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Abstract: Complex materials are of increasing interest in Finite-Difference Time-Domain modeling. For example, when 

the particle density becomes large, collisional fluid models of plasmas are an attractive alternative to particle in cell 

methods. Further, frequency dispersive meta-materials are of increasing interest. Thus, Finite-Difference Time-Domain 

(FDTD) models are derived for magnetized plasmas and for the Lorentz and Drude material models. Previous models of 

these types of materials make assumptions that may unnecessarily restrict the simulation time step. By considering the 

solution of the differential equations on the interval of a time step, these assumptions are avoided. Studies show that the 

resulting magnetized plasma model is numerically stable when the FDTD Courant condition and the Nyquist sampling 

theorem for the plasma and cyclotron frequencies are obeyed. Waves propagating in the modeled plasma exhibit the 

correct dispersion relations. Studies also show the Lorentz and Drude material models to be stable up to the FDTD 

Courant limit and to exhibit the correct dispersion relations. 

Keywords: FDTD, plasma, lorentz material, drude material. 

1. INTRODUCTION 

 The finite-difference time-domain FDTD method [1] 
successfully models a variety of electromagnetic phenomena 
in a variety of materials. One phenomenon of interest is the 
propagation of electromagnetic waves in a magnetized 
plasma, which behaves as a gyro-tropic medium. While other 
authors also consider magnetized plasmas [2-4], the model 
considered here (1) models the plasma currents at the Yee 
FDTD electric field locations, (2) avoids a matrix inversion, 
and (3) does not restrict the time step to a value less than the 
Nyquist sampling theorem for the cyclotron frequency. Also 
of interest are frequency dispersive meta-materials, which 
are modeled as Lorentz or Drude materials. Similar to 
magnetized plasmas, other authors also consider Lorentz and 
Drude materials [5, 6]. However, the formulation considered 
here avoids assumptions that unnecessarily may limit the 
FDTD time step. 

2. FORMULATION 

2.1. Magnetized Plasma 

 The magnetized plasma formulation is based on the 
Lorentz force law for charged particles, given by 

v
t
+ v =

q

m
E+ v B( )            (1) 

where v  is the average velocity of the particle distribution, 

 is the collision frequency, q  is charge, m  is mass, E  is 

the electric field, and B  is the magnetic field. Note that 

plasmas of interest here consist of positive ions that are 

assumed infinitely massive and electrons; thus q  and m    

are the electron charge and mass, respectively. The magnetic  
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field consists of a static component B0  and an 

electrodynamic component Bd . Thus, Eq. (1) can be written 

v
t
+ v =

q

m
E+ v Bd + v B0( )           (2) 

from the solution of Maxwell's equations, E cBd  where c  

is the speed of light, and for problems of interest, the average 

particle velocity v << c ; thus, E >> vBd , and the second 

term on the right hand side of Eq. (2) is neglected, resulting 

in 

v
t
+ v =

q

m
E+ v B0( )            (3) 

Eq. (3) is multiplied by the plasma number density N  times 

the charge q , and the definitions for current density 

( J = Nqv ), plasma frequency ( p
2 = Nq2 / (m 0 ) ), and 

cyclotron frequency ( c = qB0 /m ) are applied, giving 

J
t
+ J = 0 p

2E c J            (4) 

note that in Eqs. (1)-(4), the fluid advection term is 
neglected. This limits the use of the model to cases where the 
fluid flow is negligible during the time of the simulation. 

 Eq. (4) is really three coupled differential equations. The 

equations can be decoupled and a tensor permittivity derived 

[7], but this leads to a third order differential equation that is 

more difficult to discretize. The coupled equations on the 

staggered Yee FDTD grid can also lead to a matrix inversion 

for the solution, which nearly all previous works seek to 

avoid due to its high numerical cost. In [3], a matrix 

inversion is avoided by placing all components of J  in the 

center of a cell, while in [4], it is avoided by solving Eq. (4), 

then dealing with the staggered grid. However, the solution 
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in [4] restricts the simulation time step ( t ) such that 

c t <<1  ( c =| c | ). 

 To remove the time step restriction imposed by the 

solution in [4], Eq. (4) is solved on the interval 

[(n 0.5) t , (n + 0.5) t ]  where n  is a positive integer by 

assuming a constant value of E = En = E(t = n t ) . The 

solution takes the form 

J =C0 +C1e
[t (n 0.5) t ] +C2e

[t (n 0.5) t ] cos{ c[t (n 0.5) t ]}  

+C3e
[t (n 0.5) t ] sin{ c[t (n 0.5) t ]}          (5) 

substitution of Eq. (5) into Eq. (4) and applying the initial 

condition J[t = (n 0.5) t ] = J
n 0.5

 allows C0 --C3  to be 

evaluated, giving 

Jn+0.5 =
Jn 0.5 cos( c t )+

ˆ
c J

n 0.5 ˆ
c 1 cos( c t )[ ]

ˆ
c Jn 0.5 sin( c t )

e t  

+
0 p

2

c
2
+

2 1 cos( c t )e t + c sin( c t )e t{ }En
 

0 p
2

c
2
+

2 c 1 cos( c t )e t sin( c t )e t{ } ˆ
c En{ }  

+
0 p

2

c
2
+

2

1 e t

c
2 1 cos( c t )[ ]e t

c sin( c t )e t

ˆ
c E

n{ } ˆ c      (6) 

where ˆ c  is the unit vector in the direction of c . Note that 

applying L'Hospital's rule reduces Eq. (6) to well defined 

limits when c = 0  and/or = 0 . When components of E  

and J  from other spatial locations on the staggered grid are 

needed in Eq. (6), averages of the four surrounding 

components (second order accurate) are used. This requires 

some storing and tracking of which J  components are 

already updated, but does not require a matrix inversion, 

which is numerically intractable for large computations. 

Note that in the staggered FDTD grid [1] there are four 

surrounding components to average in either 2-D or 3-D 

simulations. Further note that the update equations in [4] can 

be found by using 1 and 2 term series approximations for 

sin( c t )  and cos( c t ) , which require that c t <<1  to 

ensure sin( c t ) c t  and cos( c t ) 1 c
2

t
2 / 2 . 

Using the exact value of sin( c t )  and cos( c t )  in the 

current derivation removes the c t <<1  restriction. 

 The standard stability analysis by substituting solutions 
of the form 

Gne
i( Ikx x+Jky y+Kkz z )            (7) 

is undertaken to analyze the stability of Eq. (6) together with 

the standard Yee FDTD discretizations of Ampere's Law and 

Faraday's Law. The result is a 9 9  matrix whose 

determinant is a ninth degree polynomial in G ; the roots of 

that polynomial must be less than or equal to one in 

magnitude for stability. Unfortunately, even with modern 

computer techniques, expressions found for the roots are too 

complex to gain any insight. However, the behavior of the 

roots can be studied numerically for specific scenarios. For 

example, specific values of c , p , and the spatial 

discretization parameters ( x , y , z ) can be substituted into 

the equations, and then the roots can be found for different 

time steps and wave numbers on the grid. Such studies find 

that the system is stable up to the usual FDTD Courant limit 

t

1

c

1

x
2 +

1

y
2 +

1

z
2

1

          (8) 

( c  is the speed of light) when p t <  and c t < . 

Cases where p t >  or c t >  violate the Nyquist 

sampling theorem and lead to aliasing of p  and/or c . 

Studies show that this can but does not always lead to 

numerical instability. However, it is sure to lead to poor 

numerical accuracy even if it does not lead to numerical 

instability. 

2.2. Meta-Materials 

 The Lorentz and Drude material models can be used to 

match the frequency response of many meta-materials of 

interest. For the Lorentz material model ( e i t
 time 

dependence suppressed), 

( ) = 0 r +
ep
2

e0
2 i e

2           (9) 

and 

μ( ) = μ0 μr +
mp
2

m0
2 i m

2         (10) 

where ep  and mp  are the plasma frequencies, e0  and 

m0  are the resonance frequencies, and e  and m  are the 

absorption parameters [5]. The Drude model is a special case 

of the Lorentz model when e0 = 0  and/or m0 = 0 . Eqs. 

(9) and (10) are sometimes written [6] 

( ) = e0
2 ( s )

2
+ 2i e e0

2         (11) 

and 

μ( ) = μ m0
2 (μs μ )

2
+ 2i m m0

2         (12) 

 The two forms can be shown to be equivalent, and the 

form in Eqs. (9) and (10) is preferred because it more 

conveniently reduces to the Drude model. Some meta-

materials exhibit anisotropic properties with diagonal 

permittivity and permeability tensors. Modeling such is a 

simple extension to the model presented here (simply specify 

different parameters for the xx , yy , and zz  components of 

the tensor and apply the correct parameters to the component 
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field updates in the code), but this capability is not yet coded 

and tested. 

 Because Eqs. (9) and (10) are identical in form, the 

electric field derivation only is presented. The magnetic field 

derivation is identical. To find the electric field FDTD 

update, Eq. (9) is substituted into D = E  and transformed 

into a time-domain differential equation 

2D
t 2

+ e

D
t
+ e0

2 D = 0 r

2E
t 2

+ e

E
t
+ ( e0

2
+ ep

2 / r )E  (13) 

similar to the magnetized plasma derivation above, to avoid 

any unnecessary time step restriction, the solution for E  as a 

function of D  is computed on the interval 

t = [(n 1) t , (n +1) t ]  where t  is the simulation time 

step and n  is a positive integer. Note that D  is advanced in 

the simulation using Ampere's law. On 

t = [(n 1) t , (n +1) t ] , 

D 0.5D2a
2
+D1a +Dn

 (14) 

where = t n t , Dn =D(t = n t ) ,  

D2a = (D
n+1 2Dn

+Dn 1 ) / t
2

, 

and 

D1a = (D
n+1 Dn 1 ) / (2 t ) . Thus, the form of the solution for 

E  is 

E = e e /2 C1 cos +C2 sin( ) +C3
2
+C4 +C5       (15) 

where = e0
2
+ ep

2 / r e
2 / 4  and C1 --C5  are constants 

to be determined. These constants are determined by 

substituting Eqs. (14) and (15) into Eq. (13) and using the 

initial conditions E(t = (n 1) t ) = E
n 1

 and 

E(t = n t ) = E
n

, resulting in the following update 

expression for En+1
: 

En+1 = 2e e t /2 cos tE
n e e tEn 1

 

+
1

0 r

e0
2

e0
2
+ ep

2 / r

Dn+1 2e e t /2 cos tD
n
+ e e tDn 1

 

+
e ep

2 / r

( e0
2
+ ep

2 / r )
2

D1a 1 2e e t /2 cos t + e
e t( )

+D2a t 1 e e t( )
 

+
ep
2

r

e0
2
+ ep

2 / r e
2

( e0
2
+ ep

2 / r )
3 D2a 1 2e e t /2 cos t + e

e t   (16) 

 Note that Taylor series approximations for the cosine and 

exponential terms can be used in the update expression 

above. However, doing so can impose time step restrictions 

when ep , e0 , or e  are large. This update expression is 

derived to avoid such restrictions. Note, however, that to 

satisfy the Nyquist sampling theorem, 

t = t e0
2
+ ep

2 / r e
2 / 4         (17) 

must be less than . The performance penalty for 

computing the cosine and exponential terms on modern 

computers is not large. Further, because these terms are not 

likely to change during the simulation, the performance 

penalty can be reduced by precomputation. 

 Based on the above derivation, the procedure for 
advancing the fields in a Lorentz or Drude material is 

(1) compute Dn+1 = f (Hn+0.5 ,Dn )  using the discretized 

Ampere's law, 

(2) compute En+1 = f (Dn+1,Dn ,Dn 1,En ,En 1 )  using Eq. 

((16)), 

(3) compute Bn+1.5 = f (En+1,Bn+0.5 )  using the discretized 

Faraday's law, 

(4) compute Hn+1.5 = f (Bn+1.5 ,Bn+0.5 ,Bn 0.5 ,Hn+0.5 ,Hn 0.5 )  

using the magnetic analog to Eq. (16), 

(5) increment n and repeat. 

 Similar to the magnetized plasma, it is difficult to gain 

insight from a symbolic stability analysis. However, specific 

cases can be proved stable, and experience shows that the 

numerical stability limit is not less than the free space FDTD 

Courant condition. Note that ``backwards wave'' materials 

where μ, < 0  for some range of frequencies can be 

successfully modeled with the Lorentz and Drude materials. 

3. NUMERICAL RESULTS 

 The magnetized plasma model is implemented and tested 

in the Improved Concurrent Electromagnetic Particle-In-Cell 

(ICEPIC) code. For the magnetized plasma simulations 

discussed below, the cubic cells have a side length of 1.07 

mm (40 cells per wavelength at 7 GHz), and the time step is 

2.04 ps (99% of the FDTD Courant limit). The 

computational domain is surrounded by perfectly matched 

layer (PML) absorbing boundary conditions. Waves in a 

magnetized plasma propagating parallel to the magnetic field 

decompose into right-hand circular polarized and left-hand 

circular polarized waves that propagate at different speeds, 

leading to the phenomenon known as Faraday rotation. 

Waves propagating parallel to the magnetic field are 

simulated in a plasma with = 0 , fp =1  GHz 

( p = 6.28 109 /s), and fc = 5  GHz ( c = 3.14 1010 /s) at 

frequencies from 0.1  GHz to 7.0  GHz, and the wave 

number is computed at each frequency. The resulting 

dispersion diagrams are compared with analytically 

computed diagrams in Fig. (1). 

 The percent error in the computed wave number is also 
plotted in Fig. (1). In most cases, the error is less than 1 
percent. The error appears to increase when the wave 
number is small; however, the error increase is due to the 
finite resolution of the Fourier transform used to compute the 
wave number from the simulation results rather than the 
result of the model breaking down ( k / k  increases when k  
is small; k  is the resolution of the Fourier transform and k  
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is the wave number). Waves propagating perpendicular to 
the static magnetic field are linearly polarized, and the 
dispersion diagram is a function of whether the electric field 
is polarized parallel or perpendicular to the static magnetic 
field. 

 Waves propagating perpendicular to the magnetic field 
are simulated in the same plasma as above, and the resulting 
dispersion diagrams are shown in Fig. (2). 

 Similar to Fig. (1), the percent error in the computed 
wave number is also shown in Fig. (2). Also similar to Fig. 
(1), the error increase when the wave number is small is due 
to the finite resolution of the Fourier transform used to 
compute the wave number rather than due to a breakdown if 
the model. The reflection coefficient from a 10 cm thick 
plasma layer is also computed and compared with analytic 
results. With the possible exception of very low frequency, 
the results shown in Figs. (3, 4) show excellent agreement. 

The percent error in the reflection coefficient is not shown 
because the reflection nulls dominate the error rather than 
phenomena related to the computational algorithm; however, 
away from a reflection null, the error is generally less than 2 
percent. Other tests of the algorithm (results not shown) 
include computing the dispersion diagram for a non-
magnetized plasma (result looks similar to Fig. (2a) as it 
should) and running a simulation for several hundred 
thousand time steps to ensure long time numerical stability 
(no instability observed). 

 The Lorentz/Drude material model is also implemented 

and tested in ICEPIC. For the simulations below, the size of 

the FDTD cells is 0.2 mm (100 cells per wavelength at 15 

GHz), and the time step is 0.381 ps (99% of the FDTD 

Courant limit). The computational domain is surrounded by 

PML absorbing boundary conditions. The test material has 

   (a) Right-Hand Circular Polarization             (b) Left-Hand Circular Polarization 

 

Fig. (1). (a, b) Dispersion diagrams of waves propagating parallel to the static magnetic field in a plasma with = 0 , fp =1  GHz 

( p = 6.28 109 /s), and fc = 5  GHz ( c = 3.14 1010 /s). 

          (a) Parallel Polarization     (b) Perpendicular Polarization 

 

Fig. (2). (a, b) Dispersion diagrams of waves propagating perpendicular to the static magnetic field in a plasma with = 0 , fp =1  GHz 

( p = 6.28 109 /s), and fc = 5  GHz ( c = 3.14 1010 /s). 
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μr = r =1 , ep = mp = 30 2  GHz, e0 = m0 = 2 5  

MHz, and e = m = 2 5  MHz. This material is 

characterized by μ / μ0 = / 0 1  at f =15  GHz. The 

material is highly dispersive, as shown in Fig. (5) where it is 

also seen that the simulated results agree very closely with 

the analytic results. The percent error is less than 1 percent 

until the wave number becomes small; as discussed above, 

when the wave number is small, the resolution of the Fourier 

transform used to compute the wave number from the 

simulation results limits the accuracy rather than a 

breakdown in the algorithm. Note in Fig. (5) that (1) the 

wave number decreases with increasing frequency, in 

contrast to the characteristics of free space or simple 

dielectric materials, and (2) the parameters  of  the  simulated  

 

material are such that the imaginary part of the wave number 

is small and thus not shown. Another characteristic of this 

material is very slow wave propagation. Fig. (6) shows the 

analytic and simulated group velocities in the meta material, 

which again are in agreement one another (less than 2 

percent error), and are significantly slower than the free 

space speed of light ( c ). The reflection coefficient from a 

transition from free space to this meta-material is small; thus, 

a plot is uninteresting. A plot of the transmission coefficient 

through a 10 cm thick material layer (Fig. 7) shows that the 

simulation reflects increasing transmission with frequency, 

indicating that the loss becomes more important at lower 

frequency. Note that the percent error in Fig. (7) is below 0.5 

percent except at low frequency, where it remains below 2 

percent. 

 

     (a) Right-Hand Circular Polarization               (b) Left-Hand Circular Polarization 

 

Fig. (3). (a, b) Reflection coefficient from a 10 cm thick plasma layer with propagation parallel to the static magnetic field. The plasma layer 

is characterized by = 0 , fp =1  GHz ( p = 6.28 109 /s), and fc = 5  GHz ( c = 3.14 1010 /s). 

            (a) Parallel Polarization     (b) Perpendicular Polarization 

 

Fig. (4). (a, b)  Reflection coefficient from a 10 cm thick plasma layer with propagation perpendicular to the static magnetic field. The 

plasma layer is characterized by = 0 , fp =1  GHz ( p = 6.28 109 /s), and fc = 5  GHz ( c = 3.14 1010 /s). 
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Fig. (5). Dispersion diagram of a meta-material with μr = r =1 , 

ep = mp = 30 2  GHz, e0 = m0 = 2 5  MHz, and 

e = m = 2 5  MHz. 

 

Fig. (6). Wave propagation speed (group velocity, vg ) in a meta-

material with μr = r =1 , ep = mp = 30 2  GHz, 

e0 = m0 = 2 5  MHz, and e = m = 2 5  MHz.

Fig. (7). Transmission through a 10 cm thick layer of meta-material 

with μr = r =1 , ep = mp = 30 2  GHz, e0 = m0 = 2 5  

MHz, and e = m = 2 5  MHz. 

4. CONCLUSION 

 FDTD models are derived for a magnetized plasma and 
Lorentz/Drude materials. The magnetized plasma model (1) 
models the plasma currents at the Yee FDTD electric field 
locations, (2) avoids a matrix inversion, and (3) does not 
restrict the time step to a value less than the Nyquist 
sampling theorem for the cyclotron frequency. The 

Lorentz/Drude material model also avoids restricting the 
time step to a value less than the Nyquist sampling theorem 
for the plasma or resonance frequencies in the model. 
Numerical tests show that the models captures the relevant 
physics of electromagnetic waves in a magnetized plasmas 
and meta-materials modeled as Lorentz materials. 
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