solutions at t =3 and t = 5 coincide 
practically at |cz| < 6. The DF at t = 5 is selected to be f(cz, ). 
Even more pronounced are the listed effects at  = 2 (Fig. 
14). Here, the stationary DF is that at t =3.5.  

 The stationary DF at different  is shown in Fig. (15). 
One can see in what manner occurs more and more ion 
heating and how their progressively smaller number falls in a 
domain of negative velocities with an increase in the electric 
field strength. The ion temperature becomes higher and, at 
large , the DF is restored with more difficulties via its 
moments using the standard moment method. Below, we 
draft the ways to overwhelm these difficulties.  

 If the distribution of velocities in transverse direction 
(over c ) remains Maxwellian for CEM-model, the ion 
heating occurs in transverse direction for other models. So, it 
is of interest to build up the DF dependences on an angle in 
(cx,cz)-plane (i.e., cy =0) together with the DF presentation on 

 
Fig. (15). Stationary distribution function f(cz , ) at different  for 
HS-model in non-standard normalization. L0 = 128, N0 = 128. 
Curves: 1 –  = 0.2, 2 –  = 0.5, 3 –  = 1, 4 –  = 1.5, 5 –   = 2. 
Dashed curve refers to t = 0.  

 
Fig. (16). Dependences f( ) at different times for different values of velocity module c for HS-model;  = 1. (a) refers to c = 0.5; (b) – c = 1; 
(c) – c = 3; (d) – c = 5. 
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axis of symmetry at several values of velocity module c = 

  
c

x

2
+ c

z

2
.  A rotation angle in (cx,cz)-plane is denoted by . 

While 0   < , it refers to  = 0 and  =  in spherical 
frame of coordinates. For    < 0 we have a 
correspondence of  =  and  =  . Detailed calculations 
are carried out for three interaction models: HS-model, 
CEM-model, and Coulomb interaction. As an example, we 
show only two (Figs. (16) and (17)) corresponding to two 
opposite cases: the most rigid model (HS-model) and softest 
(Coulomb interaction) and for only value of the electric field, 

 = 1. In these figures, one can see that a hight of maximum 
does well depend on an interaction model, especially, in a 
domain of high velocities. Thus, e.g., a transfer from HS-
model to the Coulomb interaction results in an increase in 
maximum by approximately two orders of magnitude at c = 
5 and t = 3.  

 In the case of the Coulomb interaction, a point is under 
consideration in what manner the runaway effect influences 
the DF evolution. This effect reveals itself as a constant and 
rather fast growth of maximum on a dependence f( ) in a 
domain of high velocities. This problem is rather 
troublesome and using the standard moment method and 
rather quickly we come up against a situation when there is 
no DF expansion convergence. A transfer to other basis is 

accomplished to improve the convergence. We use the 
Maxwellian with higher temperature instead of expansion 
about the weighted Maxwellian with atom temperature. Such 
approach we call the modified moment method. In more 
details it will be described in next Section.  

 

Fig. (18). Distribution function f( )at  = 1 and t = 4 for the 
Coulomb interaction. Curve 1 refers to c = 0.5; 2 – c = 1; 3 – c = 3; 
4 – c = 5. 

 

Fig. (17). Dependences f( ) at different times for different values of velocity module c for Coulomb interactions. (a) refers to c = 0.5; (b) – c 
= 1; (c) – c = 3; (d) – c = 5. 
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 The calculations of ion runaway using the modified 
moment method are shown in Figs. (18) and (19). In Fig. 
(18), one can see that, the distribution function at t = 4 in a 
domain of very high velocities at  = 0 (i.e., in direction 
along the electric field) is sizeable with the DF in a domain 
of thermal velocities. In Fig. (19), it is shown in what 
manner the maximum value of the DF changes in time at c = 
3 and c = 5. In spite of progress in time only by unity, when 
using the modified moment method, the important 
information is obtained concerning the runaway of ions. E.g., 
in a time from t = 3 to t = 4, at c = 5, maximum value of the 
DF increases almost by one order of magnitude.  

 

Fig. (19). Temporal dependence of maximum values of f( ) for 
two values of c at  = 1 for the Coulomb interaction. Curve 1– c = 
3, Curve 2 – c = 5. 

1.6. Ways to Ameliorate Convergence  

 Consider two ways to ameliorate the DF expansion 
convergence in terms of its moments. The first is DF 
expansion in terms of the spherical Hermite polynomials but 
with changed temperature of the weight Maxwellian. The 
second is DF expansion only in terms of the spherical 
harmonics.  

1.6.1. Modified Moment Method 

 Consider a way to ameliorate the moment method 
convergence involving a change in the basis – a rise in 
temperature of weight Maxwellian. It was mentioned earlier 
in [10, 11, 14] about the need in basis change. However, 
these works deal with calculation of complicated integrals 
when building up the MEs in a new basis. It resulted in 
enormous consumption of computer time [11] and 
sometimes to insufficient accuracy. At the same time MEs 
were built up with small indices only (l  7, r  10). 
Consider the DF in two bases with temperatures of the 
weight Maxwellians T0 and T1. Vectors C0 and C1 are 
interrelated by (18) when transferring from a basis T0 to T1. 
A transfer matrix Dr,k,l for this situation is as follows [3]  

  

D
r ,k ,l

=
( 1)r+k

k !
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T
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.  (53) 

 Denote a ratio of the temperatures of the bases as RT = 
T1/T0. We call the modified moment method such one for 
which a parameter RT is not unity. Generally speaking, this 
parameter can experience a change in time. The optimum 

dependence RT(t) can be sought from a condition of 
minimum number of the moments well representing the DF.  

 If the Maxwellian in the collision integral is expanded in 

terms of a new basis, the formulas for the MEs 
  

r ,r
1
,l  in this 

basis at non-coincidence of temperatures T1 and T0 can be 
obtained as follows  
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 Thus, the linear MEs in the basis, which temperature 
distincts from atom temperature, are easily expressed via 
non-linear MEs. Note, that in our codes for ME calculation 
based on the recurrence relationships (20) and (21) all non-

linear MEs 
  
K

r
1
,l ,r r

1
,0

r ,l  are necessarily calculated. The 

calculation of 
  

r ,r
1
,l

(T1) via formula (54) is essentially 

simpler and gives an opportunity to advance further than 
those using a direct numerical integration. For any 
Maxwellian molecules, an expression (54) is simplified as 
the MEs are non zero only if k = r  r1:  

  
r ,r

1
,l
(T

1
) = 1

T
0

T
1

r r
1

K
r
1
,l ,r r

1
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r ,l (T
1
).  

 The easier method is used in the previous section. There 
is no need to solve a system of moment equations in the new 
basis to attenuate the advantages of such a method. Building 

up the moments in initial basis 
  
C

rl

0
,  one can perform them in 

the new basis and find 
  
C

rl

1
.  

 Consider an example:  = 1, t = 5. The moments Crl in a 
basis T0 are very large at such field and time. A code for 
transformation of the moments built up in a basis T0 (Bas0) 
to a basis T1 (Bas1) was created.  

 Fig. (20) presents the calculation results at RT = 1.5. One 
can see that in a subspace l = 0 a transfer to a new basis is 
accompanied by a change in maximum value Crl by  5 
orders of magnitude and in subspace l = 10 – by  3 orders. 
In both subspaces, a shift of distribution Crl occurs toward 
domain of small r – a coordinate of maximum decreases 
drastically (e.g., at l = 0, it changes from 24 to 9).  

 Thus, even a comparatively small change in basis 
temperature results in the very strong fall in maximum on a 
dependence Crl on r, the latter resulting in facilitation when 
restoring the DF via its moments (as it was shown above on 
example of Coulomb interaction). However, there is no any 
success in an increase of the electric field and convergence 
range of the DF.  

1.6.2. DF Expansion in Terms of Spherical Harmonics 

 When transferring to the moment representation of the 
Boltzmann equation at expansion in terms of the spherical 
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Hermite polynomials, one can dwell on the stage of 
expansion in terms of the spherical harmonics not involving 
the Sonine polynomials. There are no constraints on the Grad 
criterion with such expansion, and the DF is represented as 
follows  

   

f (c) = f
l ,m

i

i=0

1

m=0

l

l=0

(c)Y
l ,m

i ( , ).  (55) 

 It is shown in [3] that, the collision integral in the most 
general (non-linear) case, can be given as follows  
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 Non-linear kernels 
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where 
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)  are numerical coefficients which are 

easily expressed via the Klebsh-Gordon coefficients [3]. 
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 If (57) is generalized on the case of two-component 
mixture and a function on which the scattering occurs is set 
to be equal to the Maxwellian one, we transfer to the linear 
kernel. In this case we have l2 = m2 = i2 = 0, the generalized 
Hecke theorem transforms into the common one ((l1 = l, m1 = 

m, i1 = i)), the numerical coefficients 
   
Z

m,i,0,0

m,i (l, l,0)  = 1, and 

from (57), (58) we obtain  
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Fig. (20). Dependence of the moments Crl on r for CEM-model in two bases with temperatures T0 and T1; RT = 1.5, L0 = 37, R0 = 70. (a) – 
Bas0, l = 0, (b) – Bas1, l = o, (c) – Bas0, l = 10, (d) – Bas1, l = 10. 
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 Hecke [19] built up an expansion in terms of the 
spherical harmonics of the linearized Hilbert kernel [20] for 

the hard-sphere model and obtained the formulas for 
 
L

l

+ (c, c1) 

and k(c). In our denominations, they take a form 
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 Here, (c) is the probability integral and mi = min(c, c1). 

It is shown in [3] that the kernels 
  
G

l
1
,l

2

l (c,c
1
,c

2
)  in (58) are 

expressed via MEs as follows  
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Here 
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 Formulas (63) give a possibility to calculate the kernels 
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)  for arbitrary interaction law in the linear (l2 = 

0, l1 = l or l1 = 0, l2 = l) and non-linear cases, naturally, if the 
MEs with large indices are known. Remind that the 
recurrence relationships, with which use the MEs are built 
up, valid both as for the MEs of full collision integral and as 
for the MEs of gain and loss terms separately. One can easily 

see that the linear gain kernel 
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 Illustrate the advantages of the DF calculation when 
expanding only in terms of harmonics with the hard-sphere 
model in the case of a weak field. As mentioned above, 
when calculating the Chapman-Enskog correction (c) using 
the non-stationary moment method, the progress up to c = 9, 
8 (even taking into consideration 250 expansion terms of the 
Sonine polynomials) can be successfully obtained, a 
tendency to saturation for the stationary DF being exposed 
(see Fig. (6)). At small , DF is f(c) = M(c)(1 + 

1(c)P1(cos( )), and, in the spatially uniform case, the 
Boltzmann equation is transformed to equation for 1(c) as 
follows  
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where 
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The stationary equation (65) takes a form 
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 Our analytical studies on the equation (66) at c   
show that, for the hard-sphere model, when k(c)and 

  
L

1

+ (c, c1) 
is determined via the formulas (61) and (62) in the standard 
normalization  

1(c, ) = 6. 

 Non-stationary equation (65) is solved by the 4th order 
Runge-Kutta method as well as the moment system (35). 
Preliminary, the matrix representation of Hecke kernel (62) 
is calculated in velocity points c and c1. The calculation 
results are presented in Fig. (21). As it is seen in Fig. (21), an 
approach using the kernel gives an increase in the DF 
convergence range by one order of magnitude.  

 

Fig. (21). Stationary Chapman-Enskog function 1(c) for the hard-
sphere model. 1 – a solution of equation (65) with Hecke kernel 
(62), 2 – a solution with the moment system (35). 

 An expression (64) gives a principal possibility to build 
up the linear kernels for arbitrary interaction potential. 
However, direct calculation via a formula (64) leads to the 
problems related with the series cut-off. Such problem was 
considered earlier in [30] and [31] for the linear kernels in 
the case of the pseudo-Maxwellian molecules and hard 
spheres using the asymptotic expansions. This approach 
gives opportunity to calculate the kernels with a high 
accuracy, the latter being demonstrated by a comparison with 
analytical Hecke expression (62). Concluding this section, 
we note that when considering diffusion in a neutral gas 
(with no electric field), the Chapman-Enskog correction 
function d is related with 1 via equality  

  
d
(c,t) =

1

2 1
(c,t).  (67) 

 Hence, we obtain the Einstein relation between the 
diffusion coefficient and mobility (3) at t  . Moreover, it 
signifies that, solving the spatially uniform problem in small 
electric field, one can simultaneously solve the diffusion 
problem. The function d(c, ) was built up in [32] earlier. 
The stationary solution was built up via solution of the 
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integral equation. The calculations in [32] were 
accomplished up to c =6. A ratio of our stationary solution to 
that in [32] is built up. Our calculations coincide with 
accuracy up to 4th significant digit (this accuracy being 
claimed in [32]).  

2. Switch-On of Crossed Electric and Magnetic Fields  

2.1. Statement of the Problem  

 The Boltzmann equation with electric field E directed 
along z-axis and magnetic field H directed along y-axis takes 
a form  

   

f (v,t)

t
+

e

m
(Ek + H (v j)).

f (v,t)

v
= I( f (v,t), M (T , )) (68) 

In dimensionless form we have 

  

f

t
hc

z

f

c
x

+ ( +hc
x
)

f

c
z

= J ( f ).  (69) 

 Remind that a transfer to dimensionless electric field  is 
shown in detail in Subsubection 2.3.3. In a formula (69), 
time and velocity are referred to  and u where  a mean time 
between collisions and u is a mean thermal velocity. 
Dimensionless magnetic field strength is determined as 
follows  

   

h =
e

m
H =

L
.  

Here, 
  L

 is the Larmor frequency.  

 On the left side of dimensionless Boltzmann equation 
(69), the terms related with the magnetic field are 
proportional to h and involved in a combinations:  
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z

c
z

f

c
x

 (70) 

After very cumbersome operations, an Hermite polynomial 
expansion (70) obtained is as follows  
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 (71) 

A contribution in moment equations due to magnetic field 

can be found when multiplying (71) by 
   
hH

r l m

i
/ g

r l m

i
,  

integrating over velocity space and then omitting the primes 
of indices. As a result, an equation (68) corresponds to a 
system of moment equations  
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(72) 

 An index i = 0 refers to a spherical harmonics 
 
P

l

m  cos 

m  and i = 1 – 
 
P

l

m sinm . From a system (72), it follows that 

an index m changes due to magnetic field but an index i does 
not change. So, when considering the symmetric initial 
conditions, an index i can be only zero in a course of 
relaxation and it is omitted further. In the case of 
Maxwellian molecules model with arbitrary dependence of 
angular part of scattering cross-section, a system (72) splits 
into subsystems because of diagonality of the interaction 
matrix. As a result, when using an apparatus of Lagrange 
transforms, the analytical solutions for the moments can be 
obtained. In addition, a system (72) in the most general case, 
is solved numerically via the Runge-Kutta method in the 
same manner as in the previous Sections with no magnetic 
field. The results of calculation of the moments C110 and C111 

for pseudo-Maxwellian molecules are shown in Fig. (22). 
The analytical and numerical results coincide with 6-digit 
accuracy. It enables to claim the very high accuracy of 
numerical solution of a system of moment equations 
resulting in an opportunity to obtain the precise solutions in 
those cases when the interaction matrix is non-diagonal as 
well. For the models with collision frequency depended on 

 

Fig. (22). Dependences of the moments C110 and C111 on a time for pseudo-Maxwellian molecules,  = 1, h = 1. Solid curves are the 
calculations via formulas obtained using the Laplace transform; the points refer to a numerical solution of a system of moment equations.  (a) 

 C110, (b)  C111.  
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velocity, as a rule, it is used non-standard normalization 
described above. Remind that in this normalization, at h =0 
and   0, mobility equals unity. 

2.2. Reduced Physical Moments  

 In the case of crossed electric and magnetic field we 
assign a vector of drift velocity, pressure tensor, and vector 
of heat flow to the physical moments. The physical moments 
are expressed via the mean products values of various 
particle velocities powers. When the DF is normalized to 
unity, the mean values are determined as follows  

   
c

x

i c
y

jc
z

k
= f (c)c

x

i c
y

jc
z

k d 3c.  (73) 

 Respectively, for the mean velocity vector ud, pressure 
tensor p  , and vector of a heat flow q, we have  

ud = c , (74) 

pμ  = (cμ – udμ)(c  – ud ) . (75) 

q = (c – ud)
2(c – ud) . (76) 

 Analytically it is shown that, main physical moments for 
any value of the electric field are proportional to various 
powers of dimensional electrical field  in the case of 
diagonal interaction matrix (for the models with constant 
collision frequency). Thus, the components of a drift velocity 
are proportional to , related with the field increments of 
diagonal components of a pressure tensor are proportional to 

 

Fig. (23). Dependences of ChE-K(t) (Curve1) and Khal(t) (Curve 2) at  <10 2 for HS-model at different values h. (a) refers to h = .1, (b) – 
h = .5,  (c) – h = 1, (d) – h = 2, (e) – h = 5, (f) – h = 10. 
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2, and the components of a vector of heat flow are 
proportional to 3. Hence, it is of use to transfer to the 
reduced physical moments:  
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 (77) 

 Here, K is mobility of ions along the electric field, and 
Khal is determined by us as a Hall mobility (i.e., mobility 
along x-axis directed perpendicularly to the electric and 
magnetic fields). The great advantage of the switching to 

reduced physical moments is the fact that they depend on 
two variables (h and t)only. When building up the reduced 
physical moments, one can easily find the physical moments 
themselves reversing the formulas (77) at any value of .  

 For all other models in a domain of weak electric field, 
one can determine the reduced physical moments, which do 
not depend on  in this domain. However, our detailed 
numerical calculations show that, if the reduced drift 
velocity (mobility) and reduced pressure tensor are 
determined in the same manner as in the case of diagonal 
interaction matrix, a heat flow turns out to be proportional to 

 but not 3. For all models with non-diagonal interaction 

 

Fig. (24). Dependence of Khal on K at  <10 2 for HS-model at different values h. (a) refers to h = .1, (b) – h = .5, (c) – h = 1, (d) – h = 2, 
(e) – h = 5, (f) – h = 10.  



46     The Open Plasma Physics Journal, 2009, Volume 2 Ender et al. 

matrix, it is assumed to determine the reduced physical 
moments as follows  
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 (78) 

2.3. Calculation Results  

 The reduced physical moments at very weak electric field 
(  < 10 2) do not depend on , they are called the 
Chapman-Enskog physical moments (abbreviated as ChE-
moments).  

 For several interaction models, a behaviour of ChE-
moments is studied in details at different h during a transient 
process after a sharp switch-on of the electric field.  

 As an example, ChE-moments for HS-model are shown 
in Figs. (23-27). In Fig. (23) it is seen that a Hall current 

arises always with a delay relative to a current along the 
electric field. Oscillation amplitudes K and Khal are very 
close. At large h, a mean value about which oscillation 
proceeds, for K is much smaller than for Khal. As a result, the 
mobility K takes periodically negative values at large h, i.e., 
during certain time intervals the current along z-axis flows 
opposite to the electric field.  

 The behaviour of the mobility vector K with components 
Khal and K can be imagined more clearly, if t is excluded and 
build up a dependence Khal on K. The trajectory of a vector 
K is shown in Fig. (24). A drift velocity changes 
monotonously at small values of h. At h  0.5, with an 
increase in h, first, a small winding arises on the trajectory, 
then, the new windings, and arising spiral converges on limit 
point corresponding to the stationary vector K forms. In Fig. 
(24), the abscissa and ordinate scales are chosen to be equal. 
With such a choice, absolute value of a drift velocity is 
proportional to a distance from coordinate origin to the point 

 

Fig. (25). Dependences of the components of Chapman-Enskog pressure tensor on time at  <10
2 

for HS-model at different values h. 

Curves: 1 – 
  
p

zz
,  2 –

  
p

xx
,  3 – 

  
p

yy
,  4 – 

  
p

xz
.  (a) refers to h = .1, (b) – h = .5, (c) – h = 1, (d) – h = 2, (e) – h = 5, (f) – h = 10.  
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under consideration with a coefficient . It can be seen in 
Fig. (24) that, along the developed trajectory the drift 
velocity moves in a circumference with decreasing radius 
having its center in a point corresponding to the stationary 
drift velocity. In Fig. (27) one can see that a vector of heat 
flow moves in a spiral as well as a vector of drift velocity. 

 The reduced physical moments change with an increase 
in electric field. Nevertheless, we build up and study the 
reduced physical moments in the domains of moderate and 

strong electric fields as well. The calculation reveals that 
their behaviour changes a little qualitatively with an increase 
in : oscillation of the moment is observed with a Larmor 
frequency, and the vectors of mobility and heat flow move in 
a spiral.  

 At not so weak electric field our calculations show that at 
a weak magnetic field a quantitative distinction of the 
reduced physical moments from ChE-moments is of 
significance, especially, for a heat flow. However, with an 

 

Fig. (26). Dependences of the components of Chapman-Enskog heat flow on time at  <10
2 

for HS-model at different values h. Curves: 1 – 

  
q

z
,  2 – 

  
q

x
.  (a) refers to h = .1, (b). – h = .5, (c) –h = 1, (d) – h = 2, (e) – h = 5, (f) – h = 10. 
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increase in magnetic field this distinction decreases and the 
reduced physical moments practically coincide with the 
ChE-moments at h = 5, 10.  

 At the weak magnetic field (h = 0.1, h = 0.5), mobilities 
(K and Khal) as well as the components of a pressure tensor 
turn out to be smaller than the corresponding ChE-moments 
in the case of HS-model.  

2.3.1. Runaway of Ions  

 In Subsection 1.5.2, the process of ion runaway in the 
electric field is considered. It is shown that beginning with a 
value  = 0.3 there is no stationary state. Here we 
investigate the influence of a magnetic field on a runaway 
effect. For Coulomb model the mobilities turn out to be 
higher than the ChE-ones, and at small h and  = 0.5 they 

 

Fig. (27). Dependence 
 
q

x
 on 

 
q

z
 at  < 10

2 
for HS-model at different values h. (a) refers to h =  .1, (b) – h = .5, (c) – h = 1, (d) – h = 2, (e) 

– h = 5, (f) – h = 10.  
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tend to infinite growth. At smaller values  this effect is 
almost invisible but at  > 0.5, even more pronounced. In 
Figs. (28-30) a comparison in mobility behaviour at three 
different values  and at 6 different values h is given for two 
models: hard spheres and Coulomb interaction. As 
mentioned above, this effect is due to very strong 
dependence of scattering cross-section on a relative velocity 
  g 4 

at the Coulomb interaction. Note, that the runaway 
effect can be calculated successfully via moment method. 
According to this aim it is necessary to use a rather large 

number of MEs of collision integral. But if a transient 
process should be calculated at of somewhat larger value  
(e.g.,  = 0.8) when the process of ion runaway, the moment 
method suits well only at not so large times (t < 5) as well as 
without magnetic field. Further convergence is lost. In Figs. 
(28-30) it is also seen that runaway is damped with magnetic 
field. At the strong magnetic field (h = 5 or h = 10) reduced 
mobility coincides with ChE-mobility, the moment method 
convergence being well restored.  
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2.3.2. Very Strong Electric and Magnetic Fields  

 Good convergence at the strong magnetic field gives a 
chance to enter the domain of very strong electric fields at 
large h, i.e., that domain in which the calculations are not 
possible using the standard moment method without 
magnetic field. As an example, the results of the transient 
processes calculation are shown in Fig. (31), namely, 
mobility in the case of HS-model for  = 10 and h = 20. 

 Note, that the transfer to the strong magnetic field needs 
a decrease in time step due to a high oscillation frequency at 
the strong magnetic field.  

 Analysing the calculation results for large h (h  2 10), 
we conclude that the departure from the ChEmoments is 
determined by dimensionless parameter  

 

=
h

 (79) 

(Fig. 28). contd….. 

 

Fig. (28). Dependences K(t) (Curve 1) and Khal(t) (Curve 2) for HS-model (first six figures) and model of Coulomb interaction (second six 
figures) at  = 0.2 and different values h. Dashed curves refer to ChE-mobility. (a) – h = .1, (b) – h = .5, (c) – h = 1, (d) – h = 2, (e) – h = 5, 
(f) – h = 10. 
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 For  > 2, all reduced physical moments given coincide 
in practice with ChE-moments. At   1.5, the departure of 
mobilities from the ChE ones are very small, and, for higher 
reduced physical moments (e.g., 

 
q ) the distinctions can be 

seen on the graph but slightly. At  = 1 the departures of 
mobilities from the ChE’s ones, being negligible, can be 
seen on the graph. For higher moments the departures from 
ChE’s can be easily seen not only in a course of the transient 
processes but the stationary states too. 

 As a result of the present studies concerning the 
behaviour of physical moments, the conclusions can be 
deduced as follows:  

1. If  is fixed, with an increase in h, Hall current 
reaches its maximum in h = 1 vicinity for any 
interaction model. Lorentz angle determining a 
direction of drift velocity relative to cz axis (tangent 
of this angle equals Khal/K) approaches 45o 

at a point 
h = 1.  
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2. At h > 1, on temporal dependences of all physical 
moments the oscillations are observed and for all 
interaction models a drift velocity vector moves in a 
spiral toward the limit value.  

3. In spite of a decrease in the stationary Hall current at 
h > 1 its ratio to a current along z-axis continues to 

increase and the Lorentz angle tends to 90o with an 
increase in h.  

 It is clear that an oscillation character of a behaviour of 
physical moments is related with a complicated and also 
oscillation behaviour of the DF of ions in crossed electric 
and magnetic fields after a instantaneous switch-on of the 
electric field.  

(Fig. 29). contd….. 

 

Fig. (29). Dependences K(t) (Curve1) and Khal(t) (Curve 2) for HS-model (first six figures) and model of Coulomb interaction (second six 
figures) at  = 0.5 and different values h. Dashed curves refer to ChE-mobility. (a) – h = .1, (b) – h = .5, (c) –h = 1, (d) – h = 2, (e) – h = 5, 
(f) – h = 10.  
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2.4. Distribution Function  

 First, consider the DF in the case of a weak electric field. 
The weak one, as above, we call the field at  <10 2. 
Calculations show that (as with no magnetic field) at any h 
the DF is represented as follows  

f(c ,t) = M(c)(1 + (c, t)), (80)  

where (c, t) does not depend on . Naturally, this function 
depends on h and, moreover, changes strongly with an 

increase in h. Particularly, it is not axially symmetric now. 
With an increase in the magnetic field generally -
rebuilding occurs in a plane cx,cz (i.e., in a plane 
perpendicular to the magnetic field direction). A symmetry 
preserves relative to cy  cy exchange. Moreover, a 
property takes place at fixed cy and t as follows  

( cx, cz) = - (cx, cz) (81) 

 Let us build up  at cy = 0, where (c ,t) is being 
representing by a surface in 3D space at fixed instant. It is 
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suitable to build up not a whole DF f(c) but a correction (c) 
to obtain a view on the DF at small  and emphasize DF 
behaviour in a domain of high velocities. It follows from 
calculation, that only the moments with l = 1 contribute in  
and the function  can be represented as follows  
 

   

(c) =
1m

(c)Y
1m

( , ),
m=0

1

 (82) 

 The functions 10(c) and 11(c) are built up solving a 
system of moment equations via summation of the 
corresponding moments with the Sonine polynomials. A 

(Fig. 30). contd….. 

 

Fig. (30). Dependences K(t) (Curve1) and Khal(t) (Curve 2) for HS-model (first six figures) and model of Coulomb interaction (second six 
figures) at  = 0.8 and different values h. Dashed curves refer to ChE-mobility. (a) – h = .1, (b) – h = .5, (c) – h = 1, (d) – h = 2, (e) – h = 5, 
(f) – h = 10.  
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polar angle  in cx,cy-plane is measured from a direction of 
cx-axis.  

 

Fig. (31). Dependences K(t) (Curve1) and Khal(t) (Curve 2) for HS-
model at  = 10, and h = 20; ht = 0.002, L0 = 40, R0 = 60. Dashed 
curves (coinciding with the solid ones) refer to ChE mobilities. 

 As above (without magnetic field), introduce a rotation 
angle in (cx, cz)-plane which is denoted as  (see, subsection 
1.5.2). While 0   < , it corresponds to  = 0 and  =  
in a spherical frame. For 0   < , we have a relationship in 
spherical frame  =  and  = 2   . A function cos m  
involved in spherical harmonic takes a value cos m  = ( 1)m 

in a domain  > . For  <  (from (82)) we obtain  

  

(c
x
,c

z
) =

1m
(c)P

1m
( ),

m=0

1

 (83) 

or 

  
(c

x
,c

z
) =

10
(c)cos( )+

11
(c)sin( ).  (84) 

Denote  

  
R(c) = (

10
(c))2

+ (
11

(c))2  (85) 

and determine an angle (c) as follows: 10(c)= R(c)cos (c). 
Then, 11(c) = R(c)sin (c) and taking in consideration  =  
for  <  we have  

  
(c

x
,c

z
) = R(c) cos( (c)).  (86)  

 Clearly, a formula (86) is valid for the whole 0   < 2 -
plane.  

 From (86), it is seen that a DF (cx,cz) is determined by 
two function R(c) (85) and (c):  

  

(c) = arctan 11
(c)

10
(c)

.  (87) 

 DF value is R(c) at fixed c and if  = (c). DF value 
changes strictly in cos-law when changing . Hence, 
maximum on a dependence ( ) is observed at  =  and 
minimum is at  =  + . Moreover, the DF satisfies a 
condition (81). It gives us a possibility to be restricted to DF 
building-up on a semi-plane only, e.g., cz   0. A dependence 

(c) is a projection of a line of maximums of DF on cx, cz-
plane. We call R(c)and (c) the main characteristics of the 
DF. -line goes along cz-axis (i.e., (c)  0) in the absence of 
the magnetic field. 3D figure is built up for sketch of the DF. 
There is a dependence (cx,cz)on cz   0-semi plane at cy = 0. 
In this figure, the contours corresponding to the lines of a 
level cx and  are built up. In 3D picture the line of 
maximum is shown with thick dashed line. 3D figure is built 
up for the stationary state corresponding to t  . In 
addition to obtain a view on evolution process for several 
times the curves R(c) are shown as well as the projections of 

-lines on cx,cz-plane; the latter is not built up with no 
magnetic field (h = 0).  

 Show the calculation results for three interaction models. 
In Figs. (32-35) the calculation results are shown for CEM-
model and HS-model at two values of magnetic field: h = 0 
and h = 1. It is seen that, -line rotates from cz-axis to cx-axis 
during DF evolution.  For CEM-model,  as -line as R(c) remain 
 
 

                        
 (a) (b) 

Fig. (32). A distribution function (cx,cz) at   < 10 2 and its characteristics, CEM-model, h  =  0. (a) –– 3D  representation of stationary DF  
(t  ). (b) –– characteristics R(c) at different times. Curve 1 refers to t = 0.1, 2 – t = 0.5, 3 – t = 1, 4 – t = 3, 5 – t = 5. 
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 (a) (b) 

 
(c) 

Fig. (33). Distribution function (cx,cz) at  <10 2 and its characteristics, CEM-model, h = 1. (a) – 3D representation of stationary DF (t  
). (b) and (c) – characteristics of DF at different times. (b) – R(c), (c) – projections -line on cx,cz-plane. Curve 1 refers to t = 0.1, 2 – t = 

0.5, 3 – t = 1, 4 – t = 3, 5 – t = 5. 
 

               
 (a) (b) 

Fig. (34). Distribution function (cx,cz) at  <10 2 and its characteristics, HS-model, h = 0. (a) – 3D representation of stationary DF (t  
). (b) – characteristics R(c) at different times. Curve 1 refers to t = 0.1, 2 – t = 0.5, 3 – t = 1, 4 – t = 3, 5– t = 5.  
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the direct ones. A limit angle, through which rotation occurs, 
increases with an increase in magnetic field. Note, that the 
evolution of the line of maximum proceeds non-
monotonously at h  1. The oscillation of a line R(c) being 
significantly more pronounced than that of -line. 

 As a third model we select the Coulomb interaction. In 
this case, a rotation of lines R(c)and (c) proceed more 
rapidly than in the previous cases. Especially fast is the 

rotation in a domain of high velocities. As a result, the line 
of maximums escape from a semi-plane cz  0 at h  0.5. So, 
the calculation for the Coulomb interaction are presented for 
small values h: 0, 0.1, 0.3 (Figs. (36-38)). 

 The calculation of DF f(c) are carried out at moderate (  
< 1) and at strong (   1) electric fields. Here, there are also 
the lines of maximums in a domain of positive cz. Since, it is 
impossible to extract a small correction to the Maxwellian 
distribution now, and the f(c) changes itself within many 

                         
 (a) (b) 

 
(c) 

Fig. (35). Distribution function (cx,cz) at  <10 2 and its characteristics, HS-model, h = 1. (a) – 3D representation of stationary DF (t  
). (b) and (c) – DF characteristics at different times. (b) – R(c), (c) – projection of -line on cx,cz-plane. Curve 1 refers to t = 0.1, 2 – t = 0.5, 

3 – t = 1, 4 – t = 3, 5 – t = 5.  

                  
 (a) (b) 

Fig. (36). Distribution function (cx,cz) at  < 10 2 and its characteristics, Coulomb interaction, h = 0, (a) – 3D representation of stationary 
DF (t  ). (b) – characteristics R(c) at different times. Curve 1 refers to t = 0.1, 2 – t = 0.5, 3 – t = 1, 4 – t = 3, 5 – t = 5. 
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orders of magnitude, 3D pictures do not show the features of 
DF behaviour. So, in cy = 0-plane, the dependences f( ) are 

built up at fixed values c. An example of such DF picture for 
hard-sphere model is shown in Fig. (39).  

 

 

                                        
 (a) (b) 

 
(c) 

Fig. (37). Distribution function (cx,cz) at  < 10 2 and its characteristics, Coulomb interaction, h = 0.1, (a) – 3D representation of stationary 
DF (t  ). (b) and (c) – DF characteristics at different times. (b) – R(c), (c) – projections of -line on cx,cz-plane. Curve 1 refers to t = 0.1, 
2 – t = 0.5, 3 – t = 1, 4 – t = 3, 5 – t = 5, 6 – t = 10.  

                                                        
 (a) (b) 

 
(c) 

Fig. (38). Distribution function (cx,cz) at  < 10 2 and its characteristics, Coulomb interaction, h = 0.3, (a) – 3D representation of stationary 
DF (t  ).  (b) and (c) – DF characteristics at different times.  (b) – R(c), (c) – projections of -line on cx,cz-plane. Curve 1 refers to t = 0.1,  
2 – t = 0.5, 3 – t = 1, 4 – t = 3, 5 – t = 5, 6 – t = 10.  



Problems on Ion Kinetics in Neutral Gas The Open Plasma Physics Journal, 2009, Volume 2     59 

 

 

 Similar figures are built up for other interaction models 
as well. In the case of Coulomb interaction a runaway 
process of ions is well seen at the weak magnetic field.  

 The Coulomb interaction is featured by the inherent 
slowly damped processes in a domain of high velocities 
under strong magnetic field. It is sufficient to compare the 
calculation results for different interaction models at  = 1 
and h = 10 to see them, namely, Fig. (42) with Fig. (40) and 
Fig. (41). If (for CEM-and HS-models) the coordinates of 
peaks at c = 5 converge to a limit value and an angle  
corresponding to maximum tends to 90o 

the similar 
convergence is not observed in the case of Coulomb 
interaction; the strong oscillation of a peak proceeds up to t 
= 10. This process is of no less clarity at h = 5, h = 3 and h = 1.  

 This phenomenon can be explained as follows. At initial 
stage of the proces, a portion of ions influenced by the strong 
electric field finds itself in a domain of high velocities. 
Further, their swarm moves practically without collision. In 
this domain, oscillation process is determined only by the 
electric and magnetic fields. Oscillation process in crossed  
and h fields proceeds for a very long time without collisions.  

 A question arises concerning an eventual increase in 
density of this oscillating swarm when the magnetic fields 
are switched on with certain delay after the electric field 
involving the further progress in runaway process.  

3. CONCLUSION  

 The moment method of the Boltzmann equation solution 
has a new impetus due to new results concerning the 
calculation of the matrix elements of large indices. The high 
possibilities of the moment method are shown while solving 
the kinetic problems that described the ion behaviour at the 
electric field and in crossed electric and magnetic fields. Not 
only the transport coefficients and physical moments are 
built up for the non-stationary process but the velocity 
distribution function as well. A number of features of DF 
behaviour are obtained, particularly in a domain of high 
velocities. Significantly curious are the quantitative results 
concerning runaway of ions in the case of Coulomb 
interaction as well as damping the effect at the strong 
magnetic field. Application limits and possible ways to 
overcome the restrictions of the standard moment method are found.  
 
 
 
 
 
 

                                   

                        
Fig. (39). Dependences f( ) at different times with various values of velocity module c for HS-model;  = 1, h = 1 (a) refers to c = 0.5; (b) – 
c = 1; (c) – c = 3; (d) – c = 5. 



60     The Open Plasma Physics Journal, 2009, Volume 2 Ender et al. 

 

  

  
Fig. (40). Dependences f( ) at different times with various values of velocity module c for CEM-model;  = 1, h = 10 (a) refers to c = 0.5; 
(b) – c = 1; (c) – c = 3; (d) – c = 5. 

  

  
Fig. (41). Dependences f( ) at different times with various values of velocity module c for HS-model;  = 1, h = 10 (a) refers to c = 0.5; (b) 
– c = 1; (c) – c = 3; (d) – c = 5. 
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LIST OF SYMBOLS 

E,  = Dimensional and dimensionless 
electric field strength 

H, h = Dimensional and dimensionless 
magnetic field strength 

mi = Mass of ion, ma – mass of atom  
 = Mean free path  
 = Mean-time between collisions of an 

ion and an atom 
(g, ) = Differential scattering cross-section  

K, Khal = Mobilities of ions  
T = Temperature of atoms  
n = Concentration of ions  
v, c = Dimensional and dimensionless 

velocity of ions 
f(v), f(c) = Dimension and dimensionless 

distribution function 
M(c) = Maxwellian distribution function  
I, J = Dimensional and dimensionless 

collision integrals 

  
H

j
, H

rlm

i  = Spherical Hermite polinomials 
(Burnett functions) 

  
C

j
, C

rlm

i  = Moments of distribution function  

  
K

j ,k

i ,
r ,r

1
,l

(1) ,
r ,r

2
,l

(2)

 

= Non-linear and linear matrix elements 
of a collision integral 

(c) = Universal Chapman-Enskog 
correction  

ud = Drift velocity  
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