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Abstract: The aim of this work is to provide a relativistically correct characterization for the stability of counterstreaming 

plasma structures ubiquitous in fusion plasma experiments and astrophysical sources of nonthermal radiation. Here, in the 

first part of this work, a new relativistically correct approach is formulated for the counterstreaming plasmas in thermal 

equilibrium, on the basis of the relativistic Jüttner-Maxwell distribution function and a correct representation of this 

distribution in the laboratory frame of reference by using the appropriate Lorentz transformations for momentum and 

energy. The particle velocity resulting from the thermal motion and the bulk displacement of plasma particles is thus 

limited according to the relativistic theory to less than c (the speed of light in vacuum). New criteria are derived for the 

existence of counterstreams conditioned by the magnitude of their bulk velocity with respect to the thermal speed. 

Accurate simplified forms of the distribution functions derived here for different limits of the streaming velocity and the 

plasma temperature, will be invoked in the second part of this work as input to the stability analysis of these systems. 
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1. INTRODUCTION 

 Beam-plasma interactions have received great interest in 
both astrophysical and laboratory plasma applications. 
Plasma beams, shells and more or less collimated flows do 
seem to be a widespread presence on all size scales in space 
from extragalactic down to planetary [1]. With the present 
observational technique we are able to visualize intense 
charged beams in flares or coronal mass ejections of our Sun 
or further stars within our own galaxy, but also relativistic 
jets with speeds nearly equal to speed of light in quasars and 
radiogalaxies or from super-massive black holes at the 
centers of active galaxies. There is also indirect evidence for 
the existence of the energetic flows of plasma through 
nonthermal emissions incoming from space [2]. Signatures 
of charged particle beams include electromagnetic plasma 
emissions from bremsstrahlung to synchrotron radiation. The 
hard gamma-ray and x-ray spectrum of cosmic radiation are 
synchrotron emissions believed to originate in highly 
energetic collisions of relativistic beams with the widespread 
ionized matter. Thus, such relativistic jets have now been 
confirmed in astrophysical objects: weakly relativistic jets 
with a bulk Lorentz factor 0 > 1  in microquasars [3], 
relativistic and ultrarelativistic jets ( 0 = 5 ÷10

3
) in active 

galactic nuclei (AGN) [4], and ultrarelativistic jets 
(
 0 70 ÷ 300 ) in gamma ray bursts (GRBs) [5]. 
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 Linear and nonlinear aspects of the beam-plasma 
interaction and instabilities with implications in plasma 
experiments and astrophysics have been reviewed in many 
textbooks [6-11]. Various theoretical models used for 
describing the stability properties of such beam-plasma 
systems include low- and high-density beams [6, 9], highly 
energetic relativistic beams [6, 8], macroscopic fluid or 
kinetic treatments, linear models for the instability initiation 
[6, 8-10] or nonlinear models for the instability stabilization 
[7], finite dimensions and different shapes of the beam [6, 
10], and also the effects of particle thermal spread, limited 
however to a classical nonrelativistic approach [6, 9]. 

 Moreover, relevant for us here is the problem of return 
currents discussed in great detail in Ref. [11]. An imminent 
occurrence of countermoving streams in any beam-plasma 
system is proved, besides a considerably large lifetime of 
these counterstreams, whatever the mechanism of return 
current formation may be, e.g., the weak effect of magnetic 
induction or a displacement electric field. For example, an 
electric field builds up if a beam enters a surrounding 
plasma, and this electric field decelerates the particles of the 
beam and accelerates background electrons to form a return 
current [11, 12]. In the absence of collisions (or other 
frictions) with background electrons and ions, the electric 
field becomes negligible and the opposite currents cancel 
each other and form what we call counterstreaming plasmas. 

 The plasma temperature also plays a significant role for 

the stability of astrophysical systems, where it can reach 

important values, e.g., for the solar corona ( T 5 106  K, 

and the ratio 
 
μ = mc2 / kBT 103 ), the sources of GRBs 



Counterstreaming Plasmas. I. Distribution Functions The Open Plasma Physics Journal, 2010, Volume 3    139 

must be weakly-relativistic with (
 
kBT 1 keV [13] and 

μ 50 ), and the active galactic nuclei are fully relativistic 

plasmas with temperatures up to 1012  K, i.e. μ < 6 10 3
 

[14]. 

 In nonstreaming plasmas, a relativistically correct 

approach is important not only for high kinetic energies [15, 

16], when the Lorentz factor of plasma particles becomes 

large enough, 
 
= (1 v2 / c2 ) 1/2 1 , and increases the 

particle mass (m m ), but also for the low energies of 

plasma particles, where the Lorentz factor does not intervene 

(
 

1 ), but for a relativistically rigorous treatment one 

should limit the representation of the distribution functions 

of plasma particles to velocities less than the speed of light 

in vacuum, v < c . For plasmas at thermal equilibrium, such 

limitation is possible by modeling plasma particle velocity 

distribution with a relativistic Maxwellian introduced by 

Jüttner [17], see below in Sec. I, Eq. (1). By using a 

relativitistic restriction of the particle velocity to less than c , 

it has been rigorously shown that, in contrast to the classical 

theory of Landau, the so-called superluminal waves with 

phase velocities above c  ( / k > c ) cannot resonate and 

exchange energy with plasma particles [18-26]. Moreover, 

recently, fully relativistic molecular dynamics simulation 

have reconfirmed the distribution function in the form 

proposed by Jüttner as the correct relativistic equilibrium 

velocity distribution [27]. 

 For beam-plasma systems or counterstreaming plasmas 

(in thermal equilibrium), a relativistically correct approach 

requires not only a relativistic (Maxwellian) distribution 

function, but also a correct representation of this distribution 

in the laboratory frame of reference by using the appropriate 

Lorentz transformations for momentum and energy limiting 

the particle velocity resulting from the thermal motion and 

the bulk displacement of plasma particles to less than c . 

Treating counterstreaming plasma systems correctly 

relativistic is therefore not a simple task [28]. Plasma 

streams are described by the drift Jüttner distributions where 

different momentum components become coupled via the 

Lorentz factor and prohibit a simple analytical approach. 

Thus, simplified forms of the relativistic distributions 

derived with mean values of the thermal Lorentz factor, or in 

different limits of a low or a high temperature, and a slow or 

very energetic streaming motion, are frequently proposed to 

make the analysis tractable. However, the accuracy of the 

simplified representations is in many cases altered either by 

the restrictions used, or most often by the Lorentz 

transformations applied to the velocity (classical) and not to 

the momentum as required by the relativistic theory. 

 In this work we reconsider the relativistically correct 
characterization of the counterstreaming plasmas on the basis 
of such relativistic distribution function and the appropriate 
Lorentz transformations for momentum and energy. For 
clarity, we start with modeling nonstreaming plasmas in Sec. 
II, and then extend to symmetric and asymmetric 
counterstreams in Sec. III. Due to the thermal spread of 
plasma particles the existence of counterstreams is 
conditioned by the magnitude of their bulk velocity with 

respect to the thermal speed. A classification into different 
cases via the Lorentz factor of the beams is given, the 
criterium for the existence of counterstreams is derived and 
new simplified models of the counterstreaming plasmas are 
proposed with arguments. Discussions and conclusions of 
this first work are included in the last section. 

2. RELATIVISTIC NONSTREAMING PLASMAS 

 The Jüttner (relativistic Maxwellian) distribution function 
is given by 

Fp = C exp( μ ) = C exp
mc2

kBT
1+

p2

m2c2

1/2

        (1) 

where 

C(μ) =
μ

4 (mc)3K2 (μ)
, μ =

mc2

kBT
          (2) 

= (1 v2 / c2 ) 1/2  is the Lorentz factor, K2 (μ)  denotes the 

modified Bessel function, and the distribution function is 

normalized as 
+

d 3pFp =1 . This distribution function is 

displayed in Fig. (1) for four representative regimes of 

plasmas. 

 

Fig. (1). Relativistic distribution function (1) in the particle velocity 

interval ( c , c ) for four representative cases: ultrarelativistic high 

temperatures ( μ = 10 2 ), relativistic ( μ = 1 ), weakly relativistic 

temperatures ( μ = 10 ) and low plasma temperatures ( μ = 102 ). 

 Let introduce an universally accepted classification of 

plasmas according to their temperature (see Ref. [20] and 

Fig. (1) therein). Thus, in terms of the thermal parameter 

μ = mc2 / kBT  we can have plasmas with 

• ultrarelativistic temperatures: 
 
μ 1 , 

• relativistic temperatures : 
 
μ < 1 , 

• weakly (or mildly) relativistic temperatures: μ >1 , or 

• low temperatures: 
 
μ 1 , 
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to which we can add the limits of 

• the nonrelativistic classical treatment obtained for no 

limitation of plasma particle velocity, i.e., c  

(when also μ ), and 

• the cold plasma limit ( T 0 ) described by a Dirac 

distribution 
 
fv (vx ) (vy ) (vz )  

 In these limits, the plasma should be described by 
reduced forms of the Jüttner function (1), and below we 
proceed to their derivation, and then, for confirmation, these 
limit forms will be plotted and fitted with the relativistic 
distribution (1). Here we characterize only the electron 
plasma component but similar criteria can be attributed to 
the proton component as well (for ions, which are much 
heavier, it would probably be realistic to resume only to the 
weakly relativistic effects). 

 There is no convenient simplification for the distribution 
(1) in the limit of very high ultrarelativistic temperatures so 
as we turn and look to lower temperature approximations of 
this distribution function. 

2.1. Weakly Relativistic Limit 

 A plasma with weakly relativistic temperature, i.e., 

μ >1 , is predominantly populated by low energetic 

electrons with small values for the Lorentz factor 

 

= 1+
p2

m2c2

1/2

1+
p2

2m2c2
,           (3) 

and the momentum 

 

p = m v = mv 1
v2

c2

1/2

mv 1+
v2

2c2
.          (4) 

By substituting (3) and (4) in (1) we find a weakly 
relativistic form of the distribution function 

 

Fv C exp
mc2

kBT
1+

p2

2m2c2
 

 

C exp μ( )exp
mv2

2kBT
1+

v2

c2
.          (5) 

This is displayed in Fig. (2a) by comparison to the general 

form (1). Whether they fit well, the reduced form (5) can be 

used to describe plasmas at equilibrium and with weakly 

relativistic temperatures, i.e., 
 
μ > 1 . 

2.2. Low Temperature Plasma 

 At sufficiently low temperatures, we can define thermal 

velocity of plasma particles, vT = 2kBT /m , which is much 

smaller than the speed of light in vacuum, c . In this case 

 
μ = mc2 / kBT 1 , the modified Bessel function 

 
K2 (μ 1) ( / (2μ))1/2 exp( μ) , and the equilibrium 

distribution function (5) simplifies to a Maxwellian 

 

fv = m
3Fv (μ 1) =

m

2 kBT

3/2

exp
mv2

2kBT
1+

v2

c2
.    (6) 

The normalization constant is more accessible in this form, but 

the distribution is still shifted by the relativistic correction factor 

(1+ v2 / c2 ) , and, according to our assumption it is suitable 

only for sufficiently large 
 
μ 1 , e.g., μ >10 . 

2.3. Nonrelativistic (Classic) Theory 

 Transition to a nonrelativistic classic treatment requires 

c  in (6) leading to the well known Maxwell-

Boltzmann distribution function 

fv
MB

= lim
c

fv =
m

2 kBT

3/2

exp
mv2

2 kBT
=

1
3/2vT

3 exp
v2

vT
2   (7) 

which is normalized as d 3vfv = 1
+

. According to Fig. (2b), 

the standard form (7) can be used at very low temperatures, 

i.e., very large 
 
μ > 100 , since it approaches quite well the 

relativistically correct form (6). 

 

Fig. (2). (a) The relativistic Jüttner distribution (1) for weakly relativistic and nonrelativistic temperatures (  > 1) plotted in black and the 

weakly relativistic approximation (5) in red. (b) The low temperature approximation (6) plotted in black and the nonrelativistic 

approximation (7) in green. 
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2.4. Interlude 

 We have shown that in a weakly relativistic regime with 
moderately high temperatures, the approximation (5) fits 
very well with the general distribution function (1). There is 
however another “weaker” approximation 

 

fv C exp( μ) exp
mv2

2kBT
= C exp( μ) exp

v2

vT
2 ,          (8) 

that is often used for weakly relativistic temperatures, 

probably because it is simpler than (5). But, according to 

Fig. (3), in the range of weakly relativistic temperatures, this 

is markedly deviated from plots of the approximation (5), 

and of course, from the exact relativistic Jüttner distribution 

function (1). Thus, the reduced form (5) remains more 

relevant for the weakly relativistic regime than the 

approximation (8). 

 

Fig. (3). Comparison of the approximations (5) and (8) for weakly 

relativistic temperatures (  > 1). 

3. COUNTERSTREAMING RELATIVISTIC 
PLASMAS 

 Here we proceed to finding similar criteria and introduce 

more simple limit forms for the velocity distribution 

functions describing counterstreaming plasmas. For a 

streaming plasma we define a new kinetic parameter 

μ0 = mc
2 / Ec =1/ ( 0 1)  in terms of the bulk relativistic 

kinetic energy Ec = mc
2 ( 0 1)  of particles, streaming with 

the speed V0 . Using this new parameter or the bulk Lorentz 

factor 0 = (1 V0
2 / c2 ) 1/2  the streams can be classified as 

follows: 

1. ultrarelativistic streams for 
 
μ0 1  that means 

 0 2  (V0 c ), 

2. relativistic streams for μ0 1  that means 0 2  

(
 
V0 3c / 2 0.87c ), 

3. weakly relativistic streams for μ0 > 1  that means 

1 < 0 < 2  (V0 < 3c / 2 ), 

4. nonrelativistic streams for 
 0 1  (

 
V0 c ). 

3.1. Transformations to the Laboratory Frame. 
Symmetric Counterstreams 

 In order to keep the analysis tractable, first we consider 

symmetric counterstreams with the same bulk velocity 

V1 =|V2 |=V0  (and the same Lorentz factor 

1 = 2 = 0 1 V0
2 / c2( )

1/2
, and, in their own frame at 

rest (script R ), with the same density n1 = n2 = n  (and the 

plasma frequency p1 = p2 = p 4 ne2 /m ), the same 

temperature TR1 = TR2 = TR  and a fully relativistic particle 

velocity distribution of the form (1) 

Fp,1 = Fp,2 = CR exp( μR R ) = CR exp
mc2

kBTR
1+

p2

m2c2

1/2

.         (9) 

 Here CR  and μR  take the same forms defined in (2). 

Two counterstreams are schematically shown in Fig. (4). 

 

Fig. (4). Sketch of two symmetric counterstreaming plasmas, and 

their own frames S 1,2  and the laboratory, S L  frame solidary to 

their mass center. 

 The bulk velocity of each stream, V1,2 = ±V0 , is usually 

defined in the frame of background plasma. The analysis of 

such plasma systems simplifies if the observatory (or the 

laboratory frame, script L  in the next) is solidary with the 

mass center of the counterstreaming plasmas. Furthermore, 

for symmetric counterstreams the analysis will be limited, 

but it simplifies considerably allowing for a complete 

characterization that applies for any other frame where the 

streams can be assumed sufficiently symmetric. 

 Thus, we proceed to the transformation of the 

distributions Fp,1  and Fp,2  in the laboratory frame S L  by 

using the Lorentz transformations for energy 

S1 SL (Fig. 4) : ER = 0 (EL V0 py )  

S2 SL (Fig. 4) : ER = 0 (EL +V0 py )  

or for the Lorentz factors, = E / (mc2 ) , 
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R = 0 L (1
V0vy
c2
), R = 0 L (1+

V0vy
c2
).         (10) 

The temperature is not invariant with Lorentz transfor-

mations, but changes as TL = TR / 0  [28] leading to 

μL = 0μR .           (11) 

 Now the distributions (9) will transform as 

 

Fp1,2
L = CL1,2 exp μL L 1

V0vy
c2

,        (12) 

where the constants CL1,2  are given by the normalization of 

the distribution functions, d 3pFp1,2
L =1 . For convenience, 

we omit the index L  in the next and use polar coordinates 

[23], 
 
y py / (mc) = p / (mc)  and 

 
1+ (p2 + p2 ) / (mc)2 . 

The constant C1,2  will be given by the normalization 

condition 

 

1 = d 3pFp1,2 ( , y) = 2 dp
0
dp p Fp1,2 ( , y)  

= 2 C1,2 (mc)
3

1
d exp( μ ) 2 1

2 1
dy exp ±μy

V0
c

 

 

=
2 C1,2 (mc)

3

μV0 / c 1
d

exp μ 2 1
V0
c

exp μ ±
2 1

V0
c

.    (13) 

Expanding the exponentials in power series, this condition 
yields 

C1 = C2 =
μ

4 (mc)3 I(μ, 0 )
,         (14) 

where the integral 

I(μ, 0 ) =
n=0

μV0
2

2c2

n
1

[n +1]
Kn+2 (μ) = 0

2K2 (μ / 0 )    (15) 

is calculated using the multiplication therorem [9.6.51] [29]. 
The normalization constants are equal and simplify as 

Cs =
μ

4 0
2 (mc)3K2 (μ / 0 )

,         (16) 

and the counterstreaming distribution function forms as 

F( , vy ) =
Cs

2
exp μ 1

V0vy
c2

+ exp μ 1+
V0vy
c2

.    (17) 

For a nonstreaming plasma (V0 = 0 ) the constant (16) 

reduces exactly to the normalization constant (2), 

Cs (μ,V0 = 0) =C(μ) , and the counterstreaming distribution 

(17) transforms to the Jüttner distribution function (1). We 

should mention that the normalization constant Cs  from (16) 

can be obtained transforming the constant C  from (2) by 

using the general formalism developed in Ref. [28]: thermal 

parameter μ  changes according to (11) and the elementary 

volume changes by contraction dVL = dVR / 0  leading to an 

increasing of density nL = 0nR  and an extra factor 0  in 

the denominator of Cs . 

3.2. Criteria for the Existence of Symmetric Counter-
streams 

 For the sake of simplicity, here we keep considering 

symmetric counterstreams characterized by the same bulk 

velocity V1 =V2 =V0  (and the same Lorentz factor 

1 = 2 = 0 1 V0
2 / c2( )

1/2
), the same temperature 

T1 = T2 = T , and described by the distribution function (17). 

 The distribution function F(v) = F(vy ,v )  (where 

vy
2
+ v2 = v2 ) derived in (17) for two symmetric 

counterstreams propagating along the y -axis, shows two 

bumps only if the one-dimensional (slice) function 

F(u) = F(vy ,v = 0)  (with u := vy / c ) admits a minimum at 

vy = 0 . For that, one has to prove conditions for a local 

minimum  

(M1) the first derivative is zero: F vy = 0( ) = 0  (mandatory) 

and  

(M2) the second derivative is positive: F vy = 0( ) > 0  

(sufficient). 

 To test these criteria, we look to the form (17) of the 

distribution function for two counterstreaming plasma 

beams, and define U0 :=V0 / c , 
 
:= (v = 0) = (u) , 

F0 = F(u = 0) =Cs exp( μ)  and 

 

N(u) :=
F(u)

F0
=
1

2
exp(μ)

exp μ (1 uU0 )

+ exp μ (1+ uU0 )
      (18) 

The first condition is always fulfilled: 

 

dN

du u=0

=
μ

2
exp(μ) u 3(1 uU0 ) U0( )exp μ (1 uU0 ){  

 

+ u 3(1+ uU0 ) +U0( )exp μ (1+ uU0 ) }
u=0
= 0      (19) 

 The second condition needs to satisfy 

 

d 2N

du2
u=0

= μ 2 μU0
2( )

u=0
= μ μU0

2 1( ) > 0,       (20) 

that means 

μU0
2 > 1           (21) 

and leading to the condition 

U0 =
V0
c
>

1

μ
.           (22) 
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This condition is not satisfied for hot plasmas with 

relativistic temperatures and a small thermal parameter 

μ 1  because the beam speed must be subluminal V0 < c . 

We immediately conclude that streams can not practically 

exist in such hot plasmas. 

 For less energetic but still (weakly) relativistic plasmas 

with 
 
μ > 1 , energetic streams can form with large bulk 

velocities given by (22), or with a Lorentz factor given by 

0 >
μ

μ 1
.           (23) 

If 
 
μ O(1) , and 

 
0 < μ 1 1  the plasma beam must be 

relativistic with an extremely large speed (V0 c ) and 

Lorentz factor (
 0 1 ). Such relativistic jets with 

0 = 6 ÷ 40  can be generated in AGN or, those with 

 0 70 ÷ 300  are supposed to be at the origin of the 

afterglow synchrotron emissions in gamma-ray bursts [5]. 

 In the case of a low-temperature plasma, 
 
μ 1 , 

condition (22) guarantees the existence of streams with a 

speed that must exceed the thermal speed of plasma particles 

of the same species 

 

V0 >
c

μ
=

kBT

m
vT ,          (24) 

and a Lorentz factor 0 > 1  (including less energetic 

nonrelativistic streams with 
 0 > 1 ). 

3.3. Arbitrary Counterstreams 

 Here we generalize the analysis by considering two 

arbitrary counterstreams (schematically shown in Fig. 4) 

characterized by the bulk velocities V1,2  and the bulk Lorentz 

factors 1,2 1 V1,2
2 / c2( )

1/2
 in the laboratory frame. For 

each stream, in its own rest frame (subscript R ), the thermal 

spread of plasma particles at equilibrium is described by the 

plasma temperature TR1,2 , and a relativistic distribution 

function of the form (1) 

Fp1,2 = CR1,2 exp( μR1,2 R )

= CR1,2 exp
mc2

kBTR1,2
1+

p2

m2c2

1/2

,
       (25) 

where CR  and μR  keep the forms defined in (2). 

 Transformation to the laboratory frame S L  (in Fig. 4) 

yields for the energy 

S1 SL (Fig. 4) : ER = 1(EL V1py )  

S2 SL (Fig. 4) : ER = 2 (EL +V2 py )  

or for the Lorentz factors, = E / (mc2 ) , 

R = 1 L (1
V1vy
c2
), R = 2 L (1+

V2vy
c2
),       (26) 

and for the temperature TL1,2 = TR1,2 / 1,2  [28] leading to 

μL1,2 = 1,2μR1,2 .           (27) 

Using (26)--(27) the distributions (25) will change in the 
laboratory frame to 

 

Fp1,2 = C1,2 exp μL1,2 L 1
V1,2vy
c2

,        (28) 

where, similarly to equation (16), for the normalization 
constants we obtain 

C1,2 =
μ1,2

4 1,2
2 (mc)3K2 (μ1,2 / 1,2 )

.         (29) 

 The counterstreaming distribution function then forms as 

F( , vy ) = Cs

1 exp μ1 1
V1vy
c2

+ 2 exp μ2 1+
V2vy
c2

,        (30) 

where the intensity of each stream is defined as 

1,2 = n1,2 / (n1 + n2 ) = p1,2
2 / ( p1

2
+ p2

2 ) , and p1,2 = 4 n1,2e
2 /m  

is the plasma frequency for each stream in part, and 

according to the normalization condition 
+

d 3pF( , vy ) = 1 , 

the normalization constant is 

Cs =
1

C1
+

2

C2

1

.          (31) 

Moreover, if the laboratory frame is solidary with the mass 

center of the counterstreaming plasma system, the law of 

conservation for momentum yields the constraint 

1 1V1 = 2 2V2 .           (32) 

This also provides the neutrality of the plasma system with a 
zero net current. 

 For a nonstreaming plasma (V1,2 = 0 ), the normalization 

constant (29) reduces exactly to (2), Cs (μ,V1,2 = 0) =C(μ) , 

and the counterstreaming distribution (30) transforms to the 

Jüttner distribution function (1) for a plasma with two 

components of different densities and temperatures. 

3.4. Criteria for the Existence of Arbitrary Counter-
streams 

 The distribution function (30) for two arbitrary 

counterstreams shows two bumps only if there exists a 

minimum at vy = 0 . Again, to test conditions (M1) and (M2) 

for a local minimum we use u := vy / c , U1,2 :=V1,2 / c <1 , 

 
:= (v = 0) = (u) , and transform the general form of 

the distribution function (30) to 
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F(u) F( ,u) = Cs

1 exp μ1 1 uU1( )

+ 2 exp μ2 1+ uU2( )
.       (33) 

According to the first condition (M1) the first derivative 
must be zero 

 

F (u)
u=0
= Csμ1 1 u 3(1 uU1 ) U1

exp μ1 (1 uU1 ) u=0

 

 

Csμ2 2 u 3(1+ uU2 ) +U2 exp μ2 (1+ uU2 ) u=0
= 0       (34) 

which yields 

μ1 1U1 exp( μ1 ) = μ2 2U2 exp( μ2 ).        (35) 

The second condition (M2) applied to (30) needs to satisfy 

F (u)
u=0
= Cs[μ1 1(μ1U1

2 1)exp( μ1 )

+ μ2 2 (μ2U2
2 1)exp( μ2 )] > 0,

       (36) 

and using (35) this condition simplifies as 

μ1U1
2 1

U1

+
μ2U2

2 1

U2

> 0,          (37) 

or more simple 

μ1U2U1
2
+ (μ2U2

2 1)U1 U2 > 0.        (38) 

For symmetric counterstreams these conditions, (35) and (38), 
reduce exactly to those obtained above in (19) and (21), 
respectively. 

 If we consider the left-hand side of condition (38) as a 

quadratic function of U1 =V1 / c , we could look for a simple 

interpretation of this condition in two distinct cases. When 

one of the streams, for example, the second is sufficiently 

energetic, i.e., U2
2 > 1 / μ2 = kBT2 /mc

2
, the condition (38) 

demands for the first stream to have a bulk velocity 

 

U1 >
μ2U2

2 1

2μ1U2

1+
4μ1U2

2

(μ2U2
2 1)2

1/2

1

μ2U2

2μ1
1+

4μ1
μ2
2U2

2

1/2

1 ,

                    (39) 

where in the last term 
 
U2

2 1 / μ2  has been used. Note, that 

this case applies only to nonrelativistic plasmas (
 
μ2 1 ). 

Here we identify two subcases. Thus, for 

 
U2

2 (4μ1 / μ2 ) / μ2 , a counterstreaming structure exist only 

for U1 > 1 / (μ2U2 ) . For 
 
1 / μ2 <U2

2 (4μ1 / μ2 ) / μ2  when 

 
4μ1 μ2  (i.e., 

 
T2 T1 / 4 ), the same condition (39) 

presumes U1 > 1 / μ1 = (kBT1 /mc
2 )1/2 . 

 In the opposite case of a small bulk velocity satisfying 

U2
2 < 1 / μ2 = kBT2 /mc

2
, the existence condition (38) asks 

for 

 

U1 >
1 μ2U2

2

2μ1U2

1+
4μ1U2

2

(1 μ2U2
2 )2

1/2

+1

1

2μ1U2

1+ 4μ1U2
2 1/2

+1{ }.
       (40) 

We find again two subcases, one for 
 
U2

2 1 / (4μ1 ) , when 

the condition for the existence of the counterstreams 

becomes U1 > 1 / (μ1U2 ) , and if 
 
1 / (4μ1 ) < 1 / (2μ1 ) U2

2 < 1 / μ2 , 

the same condition imposes U1 >U2 . 

3.5. Reduced Forms of the Counterstreaming Distri-
bution 

 Now we proceed to the characterization of the 
counterstreaming plasma system in different energetic limits 
with reduced forms of the fully relativistic distribution 
function. Again, for a simple analysis, we limit to symmetric 
counterstreams described by the relativistically correct 
distribution function (17) and the existence condition (21). 

3.5.1. Ultrarelativistic Streams 

 For ultrarelativistic streams with a very large bulk 

Lorentz factor 
 0 2 , the bulk velocity approaches the 

speed of light V0 c  and the counterstreaming distribution 

(17) becomes independent of V0  

F( , vy ) =
Cs

2
exp μ 1

vy
c

+ exp μ 1+
vy
c

. (41) 

The normalization constant CS  is given by (16). Moreover, 

if the Lorentz factor is sufficiently large 

 0 (1+ 5) / 2 > 1,          (42) 

and the plasma thermal factor is in the interval 

 
1 0

2 / ( 0
2 1) < μ 0 ,         (43) 

satisfying condition (21), or (22), for the existence of 

counterstreams, then the argument of the modified Bessel 

function in Cs  is very small, 
 
μ / 0 1 , and the modified 

Bessel function simplifies as 
 
K2 (μ / 0 ) 2 0

2 / μ2
, leading 

to a new form of the normalization constant 

 

Cs

μ3

8 0
4 (mc)3

.          (44) 

Plasma temperature can take any value, from nonrelativistic 

(
 
μ 1 ) to weakly relativistic ( μ >1 ), but according to (43) 

it is limited by condition 
 
μ 0 . 

 In Fig. (5) the ultrarelativistic approximation (41) is 

compared to the general relativistic form (17). In the 

ultrarelativistic case, the distribution function is independent  

of the initial beam speed V0 . If the condition for ultrarelativistic 

Lorentz factors 
 0 2  is fulfilled, (41) is a good 

approximation because plots of the exact distribution 

function only slightly varies on the outer bounds. 
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Fig. (5). Relativistic exact distribution function (17) for three 
different Lorentz factors 0 = 2.29 , 0 = 7.09 , 0 = 22.4  plotted in 

black and the ultrarelativistic approximation (41) in red, which is 
independent of the streaming velocity. 

3.5.2. Low Temperature Plasmas 

 In the opposite case of a large thermal factor, 

 
μ 0 > 1 , the plasma has a low temperature, the modified 

Bessel function simplifies asymptotically as 

 

K2 μ / 0 1( ) 0

2μ
exp

μ

0

       (45) 

and the normalization constant (16) becomes 

 

Cs

μ3/2 exp(μ / 0 )

(2 )3/2 0
5/2 (mc)3

.          (46) 

 The low temperature plasmas will be predominantly 

populated by electrons with a small momentum with respect 

to the mean steady-state flow momentum p0 , so that, we can 

again use the series representation for energy (or the Lorentz 

factor) and keep only terms up to the second order 

E(p) mc2 1+
p2

m2c2

1/2

= m c2  

 

mc2

0

±V0 py +
p2

2m 0

+
(py p0 )

2

2m 0
3 .        (47) 

here, “ ± “ (and “
 

“, respectively, in the last term) 

correspond to the oppositely moving streams, i.e., the first 

and the second terms, respectively, in the distribution 

function (17). By substituting (46) and (47) the distribution 

function (17) becomes 

 
fp m3Fv (μ 0 )  

 

μ3/2

2(2 )3/2 0
5/2c3

exp
μp2

2m2c2 0

exp
μ(py p0 )

2

2m2c2 0
3 + exp

μ(py + p0 )
2

2m2c2 0
3 .

      (48) 

 Further simplification can be obtained developing again 

the Lorentz factor  (in py ) after vy  around V0  

 

(vy ) 1
v2

c2

1/2

1
vy
2

c2

1/2

0 + (vy V0 )
V0
c2 0

3 ,   (49) 

and writing 

 

py p0 = m( vy 0V0 ) = m 0 (vy V0 ) + mvy (vy V0 )
V0
c2 0

3  

 

m 0 (vy V0 ) + m(vy V0 )
V0
2

c2 0
3 = m(vy V0 ) 0

3 ,       (50) 

where, according to the low temperature assumption, vy  is 

sufficiently close to V0 . Now, by using (50), the distribution 

function which describes counterstreaming plasmas with low 

temperatures takes the form 

fv =
1

2( )3/2 vT
3

0
5/2 exp

v2

vT
2

0

exp
(vy V0 )

2
0
3

vT
2 + exp

(vy +V0 )
2

0
3

vT
2 ,

      (51) 

where vT = (2kBT /m)
1/2

 is the thermal velocity introduced 

first time in Eq. (7). 

 For weakly relativistic streams (1 < 0 < 2 ), this 

distribution function can be written exclusively in terms of 

the bulk velocity V0  by using the approximations 

 0 1+V0
2 / (2c2 ) , 

 0
1 1 V0

2 / (2c2 ) , 
 0

3 1+ 3V0
2 / (2c2 )  

and 
 0

5/2 1 5V0
2 / (4c2 ) . For nonrelativistic streams, 

 0 1  and the distribution function (48) reduces to the well-

known classic form of a Maxwellian counterstreaming 

distribution. 

 In Fig. (6) we display the low temperature approximation 

(48) and the exact distribution (17) for two different values 

of plasma temperature. In the case of a highly nonrelativistic 

plasma (Fig. 6b) the approximation fits well over the whole 

range of particle velocities. For a low μ  (Fig. 6a) the 

approximation still reproduces the peaks and the shape of the 

bumps. 

4. CONCLUSIONS 

 The main aim of this work is to provide a relativistically 
correct characterization for the stability of counterstreaming 
plasma structures ubiquitous not only in fusion          
plasma experiments but also  in astrophysical sources  where the  
observed nonthermal cosmic radiation originates. Here in the 
first part we have refined the relativistic models of the 
counterstreaming plasmas on the basis of the relativistic 
Maxwellian distribution function and the appropriate Lorentz 
transformations for momentum and energy. 
Counterstreaming plasma structures lead to the onset of 
plasma wave instabilities that will make the object of our 
investigations in the second part of this work. 
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 We have derived new criteria for the existence of 
symmetric or arbitrary counterstreams: due to the thermal 
spread of plasma particles the existence of counterstreams is 
conditioned by the magnitude of their bulk velocity with 
respect to the thermal speed. A new classification via the 
Lorentz factor of the beams has been introduced. Based on 
these rigorous criteria, the distribution functions have been 
simplified according to different limit cases of a cold plasma 
or plasmas with non-, weakly- or ultra-relativistic 
temperatures, combined with non-, weakly-, or ultra-
relativistic bulk velocities of the streaming plasmas. The 
range of application is identified for each case in part by 
fitting the reduced forms with the exact fully relativistic 
distribution function. Such simple but relativistically correct 
representation of the counterstreaming distribution functions 
creates premises for developing new and accurate analytical 
approaches for studying their dispersion properties and 
stability. 
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