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Abstract: The dispersion relation of electrostatic surface waves propagating in a magnetized plasma slab is derived from 

Vlasov-Poisson equations under the specular reflection boundary condition. We consider the case that the static magnetic 

field is parallel to the plasma-vacuum interface and the surface wave propagates obliquely to the magnetic field on the 

parallel plane. We find that the specular reflection boundary conditions on the plasma slab-vacuum boundaries can be 

satisfied, even in a magnetized plasma, by simple extension of the electric potential into the vacuum region, due to the 

inherent symmetry of the distribution function. Utilizing an invariance property of the kinetic surface wave solution, it is 

shown that the two-mode structure of the surface wave yields the symmetric and anti-symmetric modes. The kinetic 

dispersion relation is checked against the dispersion relations obtained from fluid equations and shows complete 

agreement. 
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I. INTRODUCTION 

 Propagation of surface waves on the interface between a 
vacuum (or a dielectric) and plasmas has drawn much 
attention because of interest in bounded plasmas and their 
various technological applications [1, 2]. Surface modes can 
be used for plasma diagnostics and surface-wave-produced 
plasmas are the subject of active investigation because such 
plasmas can be used in plasma processing [3, 4]. 
Furthermore surface waves are relevant to astrophysical 
problems in the magnetosphere and in the solar corona [5]. 
The solar atmosphere is highly structured, containing 
magnetic slabs and flux tubes. Surface waves are responsible 
for the heating of the solar corona. The Kelvin-Helmholtz 
instability is a surface wave instability. In the coupling of the 
ionosphere and the magnetosphere, surface waves are 
involved. Because of their importance, we have extensive list 
of papers for the investigation of the surface waves [6]. 

 Surface modes on a magnetized plasma have been 
investigated in the context of fluid equations [7-10], but 
kinetic theory of surface waves in magnetized plasmas is 
rather few. In Ref. [11], cold plasma electrostatic surface 
wave dispersion relations are derived in the zero temperature 
limit of the kinetic dielectric tensor of an infinite magnetized 
plasma, but kinetic surface wave dispersion relations in hot 
magnetized plasmas are not derived. Earlier, the kinetic 
theory of surface waves in a semi-bounded unmagnetized 
moving plasma was investigated [12, 13]. 

 Solving the Vlasov equation for a bounded plasma 
requires a kinematic boundary condition for the distribution 
function on the boundary. This condition is often taken to be 
the specular reflection condition [14], which is used here. In 
unmagnetized plasmas, the specular reflection boundary  
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condition can be straightforwardly enforced by simple 
extension of the electric field components [15, 16]. We find 
that, even in a magnetized plasma, the distribution function 
has a symmetry owing to which the specular reflection 
boundary condition is rendered to be satisfied by simple 
extension of the electromagnetic plasma fields. 

 In this work, we derive the dispersion relations of 

electrostatic surface waves propagating in magnetized slabs 

using the Vlasov-Poisson equations. Prior to this work, the 

dispersion relations of electromagnetic waves in 

unmagnetized slab were investigated [17]. A slab geometry 

entails an extra complication because we have two 

boundaries on which the specular reflection conditions have 

to be met. Earlier, Lee and Kim [18] investigated the 

electrostatic surface waves in magnetized slabs to derive the 

dispersion relations. In their work, the authors dealt with two 

cases of the magnetic field (B0 )  orientation; B0  

perpendicular and parallel to the plasma-vacuum interface 

[the surface waves propagate along the interface]. In the 

present work, we addresses the case that is not touched on by 

Lee and Kim; B0  is parallel to the interface but the surface 

wave propagates obliquely to B0  (Lee and Kim assumed that 

the wave propagates along B0 ). In this oblique propagation, 

we find that an extra symmetry should be utilized when we 

use the invariance technique to solve the specular reflection 

boundary problem. 

 We checked our kinetic dispersion relations against the 
dispersion relations derived from fluid equations [19] and 
both results show complete agreement. 

II. SPECULAR REFLECTION BOUNDARY 
CONDITION 

 We consider a magnetized plasma slab which occupies 

the region ( 0 < x < L ) bounded by vacuum ( x < 0  and 

x > L ). The linearized Vlasov-Poisson equation for a 
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species  ( =e, i; electron and ion), with charge e  and 

mass m , is 

t
f (r, v, t) + v

f

r
+
e

m c
v B0

f

v
=
e

m
(r, t)

f 0

v
.  (1) 

where f  is the perturbed distribution function of species  

and B0  is the static constant magnetic field (= zB0 ). The 

electric field E =  satisfies the Poisson equation 

2 = 4 e f d 3v  (2) 

 In Eq. (1), f 0 (v)  is a spatially homogeneous zero order 

distribution function which we take to be a two-temperature 

Maxwellian, 

f 0 (v) =
m

2 T n

1/2
m

2 T
 e

m vz
2

2T n  e

m

2T
(vx

2
+vy

2 )

 (3) 

where the usual symbols n  and  are referred to the 

direction of the static magnetic field B0 . The surface wave 

has a phasor e
ikyy+ikzz i t

. 

 Solving the set of equations, Eqs. (1) and (2) in a plasma 

slab requires a kinematic boundary condition on f  at the 

interfaces x = 0  and x = L . We adopt here the specular 

reflection boundary condition according to which the plasma 

particles undergo a mirror reflection such that 

f (x = 0, y, z, vx , vy , vz , t) = f (x = 0, y, z, vx , vy , vz , t)    (4) 

f (x = L, y, z, vx , vy , vz , t) = f (x = L, y, z, vx , vy , vz , t)    (5) 

 We Fourier-transform Eqs. (1) and (2) with respect to the 

variables y  and z  (coordinates which do not contain the 

discontinuity) and t . Our convention of the Fourier-

transform is 

f (k, v, ) = d 3r dt e ik r+i t f (r, v, t)  

f (r, v, t) =
1

2

4

d 3k d  eik r i t f (k, v, )  

 In the following, we designate the Fourier-transformed 

quantities by explicitly writing the arguments. For example, 

(kx , ky , kz , )  and (x, ky , kz , )  have different 

dimensions. We then obtain from Eqs. (1) and (2) 

vx x
f (x, ky , kz , v, ) i( kyvy kzvz ) f + c (vy vx

vx vy
) f =  

e

m

f 0

vx x
+ iky

f 0

vy
+ ikz

f 0

vz
(x, ky , kz , )  (6) 

where c =
e B0
m c

. 

2

x2
(ky

2
+ kz

2 ) (x, ky , kz , ) = 4 e d 3vf (x, ky , kz , v, )  (7) 

 The specular reflection conditions, Eqs. (4) and (5), now 

take the forms in which the spatial coordinates y , z , and 

time t  are replaced by the Fourier variables ky , kz , and , 

respectively. Equation (4) is automatically satisfied if 

f (x, vx ) = f ( x, vx ) , i.e., if Eq. (6) is invariant under the 

reflections (x x, vx vx ) . Here we should take into 

consideration the inherent symmetry of f  in regard to the 

variables (x, ky , vx , vy ) : 

f (x, ky , kz , vx , vy , vz , ) = f ( x, ky , kz , vx , vy , vz , )  

 In regard to the above symmetry, we look at Eq. (15) 

which is the solution of Eq. (6) in terms of the Fourier 

variables: f  is an even function with respect to 

simultaneous reflections of vx  and vy , and also an even 

function with respect to simultaneous reflections of kx  and 

ky , because f  is a function of v = vx
2
+ vy

2
, 

= tan 1 vy
vx

, and k = kx
2
+ ky

2
, = tan 1 ky

kx
. In view of 

this symmetry, the specular reflection condition in Eq. (4) 

should read 

f (x = 0, ky , kz , vx , vy , vz , ) = f (x = 0, ky , kz , vx , vy , vz , )  (8) 

 Equation (8) is automatically satisfied if Eq. (6) is 

invariant under the reflections 

(x x, vx vx , ky ky , vy vy ) . By inspection, it is 

immediately seen that the electric potential  (defined in the 

plasma region x > 0  should be extended into x < 0  in the 

following way: 

(x, ky ) = ( x, ky )  (9) 

 To enforce Eq. (5), we note that Eq. (6) is invariant under 

the reflections (x 2L x, vx vx , ky ky , vy vy ) , 

provided the potential is extended as 

(x, ky ) = (2L x, ky )  (10) 

 The consequences of the extensions made in Eqs. (9) and 

(10) should be carefully collected in the Fourier transform of 

Eq. (7). We assume that (x, ky )  is an even function with 

respect to both x  and ky . 

 It is sufficient to consider the x -dependence of (x, ky )  

in carrying out the Fourier transform of Eq. (7) over the 

entire region < x < . The function (x)  which has the 

properties 

(x) = ( x)   and   (x) = (2L x)  (11) 
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has discontinuities of 
x

 at x = 0, 2L, 4L,  of the same 

value. The derivative 
x

 has another value of jump at 

x = L, 3L, 5L, . Thus we have for the Fourier transform 

(with respect to x ) of Eq. (7), 

k2 (k, ) 4 e f (k, v, )d 3v  

= A(ky , kz , )(
1

2
+ cos2kxL + cos4kxL + )

+B(ky , kz , )(coskxL + cos3kxL + )
 (12) 

where A = 4 
x

|
x=0

 and B = 4 
x

|
x=L

. The details of 

similar algebra leading to Eq. (12) are provided in the earlier 

work [17]. 

III. DISPERSION RELATION 

 We introduce cylindrical coordinates in the velocity 
space such that 

vx = v cos ,   vy = v sin  

 Now Eq. (6) is Fourier-transformed to yield 

f (k, , v) + i 
k v

c

 f

=
ie (k, )

m c

 
f 0

v
(kxcos + kysin ) + kz

f 0

vz

 (13) 

 Equation (13) is a first order differential equation with 

respect to . Integrating this gives 

f ( , v , vz , k, ) =
ie  (k, )

m c

e
i ( )

±

 d [k
f 0

v
 cos( ) +  

+kz
f 0

vz
]e

i ( )
 (14) 

where 

k = kx
2
+ ky

2 , kx = k cos , ky = k sin , ( )

=
(kzvz ) + k v  sin( )

c

 

and the +( ) sign at the lower limit of the integral 

corresponds to ion (electron). Then the integrated term 

vanishes at the lower limit for either species (here we assume 

that  has a small positive imaginary part, in conjunction 

with our definition of the Fourier transform, to be consistent 

with the causality). The integral in Eq. (14) is carried out 

with the aid of the well-known Bessel function identity 

eiasin =
n=

Jn (a)e
in :  

f (k, v, ) =
e (k, )

m n= l=

 (
f 0

v

l c

v
+ kz

f 0

vz
)  

Jn (a )Jl (a )
ei(l n) ei(n l )

kzvz l c

 (15) 

where a =
k v

c

.  Substituting Eq. (15) into Eq. (12), we 

can obtain 

(k, ) =
R(ky , kz , )

k2 L

 (16) 

where R(ky , kz , )  is the right hand side of Eq. (12) and 

L = 1+ p
2

k2
n=

d 3v 
n c

v
 
f 0

v
+ kz

f 0

vz

Jn
2 (a )

kzvz n c

  (17) 

where p  is the plasma frequency. In obtaining Eq. (17), 

we used the fact that only the terms of n = l  survive in the 

d -integral of Eq. (15). In an infinite plasma, R = 0  and 

L = 0  gives the dispersion relation of the electrostatic 

waves. L  is the dielectric constant of the magnetized 

plasma under consideration. From Eq. (16), one obtains the 

electric field components, 

Ej (k, ) = i 
kjR

k2
L

   ( j = x, y, z)  (18) 

 We need the normal component of the electric 
displacement. 

Dx (k, ) = Ex (k, ) +
4 i

e vx f (k, v, )d 3v  (19) 

 Using Eq. (15) in the above equation, with the aid of 

= i
Ex

kx
, gives 

Dx = Ex +
Ex

kx

p
2

2
d 3v v

n l

f 0

v

l c

v
+ kz

f 0

vz
 

 
JnJl  e

i(l n)

kzvz l c

[ei(n l+1)
+ ei(n l 1) ]  (20) 

 In the above integral, only the terms of n = l ±1  survive 

in the d -integral, and we obtain 

Dx (k, ) = x (k, )Ex (k, ) = i
kx x

k2 L

R(ky , kz , )  (21) 

where 

x = 1+ p
2

k
 d 3v v  

l=

(
f 0

v

l c

v
+ kz

f 0

vz
)  

 
1

kzvz l c

lJl
2

a
 + i 

ky
kx
Jl Jl  (22) 

where Jl =
dJl (a )

da
, and we used the Bessel function relations 
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Jl 1 + Jl+1 =
2l

a
Jl (a),   Jl 1 Jl+1 = 2Jl  

 The vacuum equations 
2 = 0  is solved for x < 0  and 

x > L  

x < 0 :  (x, ky , kz , ) = F1e
x+ikyy+ikzz i t

 (23) 

x > L :  (x, ky , kz , ) = F2e
x+ikyy+ikzz i t

 (24) 

where F1  and F2  are arbitrary constants, and 

= ky
2
+ kz

2
 

 The electric components are given by 

x < 0 :  Ex = F1e
x , Ey = ikyF1e

x , Ez = ikzF1e
x

 (25) 

x > L :  Ex = F2e
x , Ey = ikyF2e

x , Ez = ikzF2e
x

 (26) 

where we omitted the phasor e
ikyy+ikzz i t

. 

 The boundary conditions at the interface x = 0  and 

x = L  are the continuity of Ey  (or Ez ) and Dx . The 

conditions on Ez  are redundant to the conditions on Ey . To 

reinstate the x -dependance, the Fourier inversion integral 

should be performed on Eqs. (18) and (21). Let us first 

consider the integral: 

Ey (ky , kz , , x) = iky
dkxe

ikxx

k2 L

[A(
1

2
+ cos2kxL + cos4kxL + )  

+B(coskxL + cos3kxL + cos5kxL + )]  (27) 

 It is important to do the integral of the series term by 
term. Here we have 

 dkx  
e
ixkx

k2
L

cos(nkxL) =
1

2
 dkx  

e
ixkx

k2
L

(e
inkxL + e

inkxL )   (n = 1, 2, 3, )  

 In the second integral, we make a change of variable 

kx kx  and utilize that L  is an even function of kx . 

Then we have 

 dkx  
e
ixkx

k2
L

cos(nkxL) =  dkx  
e
ikxnL

k2
L

cos(kxx)  (28) 

 Using Eq. (28) in Eq. (27) gives 

Ey (ky , kz , , x = 0) = iky
dkx
k2 L

[A(
1

2
+ e

2ikxL + e
4 ikxL + )  

+B(e
ikxL + e

3ikxL + e
5ikxL + )]  (29) 

Ey (ky , kz , , x = L) = iky dkx  [A(
1

2
e
iLkx

+coskxL(e
2ikxL + e

4 ikxL + )

 

+B coskxL(e
ikxL + e

3ikxL + e
5ikxL + )]  

 Writing the cosine functions in terms of exponential 
functions, one can easily obtain 

Ey (ky , kz , , x = L) = iky
dkx
k2 L

[B(
1

2
+ e

2ikxL + e
4 ikxL + )  

+A(e
ikxL + e

3ikxL + e
5ikxL + )]  (30) 

 Next we calculate the integral 

Dx (ky , kz , , x) = i dkxe
ikxx

kx x

k2 L

[A(
1

2
+ cos2kxL + cos4kxL + )  

+B(coskxL + cos3kxL + cos5kxL + )]  (31) 

 Here we consider a typical term 

dkxe
ikxx

kx x

k2
L

 cos(nkxL)    (n = 1, 2, 3, )  (32) 

where x  consists of two parts, the even function part and 

the odd function part, with respect to ky : x =
E
+

O
 with 

E = 1+ p
2

k
 d 3v v  

l=

(
f 0

v

l c

v
+ kz

f 0

vz
) 

lJl
2 / a

kzvz l c

 (33) 

O = p
2

k
 d 3v v  

l=

(
f 0

v

l c

v
+ kz

f 0

vz
) 

ikyJl Jl / kx
kzvz l c

 (34) 

 Writing in (32) the cosine function in terms of 

exponential functions and making change of variable 

kx kx  as before, we have 

dkxe
ikxx

kx x

k2
L

 cos(nkxL) = dkxe
ikxnL

kx
k2

L

( E  i sinkxx +
Ocoskxx)  (35) 

 Using Eq. (35) in Eq. (31) gives after some algebra 

Dx (ky , kz , , x = 0)

= iA dkx
kx
k2 L

[
+1

2
E
+

O (
1

2
+ e

2ikxL + e
4 ikxL + )]

 

iB dkx
kx
k2 L

O (e
ikxL + e

3ikxL + e
5ikxL + )]  (36) 

Dx (ky , kz , , x = L)

= iB dkx
kx
k2

L

[
1

2
 E

+
O (

1

2
+ e

2ikxL + e
4 ikxL + )]

 

iA dkx
kx
k2 L

O (e
ikxL + e

3ikxL + e
5ikxL + )]  (37) 

 Enforcing the boundary conditions on x = 0  and x = L  

give four algebraic equations for four undetermined 

constants, A, B, F1 , and F2 . The solvability condition yields 

the relation 

μ2 2 = 2 2
 (38) 

where 
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μ =  
dkx
k2

L

1

2
kx

E
+ i  [

1

2
+ e

2ikxL + e
4 ikxL + ]  (39) 

=  
dkxkx
k2

L

O  
1

2
+ e

2ikxL + e
4 ikxL +  (40) 

=  
i dkx
k2

L

e
ikxL + e

3ikxL + e
5ikxL +( )  (41) 

=  
dkxkx
k2

L

O e
ikxL + e

3ikxL + e
5ikxL +( )  (42) 

 Here obtaining solutions of the dispersion relation, Eq. 

(38), is facilitated by the observation that it is intact if we 

replace ky ky . This means that if (ky )  is a solution of 

Eq. (38), ( ky )  also solves Eq. (38). To take advantage of 

this even parity in ky  of Eq. (38), we write it as 

( + μ)( μ) = ( + )( )  (43) 

 We seek the solutions of Eq. (43) by equating as 

+ μ = +  (44) 

 It is immediately seen that Eq. (44) indeed solves Eq. 

(43) because changing ky ky  in Eq. (44) yields the 

relation + μ = + , which is the remaining relation to 

be satisfied in Eq. (43). The second reduction of the 

dispersion relation, Eq. (38), is obtained by writing it as 

( + μ)( μ) = ( 1)( + ) ( 1)( )  (45) 

 We can see that the relation 

μ = ( ) =  (46) 

contains another set of solutions of Eq. (38) because the rest 
of relation of Eq. (45) is automatically satisfied. In summary, 
we have two independent reductions of the dispersion 
relation, Eq. (38) 

μ ± = ±  (47) 

 It turns out that the lower (upper) sign corresponds to the 

symmetric (anti-symmetric) mode. The solutions obtained 

from Eq. (47) by replacing ky ky  are also legitimate 

solutions of the slab dispersion relation. 

 Using the expressions in Eqs. (39)-(42), the dispersion 
relation is written 

 
dkx
k2

L

kx
E

2
+ (i + kx

O )(
1

2
± e

iLkx

+e
2iLkx ± e

3iLkx + e
4 iLkx ± )

= 0  

 Clearly the series in the parentheses converge by picking 

the poles of k2 L = 0  in the upper-half kx -plane and the 

exponential terms vanish when L . We can sum the 

series formally to make the expression compact. It can be 

easily shown that we have the following expressions for the 

series, 

e
iLkx + e

2iLkx + e
3iLkx + =

e
iLkx

1 e
iLkx

 

e
iLkx + e

3iLkx + e
5iLkx + =

e
iLkx

1 e
2iLkx

 

e
2iLkx + e

4 iLkx + e
6iLkx + =

e
2iLkx

1 e
2iLkx

 

 Thus we obtain for the dispersion relation in Eq. (47) 

 

 
dkx
k2

L

kx
E
+ (i + kx

O ) 
1± e

ikxL

1 e
ikxL

= 0  (48) 

where the apparent singularities associated with the 

denominator 
 
1 e

ikxL = 0  should be simply disregarded. If 

ky = 0 , we have O = 0  and Eq. (48) agrees with the result 

obtained in earlier work (Eq. (55) in Ref. [18]). If L , 

the factor e
ikxL  vanishes (by piking the poles in the upper-

half kx -plane), and Eq. (48) becomes 

dkx  
kx x + i

k2
L

= 0  (49) 

 Equation (49) recovers the electrostatic dispersion 
relation for a semi-infinite plasma obtained in Ref. [18] (Eq. 
(37) therein). 

 To further check the correctness of Eq. (48), its cold 
plasma limit will be considered. We put 

f 0 (v) =
(v )

v
(vz ) ( )  

into Eq. (17) for L . We integrate by parts each term, and 

use 

Jn (0) = n,0  ,   
2n

a
Jn (a)Jn (a)

1

2
( n,1 n, 1 )  (50) 

in the limit of a 0 , to obtain 

L
cold = 1  p

2

k2

kz
2

2 +
k2

2
c
2  (51) 

 The cold plasma limit of x  (Eq. (22)) can be calculated 

similarly. It can be easily shown that the terms involving 

f 0

vz
 vanish in the limit of a 0 . The first term of the 

velocity integral containing Jl
2

 in the rest of Eq. (22) yields 

p
2

2
c
2  (52) 

 The second term involving Jl Jl  becomes after 

integration by parts with respect to v  

i p
2

k
 
ky
kx l

l c

l c

dv
(v )

v

d

dv
[v Jl Jl ]  (53) 
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 Denoting the dv integral by I , we have 

I = da
1

a
(a c

k
)
d

da
[a Jl Jl ]

=
k

c

 
a 0
lim [

Jl Jl
a

+ Jl Jl + Jl Jl
' ]

 (54) 

 Upon using the asymptotic values of the Bessel 

functions, the last term involving Jl
'

 vanishes. Using Eq. 

(42) and Jl
1

2
( l ,1 l , 1 ) , we obtain 

l I =
k

2 c

( l ,1 l , 1 )  

 Collecting the preceding results, we finally obtain for the 

cold plasma limit of x  

x
cold = 1 1

iky
kx

 c p
2

2
c
2  (55) 

E = 1 p
2

2
c
2 P,   

O =
iky
kx

 c  p
2

2
c
2

iky
kx
Q

 (56) 

 Substituting Eqs. (51) and (56) into Eq. (48) and carrying 
out the contour integrals, we can obtain the cold fluid limit 
of the electrostatic slab dispersion relation. The first term of 
Eq. (48) is calculated to obtain 

dkx  
kx

E

k2
L
cold =  dkx  

Pkx
P(kx

2
+

2 )
= i  (57) 

where 

= ky
2
+ kz

2  
C

P
,   C = 1 p

2

2  (58) 

 Similar calculation for the rest of the terms in Eq. (48) 
yields the slab dispersion relations 

P + (Qky + ) coth
L

2
= 0,   (anti symmetric mode) (59) 

P + (Qky + ) tanh
L

2
= 0,   (symmetric mode)  (60) 

 If L , the two modes coalesce to 

P +Qky + = 0  (61) 

which is the cold plasma electrostatic dispersion relation in 

the magnetized semi-infinite plasma. Furthermore, if kz = 0 , 

we have = = ky , and the dispersion relation takes the 

form 

2 + p
2

2
c
2

c 1 = 0  (62) 

 Equation (62) agrees with the dispersion relation 
obtained earlier from the cold fluid equations in Ref. [19] 
(Eq. (40) therein). 

IV. FLUID TREATMENT 

 We use the following two-fluid equations to obtain the 

plasma solutions of the electrostatic field for 0 < x < L : 

i v =
e

m
+ c v z  (63) 

i n + N v = 0  (64) 

2 = 4 e(ne ni )  (65) 

where = ( , r) , and N is the equilibrium density of the 

plasma. One can obtain from the above equations 

v x =
ie

m
 

c
2 2 x

+ i c

y
 (66) 

2

x2
2 = 0  (67) 

where  is defined by Eq. (58). Solving the above equation 

gives 

(x, y, z, ) = (A1e
x
+ A2e

x )e
ikyy+ikzz i t

 (68) 

which in turn yields (omitting the phasor) 

Ex = (A1e
x A2e

x )  (69) 

Ey = iky (A1e
x
+ A2e

x )  (70) 

Ez = ikz (A1e
x
+ A2e

x )  (71) 

where A1  and A2  are constants. The vacuum solutions can 

be written down as 

x < 0 :  Ex = F1e
x , Ey = ikyF1e

x , Ez = ikzF1e
x

 (72) 

x > L :  Ex = F2e
x , Ey = ikyF2e

x , Ez = ikzF2e
x

 (73) 

where F1  and F2  are constants. 

 We need the normal component of the electric 

displacement vector, Dx , in the plasma: 

Dx = Ex +
4 Ni

e v x  (74) 

 Using Eqs. (66) and (68) in the above equation gives 

Dx = PEx iQEy = A1e
x ( P Qky ) A2e

x ( P +Qky )  (75) 

where P and Q are defined by Eqs. (56). 

 The continuity of Ey  at x = 0  and x = L  yields 

A1 + A2 = F1  (76) 

A1e
L
+ A2e

L = F2e
L

 (77) 
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 The continuity of Dx  at x = 0  and x = L  yields 

F1 = A1(P Qky ) A2 (P +Qky )  (78) 

F2e
L = A1e

L (P Qky ) A2e
L (P +Qky )  (79) 

 The solvability condition of the above four equations 
gives 

e
L

2 (P + +Qky ) e
L

2 (P + Qky ) =  

e
L

2 (P +Qky ) e
L

2 (P Qky )  (80) 

which is the slab dispersion relation obtained from the fluid 

equations. Equation (80) has the even parity in ky : Eq. (80) 

is intact if we replace ky ky . We scan obtain the 

solutions of Eq. (80) by equating as 

e
L

2 (P + +Qky ) = e
L

2 (P Qky )  (81) 

because the rest of Eq. (80) is nothing but the relation 

obtained by replacing ky ky  in the above equation. 

Another independent relation is obtained by equating as 

e
L

2 (P + +Qky ) = e
L

2 (P Qky )  (82) 

 Equations (81) and (82) can be arranged into the forms of 
Eqs. (59) and (60), showing complete agreement with the 
cold fluid limit of the kinetic results. 

V. DISCUSSION 

 The surface waves with phasor e
ikzz+ikyy i t

 propagating 

in a magnetized slab as well as on a magnetized semi-infinite 

plasma with B0 = zB0  (directed parallel to the interface) 

have an interesting property with respect to the wavenumber 

ky . Because of the even parity of ky , replacement of 

ky ky  in our dispersion relations yields another set of 

dispersion relation. For example, 

P Qky + = 0,  

which is obtained from Eq. (61) by ky ky , is also a 

legitimate dispersion relation. This property generates a 

variety of waves as compared to waves of no-parity. The pair 

of waves with ±ky  does not mean the oppositely 

propagating waves because we have the component kz . 

 Finally, although our work obtained kinetic slab 
dispersion relation in closed form, nonlinear development of 
surface wave is of great interest. In this regard, we should 
mention the work of Stenflo [20] which addresses the 
important nonlinear problem of surface waves in semi-
infinite plasma as well as in a plasma slab. Also three-wave 
surface wave interactions in a bounded plasma are 
investigated therein. 
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