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Abstract: An experimental procedure to evaluate the dynamic yield strength of solids based on measuring the growth of 

the Richtmyer-Meshkov instability is proposed. To induce the Richtmyer-Meshkov instability in solids a shock is needed, 

so this technique is complementary to the one based on the Rayleigh-Taylor instability that is achieved by means of an 

isentropic compression. We have presented an analytical model elsewhere, validated against extensive finite element 

simulations, that describes the evolution of the Richtmyer-Meshkov instability in elastoplastic solids. The model shows 

that after reaching a maximum value, the time evolution of the perturbation at the solid interface remains oscillating. The 

maximum perturbation amplitude depends essentially on the yield strength of the material. The proposed technique needs 

only one experimental measurement that is related, through the scaling law given by the analytical model, to the yield 

strength of the material. 

1. INTRODUCTION 

 The strength behaviour of materials under extreme 
conditions of pressure, strain rate and temperature is of great 
importance for many technological applications as well as 
for basic science. Amongst the first ones we can find, for 
instance, armor design, performance of debris for spacecraft, 
hypervelocity impact problems including high-velocity 
machining of materials [1, 2] or laser shock processing for 
improving fatigue and wear resistance of metals [3]. Besides, 
knowledge of this behaviour is of interest to understand 
many problems of planetary sciences as, for example, the 
Earth mantle convection and the modelling of planet 
interiors [4-7]. 

 The origin of this problem can be found in the 
experimental procedure originally proposed by G. I. Taylor 
to determine the dynamic yield point of metals by impacting 
cylinders on a rigid boundary [8] and experimentally 
implemented by Whiffin [9]. Using a rigid plastic model of 
material behaviour, Taylor developed an approximate 
formula that related the profile of the rod after impact with 
the dynamic yield point of the rod. Some years later, M. L. 
Wilkins and M. W. Guinan treated this same problem by 
means of computer simulations [10]. Since then, an 
important effort has been done to obtain these material 
properties, in particular, the shear stress that a material can 
sustain above the Hugoniot elastic limit (HEL). The HEL or 
maximum stress for one-dimensional elastic wave 
propagation in plate geometries [11] is now easily measured 
using stress gauges or optical diagnostics [1]. Following this 
reference, the main experimental techniques for strength  
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measurement at high pressures proposed during these years 
are: comparison to hydrostatic response, lateral stress 
gauges, pressure-shear loading, X-ray diffraction, strength 
measurements in diamond anvil cells, the self-consistent 
method and the measurement of the growth of Rayleigh-
Taylor instability (RTI). 

 We focus our attention in the last technique, the 
determination of the dynamic yield strength by measuring 
the growth of the RTI. This method is based on the 
pioneering work by Barnes et al. [12, 13] who measured the 
growth of a sinusoidal perturbation in the surface of a flat 
plate smoothly accelerated by expanding detonation products 
and correlated this growth with the shear strength of the 
material. Nowadays, this technique is playing an increase 
role in the experimental evaluation of the yield strength and 
it has been developed by accelerating the solid by means of 
laser facilities [14-19]. Since the hydrodynamic instabilities 
in solids impose limitations in, for example, the 
implementation of the inertial confinement fusion and other 
important technological processes, an intense research 
activity has been developed in this field directed to 
understand and avoid such instabilities. However, as pointed 
out by Mikhailov it is possible to change the point of view 
and to consider the instabilities in solid media not only an 
object of investigation but also an investigation tool [20]. 

 We propose an experimental technique to determine the 
dynamic yield strength based on other hydrodynamic 
instability, namely, the Richtmyer-Meshkov instability 
(RMI) that will occur when a shock is launched into a 
material sample from the free surface. For this reason we 
have performed extensive numerical simulations by means 
of the finite element method and we have also developed an 
analytical model that captures the main physics of the RMI 
in elastoplastic solids [21]. With the obtained conclusions we 
propose an experiment that may allow obtaining the dynamic 
yield strength. The two methods based on hydrodynamic 
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instabilities are complementary because they explore two 
different regimes. To use the RTI based technique the 
sample should be accelerated in an isentropic manner. 
Because this is, in practise, impossible a great effort is done 
in achieving quasi-isentropic compression [16-18]. This kind 
of compression allows reaching very large pressures before 
melting the sample but it needs the use of very big facilities 
due to de fact that a considerable amount of the delivery 
energy is used in achieve a smooth acceleration of the media. 
On the other hand, to use the RMI based technique, a shock 
is needed. In this situation, almost all of the energy delivered 
by the device can be transferred to the sample and, in 
consequence, medium-scale facilities can be employed. 
However, the pressure that can be achieved by a shock 
before melting is much lower than in an isentropic 
compression [22]. 

 The paper is organized as follows: In section 2 a 
summary of the numerical model used in the simulations is 
given. Section 3 describes the shock propagation in solids 
when they are modelled by means of an equation of state for 
the volumetric part and a perfectly elastoplastic model for 
the deviatoric part of the stress tensor. Section 4 has two 
parts; in the first one, a description of the Richtmyer-
Meshkov instability in solids is given while in the second 
one the proposed experimental technique is described. 
Finally, some conclusions are outlined in section 5. 

2. NUMERICAL SIMULATIONS OF SOLIDS UNDER 
HIGH COMPRESSION 

 In this section we describe the numerical method we have 
used to perform the simulations of solids under high 
compression. The numerical calculations have been 
performed with the explicit version of the ABAQUS finite 
element code which is suitable for modelling fast transient 
phenomena [23]. The explicit version is based on a central 
difference scheme for the time integration of the equations of 
motion of the body. The algorithm has second-order 
accuracy and is conditionally stable. This means that the 
time step size is fixed according to stability requirements 
resulting from the Courant criteria. 

 To model solids under high compressions the behaviour 
of the material is composed of a volumetric and a deviatoric 
part [1]. The hydrostatic behaviour is governed by an 
equation of state (EOS) while the deviatoric behaviour is 
governed by a constitutive law, assuming that these two 
responses are uncoupled. 

 The material hydrostatic behaviour is defined by the Mie-
Grüneisen equation of state as, for example, in reference 
[24]:  

  
P P

h
= (E E

h
)              (1) 

where P and E are the pressure and specific internal energy 
and Ph and Eh are the Hugoniot pressure and Hugoniot 
specific internal energy, respectively. The latter are functions 
of the material density  only. Also  is the Grüneisen rate 
defined as: 

 

=
0

0              (2) 

where 0 is a constant characteristic of the material and 0  

is the initial density. 

 On the other hand, the momentum and energy 
conservation equations are:  

  

v

t
= P + S             (3) 

    

E

t
= P

1 P

t
+ S : e             (4) 

where v is the velocity, 
  e  is the rate of change of the 

deviatoric strain tensor and  S  is the deviatoric stress tensor. 

 The equation of state and the equation of energy 
conservation are coupled through the pressure and the 
internal energy. The Hugoniot equations relate the pressure, 
internal energy and density behind the shock waves to the 
corresponding quantities in front of them in terms of the 
shock velocity us and the particle velocity up. The Hugoniots 
of many materials can be adequately represented by the 
following linear relationship [25]:  

u = c0 + sup              (5) 

where c0 and s are fitting parameters that depend on the 
considered material and are experimentally measured. 

 The deviatoric part of the material is modelled by using a 
perfectly elastoplastic model (i.e. the yielding plastic surface 
does not change with the plastic deformation) with a von 
Mises yield surface and an associative plastic flow. This 
model needs two parameters, namely the shear modulus G 
and the yield strength Y that defines the onset of the plastic 
range. The algorithm to calculate the stresses checks if the 
material has reached the plastic regime or if it is within the 
elastic one. In this last case the elastic relationship is used 
and if plastification occurs the classical radial return 
algorithm [26] for the updating of stresses is applied. The 
magnitude that controls if an integration point has reached 
the plastic regime is the equivalent von Mises stress defined 
as:  

   
VM

=
3

2
S : S              (6) 

The medium to be modeled is a layer of thickness d that is 

large compared to the wavelength  of the perturbation 

imposed on the front of the layer (
  
kd >> 1, k = 2 ) in 

such a way that the layer can be taken as a semi-space. The 

amplitude of the perturbation is
 i

. Besides, we have taken 

symmetry boundary conditions at the edges so that we 

simulate a layer of infinite lateral extent. This layer has been 

meshed with four-nodes plane strain elements with one 

integration point. The initial perturbation is needed to 

initialize the Richtmyer-Meshkov instability. However, to 

simulate planar shock wave propagation we take 
  i

= 0 . 

3. SHOCK PROPAGATION IN AN ELASTOPLASTIC 
SOLID 

 When a pressure is applied on a solid specimen a planar 
wave propagates into it. Following the classical elastoplastic 
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theory, if the stress is below the yield stress, a single elastic 
wave is generated. If the stress is above the yield stress two 
waves are generated: a plastic wave which amplitude is equal 
to the applied pressure and an elastic wave (called the elastic 
precursor) which amplitude is the Hugoniot elastic limit 
(HEL) [27]. Using the Mie-Gruneisen equation of state for 
the volumetric part and a perfectly elastoplastic constitutive 
law for the deviatoric part, the stress on the Hugoniot is 
calculated from the equation [28]: 

  
H

= P
H
+

2

3
Y              (7) 

where 
 
P

H
 is obtained from the equation of state: 

  

P
H

= 0
c

0

2

1 s( )
2

             (8) 

with the volumetric compressive strain  defined as: 

 

= 1
0              (9) 

 Some simulations have been performed on flat 

aluminium samples of thickness 
  
d = 80 mm . The material 

data for aluminimu are: 
  0

= 2700 kg / m3
, 

  
c

0
= 5380 m s , 

  s = 1.337  and 
 0

= 2.16 . The deviatoric part is defined by 

means of the shear modulus 
  
G = 40 GPa  and the yield 

strength 
  
Y = 1 GPa . Three different pressures have been 

applied to the specimen to generate the shock waves: 

  
P

0
= 2, 10 and 20 GPa . 

 We are interested in the component of the stress tensor in 

the direction of the wave propagation 
 11

. The stress 

distribution along the specimen for a time of 
  
t = 8 μs  is 

shown in Fig. (1). The density of the material that is between 

both shock fronts is 
  

= 2734 kg / m3
, so the volumetric 

strain is 
 
= 0.0124  and 

  
P

H
= 1 GPa  for the three applied 

pressures. Applying equation (7) 
  H

1.67 GPa  that 

coincides quite well with the amplitude of the elastic 

precursor obtained from the simulations (
  

1.7 GPa ). 

 For low compressions 
  

1  and then 

 
11
= ln 1( ) , so the velocity of the elastic precursor is: 

  

c
e
=

c
0

2

1 s( )
2
+

4G

3
          (10) 

 The velocity, according this expression, is 
  
7042 m / s  

that is correctly predicted by the simulations (
  

7010 m / s ). 

On the other hand, the velocity of the plastic wave depends 

on the applied pressure and fulfils the linear relationship 

  
u

s
= c

0
+ su

p
. The velocity of the particles obtained form the 

simulations are, respectively 
  
109, 588 and 1088 m / s  and 

then the velocity of the plastic waves are 

  
5525, 6166 and 6834 m / s , that are correctly predicted by 

measuring them from the position of the shock front in Fig. 

(1) (
  

5620, 6200 and 6862 m / s ) with increasing accuracy 

for higher applied pressures. 

 

Fig. (1). Stress distribution along the specimen for the three applied 

pressures for a time of 
  
t = 8 μs . The represented stress component 

is 
 11

 where 1 is the direction of the wave propagation. 

 In Fig. (2) the equivalent von Mises stress is represented 

along the specimen for a time of 
  
t = 8 μs . It is possible to 

see that the zone that is plastified is the one between the two 

front shocks. Behind the plastic wave, the material behaves 

in a hydrostatic-like manner and the equivalent von Mises 

stress decreases when the applied pressure increases 

(
  VM

= 0.54 GPa for P
0
= 10 GPa  and 

  VM
= 0.09 GPa for P

0
= 20 GPa ). 

 So although with shock experiments is possible to 
determine the Hugoniot elastic limit, the stress state in the 
shocked state remains unknown. We explore in the next 
section the use of the Richtmyer-Meshkov instability to 
obtain the yield strength in such sock states. 

 

Fig. (2). Equivalent von Mises stress along the specimen for the 
three applied pressures for a time of 

  
t = 8 μs.  
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4. EVALUATION OF THE DYNAMIC YIELD STRENGTH 
OF SOLIDS BY MEANS OF THE RICHTMYER-

MESHKOV INSTABILITY 

4.1. Description of the Richtmyer-Meshkov Instability in 

Solids 

 Classical Richtmyer-Meshkov instability (RMI) develops 
when a shock passes through the corrugated interface 
between two ideal fluids. The small perturbations of the 
interface between both media will grow without bound for 
any wavelength of the perturbation. There are very few 
works about RMI in solids. Plohr and Plohr [29] have 
presented a solution of the evolution of the interface 
amplitude between two elastic solids with a fixed relation 
between their shear moduli. These authors named RMI in 
elastic solids ‘Richtmyer-Meshkov flow’ because the 
presence of the elastic force always leads to a stable, 
oscillatory evolution of the perturbation amplitude. Their 
study gives the oscillation period of such an oscillatory 
evolution. Applying a relatively simple analytical model, we 
have obtained a general scale law for the period of the 
oscillation that has been validated with extensive two 
dimensional simulations for any combination of the shear 
moduli [30]. Also we have given an analytical model for 
RMI in elastoplastic solids [21] validated against extensive 
finite element simulations. This model is valid for any 
degree of compression of the media but in the case of a low 
compression predicts quite well the scaling law suggested for 
Bakharakh et al. [31] obtained from numerical simulations. 
The analytical model is the same we have used to solve the 
Rayleigh-Taylor in elastic solids [32,33] including the case 
of solids of finite thickness [34]. 

 The main features of the RMI in solids can be seen in 

Figs. (3, 4) where some typical responses are shown (The 

material and geometrical data for these calculations are given 

in the figures). We have applied a pressure on the free 

surface of an elastoplastic solid and we have represented the 

time history of the relative perturbation amplitude 
 i

. 

The free surface has a perturbation of the form 

  

(x) =
i
cos

2
x , so we have defined the relative 

perturbation amplitude for any time as 

  
i

( ) t( ) =
u(x = 0, t) u(x = 2, t)

2 i
 where u is the 

nodal displacement. Obviously, for the initial time,   t = 0 , 

  i
= 0 . 

 In Fig. (3) we can see that, for the classical case, the 

perturbation amplitude grows linearly as the theory predicts. 

On the other hand, a pure elastic material presents a stable, 

oscillatory pattern. Between these two extreme situations the 

elastoplastic cases are located. Fig.  (4) shows that there is an 

initial transient phase that lasts a time 
  
t
0
 during which the 

material behaves classically and the perturbation amplitude 

grows up to a value 
  0

>
i
. The initial transient phase of the 

elastoplastic cases (for 
  
t t

0
) follows the classical growth,  

 

 

Fig. (3). Time evolution of the perturbation amplitude for different 

values of the yield strength Y. Applied pressure 
  
P

0
= 10 GPa , 

wavelength and initial amplitude of the perturbation 
  

= 5 mm , 

  i
= 20 μm , shear modulus 

  
G = 13 GPa , initial density 

  0
= 2700 kg / m3 , EOS parameters 

  
c

0
= 5380 m / s , 

  s = 1.337 , 

 = 2.16 . 

 

Fig. (4). Time evolution of the perturbation amplitude for 

  
Y = 20 MPa . Applied pressure 

  
P

0
= 10 GPa , wavelength and 

initial amplitude of the perturbation 
  

= 5 mm , 
  i

= 20 μm , shear 

modulus 
  
G = 13 GPa , initial density 

  0
= 2700 kg / m3 , EOS 

parameters 
  
c

0
= 5380 m / s , 

  s = 1.337 , 
 = 2.16 . 

so the initial velocity 
  0

 is the slope of the classical curve. 

After this initial transient phase the perturbation amplitude 

grows up to a maximum value 
 m

 that essentially depends 

on the yield strength Y and then it remains oscillating 

elastically around a mean value . For higher values of the 

yield strength the maximum reached for the perturbation  
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amplitude 
 m

 is smaller, so that in the limit  Y  the 

elastic case is recovered and for   Y 0  we have the classical 

situation. Also it is important to note that the amplitude of 

the elastic oscillations is smaller for the lower values of Y. In 

these situations, the maximum value 
 m

 and the mean value 

 are practically the same. 

 Our analytical model gives a scaling law for the 

maximum point 
  m

, t
m

( )  reached for the perturbation 

amplitude and for the elastic oscillation period as well as the 

amplitude of such oscillation in the asymptotic elastic regime 

[21]. The model does not describe the initial transient phase, 

so it is necessary to know the values of 
 0

 and 
  
t
0
 that have 

been evaluated from the numerical simulations. The 

amplitude 
 0

 is taken as the value at the time 
  
t
0
 when the 

amplitude evolution has an inflection point. The reason of 

this assumption is that for 
  
t t

0
 the perturbation grows 

classically and then the acceleration of the amplitude 

perturbation is 
  

0  while for 
  
t t

0
 the perturbation grows 

in the plastic regime and then it must be 
  

0  because the 

plastic force is slowing down the perturbation growth. At 

this time, 
  
t = t

0
 the asymptotic classical velocity 

  0
 has been 

reached and is given by: 

   0
= k iup            (11) 

 The scaling law we have found for the maximum 
amplitude is given by [21]: 

   
m 0

0.29
0

2

kY
          (12) 

and if 
  m

<<
m 0

 and then 
 m

: 

   
0

0.29
0

2

kY
          (13) 

4.2. Evaluation of the Yield Strength 

 In this section we show how the yield strength could be 
obtained form shock experiments. We are not going into the 
technical details of such an experiment. We are thinking in a 
laboratory with a facility to induce a shock wave in a solid 

and with the diagnostics to measure the growth of the 
perturbation on the interface. Next, the procedure to obtain 
the yield strength from this experimental setup is described. 

 Suppose we want to validate the model of Steinberg et al. 
[35] which gives the value of the shear modulus G and the 
yield strength Y as functions of deformation , pressure P 
and temperature T. One important assumption of this model 
is that rate effects become insignificants for high stresses, 
above 10 GPa. The idea is to obtain the yield strength at 
different pressures by measuring the RM instability and to 
verify the theoretical predictions of the Steinberg model. The 
constitutive equations of this model are the following: 

  

G = G
0

1+
G

P

G
0

P

s

1 3
+

G
T

G
0

T 300( )         (14) 

  

Y = Y
0

1+ +
i( )

n

1+
G

P

G
0

P

s

1 3
+

G
T

G
0

T 300( )    (15) 

subject to the limitation 

  
Y

0
1+ +

i( )
n

Y
max

         (16) 

where 
  

s
=

0
= 1 1( ) , 

 i
 is the initial equivalent 

plastic strain and 
  
n and  are work-hardening parameters. 

In any case, to simplify the use of these equations to evaluate 

the yield strength in different shock states we have used the 

value of 
  
Y

max
 given for Steinberg for the first term of 

equation 16. For aluminium the data are: 
  
G

0
= 27.6 GPa , 

  
Y

max
= 0.68 GPa , 

  

G
P

G
0

= 65 TPa
1
 and 

  

G
T

G
0

= 0.62 kK
1
. 

 The temperature in the shock state is calculated from the 
equation of state according to: 

  

T = T
0
e +

sc
0

2

C
v

e e
0

2

1 s( )
3

d         (17) 

where 
 
C

v
 is the specific heat that for aluminium is 

  

930
J

kgK
 

and the volumetric compressive strain  is obtained from 

equation 8 

Table 1. Volumetric Compressive Strain , Temperature T (Both Obtained from de Equation of State), Yield Strength Y and 

Shear Modulus G (Both Calculated from the Steinberg Model) 

 

  
P
0

GPa( )  10 20 30 40 50 60 70 80 90 100 

 0.08 0.15 0.20 0.24 0.26 0.28 0.30 0.32 0.34 0.35 

 
T K( )  366 497 706 1011 1236 1524 1909 2400 3035 3420 

 
Y GPa( )  1.08 1.43 1.74 1.99 2.28 2.54 2.75 2.90 2.99 3.20 

 
G GPa( )  43.96 58.28 70.61 81.02 92.74 103.3 111.8 117.9 121.5 129.9 



Evaluation of the Dynamic Yield Strength of Solids The Open Plasma Physics Journal, 2010, Volume 3    85 

 In Table 1 the values of , T, Y and G for several applied 
pressures are shown. Taking into account that melting in 
aluminium occurs around 125 GPa for shock compression 
[36] we have considered a maximum value of 100 GPa. 

 Now, we simulate numerically some possible experi-

ments for three different shock pressures 
  
P

0
= 10, 40  

  
and 100 GPa . In order to do that we apply the numerical 

method described in section 2 with the data of Y and G 

obtained form Table 1. Applying the procedure we are 

proposing we should recover the value of the yield strength 

from just one measurement of the time histories of the 

relative perturbation amplitude that are given in Fig. (5). 

 

Fig. (5). Time evolution of the perturbation amplitude for three 

different pressures with the material data obtained from the 

Steinberg model. 

 If in a real experiment it is possible to take only one 

measurement, this will be between the maximum value 

(marked with a black circle in the figure) and the minimum 

one (marked with a black square). Because it is not possible 

to calculate 
 0

, we use an approximation of the scaling law 

to obtain the yield strength: 

   

Y
measured

0.29
0

2

k
measured

         (18) 

 To evaluate the rest of the terms of this equation, we 

need the volumetric compressive strain that is obtained from 

equation 8. Then, the density postshock is evaluated 

according to equation 9 and to calculate the asymptotic 

classical velocity 
  0

 (equation 11) we need the particle 

velocity 
 
u

p
 that is again evaluated from the equation of state 

according to the expression: 

  

u
p
=

c
0

1 s
           (19) 

 The calculated values of these parameters are collected in 
Table 2 where the maximum and minimum measurements of 
the relative perturbation amplitudes are also indicated. With 
these data we can evaluate the yield strength Y, from the 
scaling law. These values are also indicated in Table 2 

 For the applied pressure of 100 GPa we evaluate a yield 
strength between 2.7 and 3.0 GPa that gives an error within 
7.5% and 13%, when comparing with the value predicted by 
the Steinberg model and used in the simulation of 3.2 GPa. 
For the pressure of 40 GPa the error is within 20% and 30% 
(1.4 GPa – 1.6 GPa, versus 1.99 GPa). For lower pressures 
the error increases, so for 10 GPa we find 0.50 GPa – 0.75 
GPa, versus 1 GPa which gives an error within 25% and 
50%. 

 

Table 2. Values of the Yield Strength Y for Three Different Pressures Obtained from the Measurement of the Richtmyer-Meshkov 

Instability 

 

  
P
0

GPa( )  10 40 100 

 0.096 0.24 0.35 

  

kg / m3  
2986 3552 4153 
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0

m s( )  148 477 904 

 
MIN
measured

m( )  
20 x 10-6 0.112 x 10-3 0.26 x 10-3 

 
Y

MAX
measured

GPa( )  
0.75 1.6 3 

 
MAX
measured

m( )  
30 x 10-6 0.13 x 10-3 0.29 x 10-3 
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MIN
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0.50 1.4 2.7 
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 The method works very well for high pressures and 

somewhat worse for the lower ones. The reason is not in the 

method itself, but in the intrinsic difficulty of calculating 
 0

. 

However, one interesting advantage of the proposed method 

is that only one experimental measurement is needed to 

evaluate the yield strength in opposition to the Rayleigh-

Taylor based technique that needs, at least, two experimental 

points to calculate the growth rate. This is a very important 

fact because, in this kind of experiments, it is quite difficult 

to perform more than one measurement. The short time the 

experiment lasts forces to carry out two different 

experiments in exactly the same conditions, which is also a 

difficult task. However, as we have mentioned before, we do 

not propose to use this method instead of the Rayleigh-

Taylor based technique. Both methods are complementary 

and they can produce useful information about the dynamic 

yield strength of solids in different regimes. 

5. CONCLUSIONS 

 The knowledge of the dynamic yield strength in extreme 
conditions is very important in many technological 
applications as well as in basic science and several methods 
to evaluate it, have been proposed since the pioneer works of 
Sir GI Taylor. One of these methods is based on measuring 
the growth of the Rayleigh-Taylor instability and to correlate 
such growth with the yield strength of the material. To this 
end it is necessary to perform a quasi-isentropic compression 
of the solid that is a challenging process that needs a very big 
facility and so far has allowed for obtaining just one 
measurement in each individual experiment. So, obtaining 
the growth rate requires performing, at least, two different 
experiments in the same conditions. We propose a method 
based on the same philosophy but using another 
hydrodynamic instability, namely, the Richtmyer-Meshkov 
instability. To provoke this instability a shock is needed, so it 
is possible to use more modest facilities. Moreover and 
because of the time evolution of the Richtmyer-Meshkov 
instability in solids only one experimental measurement is 
necessary to evaluate the yield strength. We support the 
proposed technique with an analytical model that we have 
presented elsewhere [21] and that describes, for the first 
time, the evolution of the Richtmyer-Meshkov instability in 
elastoplastic solids. The method is valid below the melting 
pressure value that is about 125 GPa in Aluminium. For Iron 
this pressure is higher than 240 GPa [6,7] which is in the 
range of interest for studies related to the interior of 
terrestrial planets and for a heavy metal like Tantalum the 
melting pressure is 300 GPa [37] a value that is in the range 
of interest for some of the high energy density experiments 
planned at the Gesellschaft für Schwerionenforschung (GSI), 
Darmsdadt, within the framework of the new FAIR (Facility 
for Antiproton and Ion Research) facility [38]. The proposed 
method can be a valuble experimental procedure to give 
information about the strength of materials in shock states 
and, in this sense, it is complementary to the Rayleigh-
Taylor technique which explores the regime of isentropic 
compressions. 
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