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Abstract: The alternating direction implicit (ADI) method is an attractive option to use in avoiding the Courant-
Friedrichs-Lewy (CFL) condition that limits the size of the time step required by explicit finite-difference time-domain 
(FDTD) methods for stability. Implicit methods like Crank-Nicholson offer the same advantages as ADI methods but they 
do not rely on simple, one-dimensional, tridiagonal system solves for which there are well-known fast solution methods. 
To date, the ADI method applied to the FDTD method for curved domains has been used within the context of 
subgridding (i.e., local refinement) or for stairstepped boundaries that are only first-order accurate. A popular second-
order accurate approach to representing smooth domains with the FDTD method is the Dey-Mittra embedded boundary 
method. However, to be useful in a realistic setting, the cells with only a small fraction of their volume inside the domain 
need to be discarded from simulations for stability considerations or else the time step size will be prohibitively small. 
Using the ADI method instead of the explicit method implies that time step can be chosen to depend on accuracy and no 
cells need discarding. We show in this paper the ability to maintain stability beyond the CFL limit for the Dey-Mittra 
method without discarding any cells. We also consider convergence of the ADI method as compared to the standard 
explicit method that is limited by the CFL condition. 

1. INTRODUCTION 

 The alternating direction implicit (ADI) method is a 
powerful implicit method for solving a finite-difference 
time-domain (FDTD) discretization of Maxwell's equations. 
This method (ADI-FDTD) consists of a series of simple, 
one-dimensional, tridiagonal system solves in contrast to a 
single large system solve as is required by the Crank-
Nicholson method. The majority of the work on the ADI-
FDTD method has focused on simple, rectangular domains 
(cf. [1-4]) and avoided modeling curved domains like those 
found in complex accelerator structures. 

 One approach to modeling curved domains is to use a 
subgridding scheme on the boundary [5]. For such a 
subgridding scheme, a hybrid ADI-FDTD method was 
proposed in Ref. [6] that uses an ADI method on the higher 
resolved Yee cells and an explicit method on the coarser 
cells. In this work, instead of using subgridding, we address 
the boundary with schemes that alter the discrete equations 
in the cells cut by the boundaries, i.e., the cut-cells. 

 The original approach proposed by Yee in Ref. [7] for 
addressing the cut-cells was the stairstepping approach. In 
stairstepping, a cut-cell is labelled either interior or exterior 
depending on the location of the cut-cell center. See Fig. 
(1a). A more recent and accurate approach was proposed by 
Dey and Mittra in Ref. [8]. The Dey-Mittra approach 
accurately includes the fractional face areas and edge lengths 
of the cut-cells in the explicit method with the condition that 
small fractional face areas can cause a significant reduction 
in the time step to maintain stability. In this paper, we   consider  
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the FDTD method using a Dey-Mittra approach for the cut-
cells, which we refer to as the EXP-FDTD approach. 

 As described in Ref. [8], cut-cells with restrictively small 
fractional areas can be discarded from the simulation to 
maintain a reasonable time step. If too many cells are 
discarded, then the method can become first-order. Thus, a 
method is needed that employs the Dey-Mittra second-order 
approach but does not lead to restrictively small time steps 
and the reduction in convergence order. For this reason, we 
propose the ADI-FDTD method to be used in combination 
with the Dey-Mittra embedded boundary method. We will 
show that the ADI-FDTD method is stable at any time step 
and yields accurate frequency calculations for the 2D 
Palevsky-Bekefi A6 magnetron [9]. 

 The outline of the paper is as follows. In the next section, 
we introduce the Dey-Mittra embedded boundary method 
that is used to model curved domains with the FDTD method 
and then we introduce the ADI-FDTD algorithm. We then 
briefly introduce the frequency extraction method of Ref. 
[10] and present results for the 2D A6 magnetron that is 
modeled using the FDTD method combined with the Dey-
Mittra boundary algorithm. We consider a frequency 
extraction algorithm that requires time domain simulations 
using either the EXP-FDTD method or the ADI-FDTD 
method. We explore the accuracy of the various approaches 
and their stability. We end with a discussion of these results 
and a conclusion. 

2. METHODOLOGY 

2.1. Dey-Mittra Embedded Boundary Method 

 The classical FDTD method is the Yee method [7] used 
for solving Maxwell's equations on a lattice grid. In three 
dimensions, electric field values are  located at the  centers of  
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(a) Stairstepping 

 

(b) Dey-Mittra 

 

Fig. (1). (a) Approximating a curved boundary with a stairstepping 
approach, where the standard Yee algorithm is performed on the 
white cells, while the dark gray cells are in the metal boundary and 
left out of the computations. (b) Approximating with the Dey-
Mittra embedded boundary method where the classical Yee method 
is used on all white cells, a Dey-Mittra embedded boundary method 
on the light gray cells, and the dark gray cells are in the metal 
boundary and left out of the computations. The X'd cells have only 
a fractional area in the domain and are assigned to be a part of the 
metal boundary. 

the edges of a cubic cell and magnetic field values are 
located at the centers of the faces of a cubic cell. The Yee 
method is second-order accurate in time and space and 
preserves divergence-free quantities. The original approach 

for modeling embedded boundaries proposed by Yee in Ref. 
[7] stairsteps the boundary as in Fig. (1a). Because this is 
only a first-order method, the development of higher-order 
methods has been a high priority. In 1997 Dey and Mittra 
presented an embedded boundary algorithm that with some 
restrictions yields an overall second-order method [8]. The 
Dey-Mittra algorithm is the boundary approach used in the 
VORPAL computational framework [11], and thus has been 
extensively used and tested in Refs. [12, 13]. 

 To describe the Dey-Mittra embedded boundary method, 
we consider the x-component of the equation for Faraday's 
Law in Maxwell's equation as Bx / t = ( E)x . The 

finite difference version of this equation is given by 

Bx;i, j+1/2,k+1/2
n+1/2 = Bx;i, j+1/2,k+1/2

n 1/2
+

t

Ayz

          (1) 

Ez;i, j+1,k+1/2
n lz + Ez;i, j ,k+1/2

n lz + Ey;i, j+1/2,k+1
n ly Ey;i, j+1/2,k

n ly( )  

where Bx,i, j+1/2,k+1/2
n+1/2  is the z-component of the magnetic field 

in cell (i, j,k)  at time t = (n +1 / 2) t . Additionally, ly  and 

lz  are the lengths of the cell edges on which Ey  and Ez  are 

located, and Ayz  is the cell area of the face centered at Bx . In 

Eq. (1) the electric field values are located on the edges of a 
face of a cell with the magnetic field value centered on the 
face. 

 The Dey-Mittra embedded boundary method redefines 
Eq. (1) when a metal boundary cuts through the cell face as 
in Fig. (2). A more accurate approach than stairstepping is 
needed to achieve a second-order method. The Dey-Mittra 
embedded boundary method sets the lengths ( ly  and lz ) and 

the areas ( Ayz ) in Eq. (1) to account for the cut-cell lengths 

and areas. See Fig. (2) for reference. The equivalent equation 
to Eq. (1) for the electric field update is advanced as with the 
Yee method but setting the electric field to zero when the 
corresponding edge is contained entirely within the metal 
boundary. 

 In Ref. [14], the authors describe the advantages and 
disadvantages of the Dey-Mittra embedded boundary 
algorithm. Of chief concern is the effect of the cut-cells on 
the maximum stable time step permitted. For the Yee 
algorithm, the time step for stability is limited by the CFL 
condition. As detailed in Ref. [14], the stability condition 
derived from the Gerschgorin Circle Theorem states that t  
is related to x , y , and z  by 

t
c

1
x2

+
1
y2

+
1
z2

           (2) 

where c is the speed-of-light. As a result, the time step is 
determined by the stability of the numerical method, not the 
desired accuracy. The effect of a cut-cell on stability is to 
further restrict the time step because the cell size is being 
reduced when a cell is cut. Again, this is detailed in Ref. [14] 
where the authors introduce a factor, fDM [0,1] , that acts as 
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a threshold on the size of a cut-cell. For example, setting 
fDM = 0.5  ensures that a cell with a local Courant evaluation 

that is less than 50% of the nominal value is excluded from 
computations. This implies the time step, t, has the new 
stability condition given by 

t 0.5 tCFL
0.5 c

1
x2

+
1
y2

+
1
z2

.          (3) 

 Other disadvantages such as a reduction in order of 
convergence from second-order to first-order due to the 
deletion of too many cut-cells is discussed in Ref. [14]. In 
conclusion, an approach that uses the same set of equations 
but does not suffer from the effect of cut-cells on time step 
size and convergence is needed. 

 

Fig. (2). A cut-cell in the Dey-Mittra embedded boundary algorithm 
is handled in the Faraday update (above) by adjusting the length (l) 
and area values (A) according to their fraction within the domain. 
The equivalent Ampere update for the electric field (not shown) is 
altered by setting the electric field value to zero for cells contained 
entirely within the metal boundary. 

2.2. Alternating Direction Implicit Method 

 The alternating direction implicit method is an implicit 
method that solves a set of simple, one-dimensional, 
tridiagonal systems as part of the time step update. There is 
no CFL condition that limits the time step and thus no effect 
of fractional cut-cells from the Dey-Mittra method. Hence, it 
is an ideal candidate for use with the Dey-Mittra embedded 
boundary method. Furthermore, recently in Ref. [15], the 
authors presented a new version of the ADI-FDTD method. 
We briefly summarize the method here and then describe the 
translation to handling the embedded boundary equations 
from the Dey-Mittra approach. 

 To present the ADI-FDTD method, we express the 
Maxwell's equations as 

B
t
= E             (4) 

E
t
= c2 B

J

0

,                         (5) 

and note that these equations can be written as 

W
t
= S + (P+M) W            (6) 

where W is the six-component field, (E,cB) , S is the source 

term, (
J

0

,0) , and the operators P and M are defined by 

P W = P

Ex

Ey

Ez

cBx

cBy

cBz

c

c Bz / y

c Bx / z

c By / x

Ey / z

Ez / x

Ex / y

  

and  

M W =M

Ex

Ey

Ez

cBx

cBy

cBz

c

c By / z

c Bz / x

c Bx / y

Ez / y

Ex / z

Ey / x

         (7) 

 As in Ref. [15] we use the mnemonic that P has a plus 
sign on the right, while the operator M has a minus sign. 

 The discrete representation of Eq. (7) is obtained by 
assuming the electric and magnetic fields are laid out as 
described previously. That is, the electric field values are 
located at the centers of cell edges (with index (i, j, k)) while 
the magnetic fields are located at the centers of cell faces 
(with index (i, j, k)). Therefore, the discrete representation of 
Eq. (7) is given by 

Ph Wh c

c lz (Bz,i, j ,k Bz,i, j 1,k ) / Ayz

c lx (Bx,i, j ,k Bx,i, j ,k 1 ) / Axz

c ly (By,i, j ,k By,i 1, j ,k ) / Axy

ly (Ey,i, j ,k+1 Ey,i, j ,k ) / Ayz

lz (Ez,i+1, j ,k Ez,i, j ,k ) / Axz

lx (Ex,i, j+1,k Ex,i, j ,k ) / Axy

  

and 

 Mh Wh c

c ly (By,i, j ,k By,i, j ,k 1 ) / Ayz

c lx (Bz,i, j ,k Bz,i 1, j ,k ) / Axz

c lx (Bx,i, j ,k Bx,i, j 1,k ) / Axy

lz (Ez,i, j+1,k Ez,i, j ,k ) / Ayz

lx (Ex,i, j ,k+1 Ex,i, j ,k ) / Axz

ly (Ey,i+1, j ,k Ey,i, j ,k ) / Axy

        (8) 

where Wh is the discrete representation of W and Ph and Mh 
are the finite difference versions of the continuum operators 
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P and M from above. Subsequently, the discrete Maxwell's 
equations without sources is given by 

Wh

t
= (Ph +Mh ) Wh .            (9) 

 In Ref. [15] the authors compared the various second-
order ADI operators that have been proposed by Zheng et al. 
in Ref. [2] and Lee and Fornberg in Ref. [1]. Instead of using 
these operators, the authors proposed an update operator that 
updates Wh according to 

Wh
n+1 = I +

t

2
Mh I

t

2
Ph

1

I +
t

2
Ph I

t

2
Mh Wh

n
+ tSn 1/2

       (10) 

with the property that h Bh = 0  and 
h Eh

n+1 h Eh
n = ( n+1 n ) / 0  to machine precision. We 

focus on this form for the ADI update of Maxwell's 
equations but note nothing here is specific to this form. 

 The extension of Eq. (10) to embedded boundaries is a 
direct application of the Dey-Mittra boundary algorithm 
presented in Sec. 2.1. For the Ampere update of E, it was 
discussed in Sec. 2.1 that the electric field is set to zero for 
edges contained entirely within the conductor; otherwise, the 
update step from the Yee algorithm was not changed for 
electric field values on edges partially in the conductor. In 
terms of Eq. (7), the electric field update for edges entirely in 
the conductor affects Ph and Mh by setting the length 
coefficients on the B x,y,z{ },i, j ,k  coefficients to be zero such 

that, in Eq. (10), each of the four operators becomes the 
identity operator, I, for those values. Thus, for all electric 
field values on edges in the conductor, Eq. (10) becomes 

Wh
n+1 =Wh

n  since we have no sources in the conductor. 

 For the Faraday update, we have to adjust the coefficients 
on the E x,y,z{ },i, j ,k  terms in Eq. (10) according to the fraction 

of the corresponding edge within the domain as was done in 
Eq. (1). Similarly, we have to adjust the areas for the faces 
according to the fraction within the domain. See Fig. (2) for 
reference. Thus, for magnetic field values on faces that are 
partially in the conductor, the contribution to Ph and Mh in 
Eq. (7) is altered by the fractions of the lengths of each edge 
and the fraction of the area of each face associated with the 
update. Once these changes are made to Ph and Mh the ADI 
update proceeds accordingly. As we will see in the next 
section there is no effect on the stability of the method by 
incorporating the Dey-Mittra boundary contributions to the 
update step. Furthermore, the fraction of the edges and  areas  
within the conductor has no effect on the time step due to the 
implicit nature of the ADI method. 

3. RESULTS 

3.1. Background 

 To establish the stability and accuracy of the ADI-FDTD 
method that employs the Dey-Mittra embedded boundary 
approximation, we consider the extraction of frequencies 
from the well-studied 2D Palevsky-Bekefi A6 magnetron 
device [9] pictured in Fig. (3). In particular, we use the 
frequency extraction method presented in Refs. [10, 12] to 
determine the frequencies between 1.0 and 8.0 GHz. 
Previous work [16] has found the frequencies between 1.0 
and 8.0 GHz to be those given in Table 1. 

 We consider the accuracy of the extracted frequencies as 
it depends on spatial resolution and temporal resolution. We 
apply the frequency extraction algorithm to simulations 
performed with the ADI-FDTD method presented and also 
for reference we use the EXP-FDTD method. We show for 
the A6 magnetron that the factor, fDM , can be made 

arbitrarily small ensuring that all cells are kept in the 
simulation, while maintaining stability at time steps beyond 
the CFL condition. 

 

Fig. (3). The 2D Palevsky-Bekefi A6 magnetron device for which the 
ADI method was used for extracting frequencies with the broadly-
filtered diagonalization method of Ref. [10]. Note that the magnetron 
is 0.08 m by 0.08 m while the domain is 0.09 m by 0.09 m. 

 Before presenting any results, we briefly describe the 
method presented in Ref. [10, 12] to give the reader a 
context for the simulations. The frequency extraction method 
has two phases. The first phase is the “ring-up” phase during 
which a Gaussian-modulated signal is applied to the 
Maxwell's equations (through a current source) such that 
only the frequencies between 1.0 and 8.0 GHz are excited. 

Table 1. Frequencies (in GHz) of the 2D Palevsky-Bekefi A6 Magnetron Between 1.0 and 8.0 GHz as Presented in Ref. [16] 

 

 f0   f1   f2   f3   f4   f5   f6  

 1.3863006   2.1580965   2.3580981   4.6399716   5.0347274   6.2597383   7.69322776  
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The current, J(x, y, z, t) , is given by J(x, y, z, t) = f (t)Ĵ(x, y, z)  

where 

f (t) =
2
sin( 1(t T / 2))

t T / 2

sin( 2 (t T / 2))

t T / 2

2 (t T /2)2 /2exp 0 t T ,

0. otherwise

  (11) 

where 1 = 2.0e9  and 2 =16.0e9 . Ĵ(x, y, z)  has a 

pattern that encourages excitation of the desired modes in the 
frequency range [ 1, 2 ] . The parameter  is determined 

by the separation of the frequencies in [ 1, 2 ]  from the 

next nearest frequency value. If ˆ < 1  is the nearest 

frequency, then 

<
| 1

ˆ |

5.68
 

and 

T >
11.4

 

ensures that ˆ  and all other outside modes are suppressed 
by at least O(1e -7). The second phase of the frequency 
extraction approach is where the fields are sampled and 
small scale linear algebra is performed to determine the 
frequencies of the modes found between 1.0 and 8.0 GHz. At 
this time, the corresponding mode patterns can also be 
constructed during the determination of frequencies. 
Additional details of the techniques are found in Ref. [10]. 

3.2. Frequency Convergence Results 

 The number of grid points considered is defined by 
Nx = Ny = 50* k  where k =1,2, 4,8  yielding resolutions 

from 0.018 m to 0.00225 m. The factor, fDM , is chosen to be 

0.1, 0.3, and 0.5 which defines the time step necessary for 
stability. We compare computed frequency values for the 
EXP-FDTD method with these values and for the ADI-
FDTD method. At each fDM  value, a certain number of cut-

cells are discarded due to their size relative to the size of the 
typical cell of the domain. See Table 2 for the percentage of 
cells thrown away and the corresponding time step of 
various grid resolutions and fDM  values. 

 

 

 The important case is when fDM 0  so that no cut-cells 

are discarded as would be required by the EXP-FDTD 
method. Using such a small fDM  for the EXP-FDTD method 

would imply that the time step would be effectively zero. In 
Fig. (4) we consider two cases (last two in legend) where 
fDM 0 . One of these uses a time step that is equivalent to 

setting fDM 0.5  ( ADI-0.5) and the other uses a time step 

that is 2x the CFL limit (ADI-2.0). In Table 2 we state the 
time steps generated by these methods and the corresponding 
percentage of cells thrown out with fDM 0 . The 

convergence of the first four modes is plotted in Fig. (4). The 
last three modes exhibited similar convergence behavior. We 
have also included in Fig. (5a) color contour plot of the z-
component of the magnetic field for the first four modes 
computed with ADI-0.5. 

4. DISCUSSION 

4.1. Stability 

 As is illustrated in Fig. (4), we maintain stability and can 
extract accurate frequencies at 2x the CFL limit. To further 
illustrate stability, we have performed simulations with the 
ADI-FDTD method from 1x to 8x the CFL limit. Fig. (6) 
shows the results of convergence after running the 
simulation at these time steps beyond the CFL limit. All 
simulations are stable and permit extraction of frequencies. 
In this figure, we have also included the convergence for the 
EXP-FDTD method at fDM = 0.1 . These results are the most 

accurate due to the highest temporal resolution. What is 
clearly observed from the results in Fig. (6) is that the time 
step with the ADI-FDTD method can be chosen for accuracy 
considerations instead of stability considerations. Performing 
simulations with the EXP-FDTD method at 1x to 8x the CFL 
limit would lead to unstable calculations. Thus, the ADI-
FDTD method yields stable simulations well beyond the 
CFL limit for a geometry with a curved domain as in Fig. 
(3). 

4.2. Accuracy 

 As has been noted previously, the focus of this work is 
not on the accuracy of the frequency extraction approach 
with the ADI-FDTD approach. The accuracy is determined 
by both the discretization approach and the spatial          
and temporal resolution. This has been studied in Ref.      
[17] where the authors use the EXP-FDTD method to run the  
 

Table 2. Time Step in ps for Each Nx and fDM Value (left) and the Percentage of cut-Cells Discarded from the Simulation Given the 

fDM Value (Right) Note that for CFL2 the Time Stepping is Performed via the ADI-FDTD Method so we can Include All 

Cells in the Simulation since we are Not Limited by the CFL Condition 

 

Nx   fDM = 0.1   fDM = 0.3  fDM = 0.5  fDM = 2.0  

50  0.41607/0.0%   1.24820/5.7%   2.08033/11%   6.64498/0.0%  

100   0.20803 / 0.0%   0.62410 / 4.0%   1.04017 / 11%   3.94493 / 0.0%  

200   0.10402 / 0.5%   0.31205 / 4.5%   0.52008 / 14%   2.08199 / 0.0%  

400   0.05201 / 0.6%   0.15602 / 4.8%   0.26004 / 12%   1.56174 / 0.0%  
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(a) 1.386300E+09 Hz 

 

(b) 2.1580965E+09 Hz 

 

(c) 2.3580981E+09 Hz 

 

(d) 4.6399716E+09 Hz 

 

Fig. (4). Convergence of magnetron frequencies for an explicit 
FDTD method and an alternating direction implicit FDTD methods 
with Dey-Mittra cut-cells [8]. The frequency extraction approach of 
Werner and Cary in Ref. [10] is used to obtain the frequencies from 
the time domain simulations. The values 0.1, 0.3, and 0.5 refer to 
the fDM values discussed previously that are used to determine the 
time step and the percentage of cells kept in the simulation (see 
Table 2). The final two in the legend in bold have time steps 
determined by fDM but keep all of the cells in the simulation. This is 
only possible because of the implicit nature of the time stepping. 

(a) 1.386300E+09 Hz 

(b) 2.1580965E+09 Hz 

 

(c) 2.3580981E+09 Hz 

 

(d) 4.6399716E+09 Hz 

 

Fig. (5). Color contour plots of Bz for the first four modes 
calculated using the frequency extraction method with simulations 
performed by the ADI-FDTD method. Results illustrate our ability 
to use ADI-FDTD simulations to also reconstruct spatial mode 
patterns. 
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simulations with fDM = 0.25  and fDM = 0.5 . In Fig. (4) we 

observe that the EXP-FDTD approach and the ADI-FDTD 
approach both have comparable accuracy at the same time 
steps. Furthermore, the example given by ADI-0.5 with no 
cells discarded shows comparable accuracy to ADI-0.3 with 
cells thrown out according to fDM 0 . This tells us that we 

can obtain comparable accuracy with nearly twice the time 
step size by using ADI-FDTD and not discarding any cells. 
Finally, we note that with the ADI method we can go beyond 
the CFL time step. This example denoted as ADI-0.5 shows 
that the accuracy is poorer because of the lower resolution in 
temporal space. Furthermore, with Fig. (6), we see that 
reducing the time step size improves the accuracy of the 
computations. 

 

Fig. (6). Convergence of the ADI-FDTD method at various 
temporal resolutions, from 1x the CFL limit to 8x the CFL limit. 
Also included on this convergence plot is the convergence for EXP-
FDTD at fDM = 0.1  and the exact value, as obtained from [9], 

plotted as a flat line at 1.3836 GHz. The ADI-FDTD method 
remains stable at all time steps beyond the CFL limit and only 
exhibits lower accuracy than at time steps below the CFL limit. 

5. CONCLUSION 

 We have presented an implementation of the ADI-FDTD 
method combined with the Dey-Mittra embedded boundary 
method. This approach can model the curved domains 
associated with complex accelerator structures and at time 
step sizes beyond the CFL limit. It depends on simple, one-
dimensional, tridiagonal solves instead of the large system 
solves associated with implicit methods like the Crank-
Nicholson method. The one-dimensional solves can be 
efficiently completed using the Thomas algorithm [18]. 

 In three-dimensions, the method can be directly applied 
without any changes. Clearly, for large three-dimensional 
problems, the method must be extended to a large scale 
parallel computing platform to handle the larger number of 
unknowns. An efficient implementation thus depends on the 

efficient solution of a number of tridiagonal systems at each 
time step. We leave this to future work. 
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