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Abstract: A scientific concept referred to as a “force field” is defined as a short-range, static electromagnetic field that 

can reflect a charged particle of either sign of charge that approaches at any angle of incidence. A force field is envisioned 

as consisting of a spatially periodic sequence of magnetic cusps that are electrostatically plugged using applied 

electrostatic voltage variations similar to those found in nested Penning traps. The effective range of the force field would 

be small compared to the dimensions of a nearby source of charged particles, such as a plasma confined by the force field. 

A theoretical understanding is developed of the single-particle reflection properties of a force field, considering the 

incident charged particles to have a non-drifting, isotropic velocity distribution. Classical trajectory Monte Carlo 

simulations and analytical modeling are employed. The initiation of an experimental effort to study force fields is 

described. 
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1. INTRODUCTION 

 A scientific concept referred to here as a “force field” 
was found in searching for an alternative to existing plasma 
confinement and control methods that are used for 
antihydrogen-related research. A force field is defined here 
as a short-range electromagnetic field that is designed to 
reflect a charged particle of either sign of charge that 
approaches at any angle of incidence. An existing plasma 
confinement approach, the Penning trap, produces an electric 
potential well along a magnetic field to confine a non-neutral 
plasma [1]. A nested Penning trap produces oppositely 
signed nested electric potential wells along a magnetic field 
to confine oppositely signed plasma species [2-7]. Fig. (1) 
illustrates the spatial dependence of an electric potential that 
forms nested electric potential wells. Nested Penning traps 
have been used to mix antiprotons and positrons such that 
antihydrogen is produced [8-12] and trapped [11, 12]. An 
ultimate goal of the antihydrogen research is to conduct 
experimental tests of CPT (charge conjugation, parity, and 
time reversal) and gravity symmetries [13-19]. 

 It is not clear whether nested Penning traps can produce 
antihydrogen atoms with sufficiently low energies and also 
in sufficient numbers for conducting high precision CPT and 
gravity measurements, because there exist numerous 
conflicting issues [3, 20]. Some of the issues are being 
addressed, as indicated by recent advances [12, 21-24]. An 
ideal plasma confinement approach for antihydrogen studies 
would be capable of providing long confinement times for a 
cold, dense non-drifting (e.g., non-rotating) plasma of any 
desired size. Force fields might ultimately provide such 
confinement. 
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Fig. (1). Electric potential produced parallel to a magnetic field 

within a nested Penning trap that, under certain conditions, can 

confine two oppositely signed plasma species with overlapping 

confinement volumes. A plasma species comprising positively 

charged particles would be confined within the inner well. A 

plasma species comprising negatively charged particles would be 

confined within the outer well. 

 A force field would be produced by an artificially 

structured boundary that generates a spatially periodic static 

electromagnetic field, which has a period and an effective 

range that are much smaller than the dimensions of a plasma 

that may be confined by the field [25-29]. Fig. (2) illustrates 

a simple wire configuration for producing a spatially 

periodic magnetic field. Suppose that an unmagnetized one-

component Maxwellian plasma drifts in the x  direction 

above the artificially structured boundary illustrated in Fig. 

(2). The average value of 0 , which has a value in the range 

/ 2 < 0  for charged particles that travel toward the 

artificially structured boundary, depends on the relative 

values of the drift speed and the charged-particle thermal 

speed. There can exist an effective limit on 0  for particles 

to be reflected by the field. If the effective limit on 0  is less 

than , which is the case for the artificially structured 

boundaries studied in Refs. [25-29], then the plasma must 

drift faster than the charged-particle thermal speed so that the 
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vast majority of incident charged particles will be reflected 

by the field. 

 

Fig. (2). The wire configuration of a simple artificially structured 

boundary that would produce a spatially periodic magnetic field if 
the wires carry currents in alternating directions. The vector v0  

represents the initial velocity of a charged particle that travels 
toward the artificially structured boundary. The angles 0  and 0  

are used to describe the direction of v0 . 

 A force field as defined here would reflect a charged 
particle of either sign of charge that approaches at any angle 
of incidence. Fig. (3) illustrates a possible artificially 
structured boundary for producing a force field. Fig. (3) also 
illustrates a configuration in which a force field may be used 
to confine a plasma. The force field consists of a spatially 
periodic sequence of magnetic cusps that are electrostatically 
plugged. A comprehensive review of research related to 
electrostatic plugging of magnetic cusps is provided in Ref. 
[30]. More recent research that is directly or indirectly 
associated with electrostatic plugging of magnetic cusps 
includes antihydrogen-related research [10, 31-33] and 
fusion-related research [34]. It should also be noted that 
recent research has been reported involving plasmas 
confined or controlled by multiple magnetic cusps [35, 36]. 
The electrostatic-plugging research described in Refs. [30, 
32] employed an applied electric field for reflecting electrons 
(or positrons), with ion (or antiproton) confinement 
enhancement considered to occur as a result of a buildup of 
negative (or positive) space charge. For the concept 
illustrated in Fig. (3), an electrostatic voltage variation 

similar to that found in nested Penning traps would be 
applied for providing simultaneous electrostatic plugging for 
oppositely signed charged particles. The concept does not 
rely on the establishment of a confinement equilibrium in 
which one species is electrically confined using the space 
charge of another species, although such an equilibrium is 
not precluded from being used with the concept. 

 The charged particle trap illustrated in Fig. (3d) consists 
of a sequence of electrostatically plugged coaxial ring cusps. 
The diameters of the ring cusps vary axially, with the 
smallest rings located near the axial ends of the confinement 
volume. Two point cusps that are coaxial with the ring cusps 
are located at the axial ends of the confinement volume. 

 In Sec. 2, a theoretical model of the magnetic field of a 
force field is developed. The theoretical model describes a 
sequence of noncurved line cusps. (A noncurved line cusp is 
produced, for example, between the straight sections of two 
adjacent D-shaped magnetic coils with oppositely directed 
currents.) Each cusp has a region within which the magnetic 
field has approximately straight magnetic field lines. The 
magnetic field is uniform within a region of straight field 
lines for noncurved line cusps and point cusps, but is only 
approximately uniform for ring cusps of sufficiently large 
radius. In Sec. 3, a classical trajectory Monte Carlo (CTMC) 
simulation is developed for charged particles that travel into 
the magnetic field. The particles are assumed to originate 
from a source with a monoenergetic isotropic velocity 
distribution. The fraction of particles that enter the cusps and 
reach the straight field-line regions is evaluated and fit with a 
function. The particle density profile within the straight 
field-line regions is also evaluated and fit for particles 
traveling into the cusps. The fits are used in Sec. 4 to 
evaluate the fraction and density profile of charged particles 
having a non-drifting isotropic Maxwellian velocity 
distribution that enter the cusps and reach the straight field-
line regions. Because the underlying analytical model on 
which the CTMC simulation is based is written in terms of 
dimensionless parameters, the results obtained in Sec. 4 
apply for both ions and electrons. In Sec. 5, the relevance of 
plasma confinement within nested Penning traps to the 
electrostatic plugging employed by a force field is discussed. 
In Sec. 6, the initiation of an experimental effort to study 
force fields is described. Concluding remarks are in Sec. 7. 

2. THEORETICAL MODEL OF THE MAGNETIC 
FIELD 

 As illustrated in Fig. (2), a spatially periodic magnetic 

field can be produced by a planar sequence of parallel wires 

with alternating currents. Define a Cartesian coordinate 

system with coordinates (x, y, z)  and unit vectors ( î, ĵ, k̂) , 

such that the planar sequence is located at the z = 0  plane, 

each wire is parallel to the y  axis, and the wires are evenly 

spaced with a separation S / 2  between adjacent wires. The 

spatial period of the magnetic field produced by such a 

planar sequence of wires is S , provided adjacent wires carry 

oppositely directed currents of equal magnitude. For wires of 

infinitesimal width, the magnetic field produced by such a 

planar sequence of wires is given by [26] 

B1(x, y, z) = 2μ0 I1S
1

1 zS 1, xS 1( ),  (1) 
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where 

1 zn , xn( ) = sin(2 xn ) cosh(2 zn )[cos(4 xn ) cosh(4 zn )]
1 k̂  

cos(2 xn )sinh(2 zn )[cos(4 xn ) cosh(4 zn )]
1 î,  (2) 

| I1 |  is the current magnitude of any one wire, μ0  is the 

permeability of free space, and SI units are used. Here, 

(xn , yn , zn )  are normalized Cartesian coordinates with 

xn = x / S , yn = y / S , and zn = z / S . A wire located at 

x = 0  and z = 0  carries a current I1 , which is positive 

(negative) if the current is directed in the positive (negative) 

ĵ  direction. 

 For the present study, multiple planar sequences of 
parallel wires, which are illustrated in Fig. (4), are 
considered. The magnetic field produced by the 
configuration is given by 

B(x, y, z) = Bm zS 1, xS 1( ),  (3) 

where 

zn , xn( ) =
i=1

N

i 1 zn + (i 1) zn , xn[ ].  (4) 

 Here, Bm = 2μ0 I0 / S ; N  is the number of planar 

sequences of wires, which are separated by a normalized 

distance zn = z / S ; i = Ii / I0  represents dimensionless 

currents, where Ii  is the current of a wire located at x = 0  

and z = (i 1) z ; and I0  has a positive value and is 

introduced so that  is dimensionless. It can be shown that 

B = 0  is satisfied. The amplitude of the magnetic field 

ripple can be kept below a desired maximum value by 

choosing a sufficiently small value for zn . The range in zn  

values over which the magnetic field ripple can be kept 

below a desired maximum value depends on the value of N  

and on the relative values of i . Fig. (5) shows the magnetic 

field produced with N =10 , zn = 0.25 , 1 = 10 = 1.27 , 

and i =1  for 2 i 9 . With these values, the ripple in the 

magnetic field strength is less than 2% midway between any  

 

 

Fig. (3). Illustrations of a few spatial periods of (a) the electrode and current-carrying wire configuration and (b) permanent magnet 

configuration of an artificially structured boundary that produces a force field, and (c) the electric voltage applied to the electrodes. Also 

shown is (d) an illustration of an axisymmetric charged particle trap based on the force field concept. The applied electric voltage in (c) is 

similar to that applied to one side of a nested Penning trap. For the illustrations shown in (a) and (b), charged particles would be incident 

from the right. 
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Fig. (4). Illustration of five planar sequences of current-carrying 

wires. Also shown are some coordinates of a configuration-space 

Cartesian coordinate system (x, y, z)  and of a velocity-space 

spherical coordinate system (v0 , 0 , 0 ) . (The y  and 0  coordinates 

are not shown.) 

two horizontal rows of wires [i.e., at xn = 0.25(1+ 2 j) , 

where j  is an integer] within the range 2.07 zn 0.18 . 

The magnetic field strength decreases rapidly over a few 

spatial periods from the zn = 0  plane in the k̂  direction. For 

example, the field magnitude normalized by Bm  is 

calculated to have the following values: 

(zn = 5, xn = 0) = 3.5 10 14
 and (zn = 0.1, xn = 0) = 1.1 . 

3. CLASSICAL TRAJECTORY MONTE CARLO 
SIMULATION 

 A CTMC simulation has been developed for charged 

particles that travel into the magnetic field described by Eq. 

(3). Each parameter used for a simulation is normalized such 

that it is dimensionless. The same symbol is used for 

normalized and un-normalized parameters that correspond to 

one another, except that normalized parameters have a 

subscript n  attached to them. The quantities used for 

normalization are the spatial period S  of the magnetic field 

and a particle's mass m , charge q , and kinetic energy K .  

 

 

Fig. (5). Magnetic field produced by ten planar sequences of 
current-carrying wires ( N = 10 ), with zn = 0.25 , 1 = 10 = 1.27 , 

and i = 1  for 2 i 9 . Shown are (a) the vector field between two 

rows of wires and (b) the field magnitude normalized to Bm  

midway between two rows of wires. The solid semicircles in (a) 

indicate wire locations. Also shown in (a) are six solid straight lines 

that represent possible locations of six electrodes, which could be 

used to produce an electric field similar to that produced by one 
side of a nested Penning trap. 

The kinetic energy K  is conserved if only a magnetic force 

is present. The normalized values of the quantities used for 

normalization are unity, mn = qn = Kn = Sn =1 . Various 

other normalized parameters are written in terms of un-

normalized parameters as follows: The particle's normalized 

position, velocity, and acceleration are xn = x / S , 

vn = v m / K , and an = amS / K . Normalized time is 

tn = t(1 / S) K / m , and the normalized magnetic field is 

Bn = BqS / mK . Solving for the un-normalized parameters 

and substituting into Newton's second law, ma = qv B , 

yields a normalized version of Newton's second law, 

an = vn Bn . The relation Bm = 2mK / (q2rm
2 )  is used to 

define a positive parameter rm . Such a relation would be 

satisfied if rm  equals the cyclotron radius of a particle that is 

located within a uniform magnetic field of magnitude Bm  

and that has a kinetic energy K  associated with the 

cyclotron motion. Substitution into Eq. (3) and conversion to 

normalized parameters yields 

Bn (xn , yn , zn ) = sgn(q) 2rnm
1 zn , xn( ),  (5) 

where sgn(q) = q/ | q |  and rnm = rm / S . 

 The normalized equations of motion are 

xn''(tn ) = sgn(q) 2rnm
1yn'(tn ) z zn (tn ), xn (tn )[ ],  (6) 

yn''(tn ) = sgn(q) 2rnm
1(zn'(tn ) x zn (tn ), xn (tn )[ ]  

xn'(tn ) z zn (tn ), xn (tn )[ ]),  (7) 
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and 

zn''(tn ) = sgn(q) 2rnm
1yn'(tn ) x zn (tn ), xn (tn )[ ].  (8) 

 Equations (6) to (8) were solved numerically to simulate 
single-particle trajectories. A measure of the inaccuracy of a 
simulated trajectory is the change of a particle's normalized 
kinetic energy, a conserved quantity. The normalized kinetic 
energy changed typically by less than 0.001% for each 
simulated trajectory reported here. 

 Plots of 1000 simulated classical trajectories are shown 

in Fig. (6) using the parameters for the magnetic field shown 

in Fig. (5). Each particle's trajectory starts at normalized time 

tn = 0  and at normalized spatial coordinates 

xn (0) = xn0 = Rx ,  

yn (0) = yn0 = 0,  

zn (0) = zn0 = 5.  (9) 

 Here, Rx  denotes a random number that is equally likely 

to have any value between 0 and 1. Thus, the initial 

coordinate xn0  has a value that is randomly sampled over a 

distance equal to one spatial period of the periodic field. 

Such sampling of xn0  values is consistent with considering 

the spatial period of the field to be much smaller than the 

spatial variation of the source of incident charged particles. 

The configuration is treated as infinite in the y  dimension, 

and the value used for yn0  is unimportant. The value of zn0  

is large enough for the effect of the magnetic field to be 

negligible near the start of each trajectory. 

 

Fig. (6). Parametric plots of 1000 trajectories simulated using the 

parameters for the magnetic field shown in Fig. (5) and with 

rnm = 0.05 . The dots indicate wire locations. See the text for details. 

 Let (vn0 , 0 , 0 )  denote spherical coordinates in velocity 

space associated with a particle's initial normalized velocity 

vn (0) = vn0 . The particle's initial Cartesian velocity 

components are 

vnx (0) = vnx0 = 2 sin 0 cos 0 ,  

vny (0) = vny0 = 2 sin 0 sin 0 ,  

vnz (0) = vnz0 = 2 cos 0 ,  (10) 

where vn0 = 2  is a particle's initial normalized speed 

(because Kn0 = 1 =12vn0
2

). 0  must have a value in the 

range / 2 < 0  for the particle to move toward the 

z = 0  plane, and 0  has a value in the range 0 < 2 . 

The particles were considered to have a monoenergetic 

isotropic velocity distribution initially, except that particles 

that would initially travel away from the wires in the k̂  

direction were excluded. Sampling expressions for the initial 

velocity-space angles are 

0 = arccos R( ),  

0 = 2 R .  (11) 

 Here, R  and R  denote random numbers, and each is 

equally likely to have any value between 0 and 1. The 

sampling expression for 0  is derived by considering that 

the probability density function in spherical coordinates for a 

monoenergetic isotropic distribution of velocities is 

separable in the three variables. The 0  probability density 

is f ( 0 ) = sin 0  for 0  limited to values in the range 

/ 2 < 0 . Then, R =
/2

0 f ( )d  is used to obtain the 

sampling expression for 0 . 

 Each magnetic cusp has a region within which the 

magnetic field has approximately straight field lines within 

the range 2.07 zn 0.18 . The effect of the magnetic 

field is negligible for 
 
zn < 7.25  and 

 
zn > 5  for the 

parameters considered. Each trajectory simulation was 

discontinued either when a particle reached zn = 8.25  

(after traversing the magnetic field) or when a particle 

reaches zn = 6  (after being reflected by the magnetic field). 

For the 1000 simulated trajectories shown in Fig. (6), a value 

rnm = 0.05  was chosen. The sign of I1  is chosen to be the 

same as the sign of charge, sgn(I1 ) = sgn(q) . However, 

statistically averaged Monte Carlo results are independent of 

sgn(I1 )  and sgn(q) , because xn0  is randomly sampled over 

one spatial period. (Simulations similar to those shown in 

Fig. (6) were run with all possible combinations of the 

values of sgn(I1 )  and sgn(q) , and similar results were 

obtained.) 

3.1. Fraction of Particles That Enter the Cusps 

 The fraction Fv  of particles that enter the cusps and reach 

zn = 0.5  has been evaluated using the same parameters as 
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used for the simulations shown in Fig. (6), except that 

various values of rnm  have been used. The number Ns  of 

simulated trajectories used was 10,000 for each value of rnm . 

In Fig. (7), the fraction of particles that reached zn = 0.5  is 

plotted versus rnm . The solid line is a linear fit given by 

Fv = 3.4rnm . The linear dependence found for the fit agrees 

with what may be expected according to prior theory [30]. 

When written in terms of unnormalized parameters, the fit is 

Fv = 3.4mv(| q | BmS)
1.  (12) 

 

Fig. (7). Fraction of trajectories that reach zn = 0.5 , evaluated 

using the parameters for the magnetic field shown in Fig. (5). Also 
shown is a fit given by Eq. (12). 

3.2. Density Profile For Particles That Enter the Cusps 

 The position distribution in the x  dimension for particles 

that enter the cusps and reach zn = 0.5  has been evaluated 

using the same parameters as used for the simulations shown 

in Fig. (6). The number of simulated trajectories used was 

Ns =100, 000 . Each xn  value at the time a trajectory 

reaches zn = 0.5  was shifted to a corresponding location in 

the range 0 < xn < Sn / 2 = 0.5 . The range 0 < xn < Sn / 2  

was divided into Nb =101  bins of equal length. The number 

Nk  of trajectories that ended within the range of a bin 

labeled k  was determined for each bin. In Fig. (8), the 

values Nk  are plotted versus xnk , which denotes the 

midpoint location of a bin. Also shown is a triangular fit 

having the form 

Nv = Nm 1 2 | xn xnm | wn
1( ) 1 2 | xn xnm | wn

1( ).  (13) 

 The values xnm = Sn / 4 = 0.25  and wn = 4rnm = 0.2  are 

used for the plot in Fig. (8). Here, xnm  is the location where 

the position distribution reaches a maximum value Nm ; wn  

is the normalized full width at the base of the distribution;  

is the Heaviside step function, which equals unity when its 

argument is positive and equals zero when its argument is 

negative. Equation (13) with xnm = Sn / 4  and wn = 4rnm  has 

also been found to provide fits similar to the one shown in 

Fig. (8) for rnm  values of 0.01, 0.03, 0.07, and 0.09. 

 

Fig. (8). Position distribution for particles at zn = 0.5 , evaluated 

using the parameters for the magnetic field shown in Fig. (5). Also 
shown is a fit given by Eq. (13). 

 The normalized width of a bin is 

xn = (Sn / 2) / Nb = 0.5 /101 . All Ns =100, 000  trajectories 

started at zn (0) = 5  with randomly selected xn  values within 

the range 0 < xn < Sn =1 . The average number of particles 

that started within the width of a bin was 

Nsk = Ns xn / Sn = 495.05 . All particles moved at the same 

speed v . The density nv  of particles within the straight 

field-line region of a cusp is taken to be proportional to Nv  

given by Eq. (13). A relationship between the maximum 

particle density nm  and the particle density n0  outside the 

magnetic field (e.g., at zn = 5 ) is taken to be nm  / 

n0 = Nm / Nsk , where Nm  is the number of trajectories that 

end within the range of a bin that has a midpoint located at 

xnm . The value nm  / n0 = 1.38  was found numerically to 

occur (to within 5%) for rnm  values of 0.01, 0.03, 0.07, and 

0.09. The density nv  of particles within the straight field-line 

region of a cusp (while traveling with vz < 0 ) is written in 

terms of unnormalized parameters as 

nv (x) = 1.38n0 1 | q(x xm ) |Bm[2mv]
1( )  

1 | q(x xm ) |Bm[2mv]
1( ),  (14) 

where w = 4rm = 4mv / (| q | Bm )  has been used for the 

normalized full width at the base of the profile, and xm  is the 

location where the density reaches a maximum value. 
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4. MAXWELLIAN VELOCITY DISTRIBUTION 

4.1. Fraction of Incident Particles That Enter the Cusps 

 The fraction of particles that enter the cusps and reach 

the straight field-line regions is now evaluated, considering 

the incident charged particles to have a non-drifting isotropic 

Maxwellian velocity distribution. The average particle speed 

associated with a non-drifting isotropic Maxwellian velocity 

distribution is < v >= 8T / ( m) , where T  is temperature 

in energy units. The replacement v < v >  in Eq. (12) is the 

same as averaging Eq. (12) over a speed distribution. Such a 

replacement provides the fraction of particles with a non-

drifting isotropic Maxwellian velocity distribution that reach 

the straight field-line region of a cusp: 

F = 6.8(| q | BmS)
1 2mT 1 = 5.4rS 1.  (15) 

 Here, r = mT / (| q | Bm )  is the cyclotron radius scale 

length for a particle that is located within a magnetic field of 

strength Bm . 

4.2. Density Profile For Particles That Enter the Cusps 

 The density profile for particles located within the 

straight field-line region of a cusp and that travel with 

vz < 0  is now evaluated for incident particles that have a 

non-drifting isotropic Maxwellian velocity distribution. The 

density profile is evaluated by integrating Eq. (14) over the 

speed probability density, 

fv (v) = 4 /( ) m / [2T ]( )
3/2
v2e mv2 /(2T ) .  (16) 

 The result is 

n(x) = 1.38n0 0
1 u / v( ) v u( ) fv (v)dv  

=1.38n0erfc | x xm | /[ 8 r]( ),  (17) 

where u = (| q(x xm ) |Bm / (2m) , and erfc  is the 

complementary error function. A few sample calculations 

illustrate how rapidly the density decreases away from 

x = xm : n / n0 = 8 10 7
 for | x xm | /r =10 ; 

n / n0 = 2 10 23
 for | x xm | /r = 20 ; and n / n0 = 1 10 50

 

for | x xm | /r = 30 . 

5. ELECTROSTATIC PLUGGING SIMILAR TO 
THAT WITHIN A NESTED PENNING TRAP 

 As indicated by Fig. (5), each cusp has a region within 

which the magnetic field has approximately straight 

magnetic field lines. The magnetic field is uniform within a 

region of straight field lines for noncurved line cusps. 

According to Eq. (17), plasma particles that enter the cusps 

(in the single-particle limit considered in the present work) 

will enter a uniform magnetic field region, provided that the 

cyclotron radius scale length r  has a sufficiently small 

value. In such a case, it is possible to consider the particle 

motion within the guiding center approximation, whereby a 

particle's position is averaged over its cyclotron motion. The 

conditions are similar within nested Penning traps, and the 

knowledge base developed regarding plasma confinement 

within nested Penning traps provides guidance for 

considering the present concept. 

 An electric field can be used to reflect a charged particle 

that travels parallel to a uniform magnetic field. For plasma 

particles associated with temperature T  in energy units, a 

condition for good confinement by an electric field within a 

Penning trap is  U T , where U  is the total increase in 

potential energy that a particle would experience in passing 

all the way through the self-consistently produced electric 

field. For reflecting a charged particle regardless of its 

charge sign, two consecutive regions that contain oppositely 

directed electric fields can be used. The change in potential 

associated with the second electric field region must be 

sufficiently large to reflect particles that are necessarily 

accelerated through the first electric field region. 

 Three different plasma equilibria may be possible within 
a nested Penning trap, such that a plasma with an electrically 
neutral overlap region is confined [4-7]. In one equilibrium, 
two plasma species have different temperatures and all 
particles have equal charge magnitudes. The temperature (in 
energy units) of the plasma species confined within an inner 
well (see Fig. 1) must be much smaller than the depth of the 
potential (energy) well that confines it. The temperature of 
the plasma species confined within a nested (and inverted) 
outer well must be either about the same or larger than the 
depth of the inner well for the outer-species plasma to 
overlap the confinement volume of the inner-species plasma. 
In a second equilibrium, the two species have the same 
temperature, and the particles of each species have disparate 
charge states. For the third equilibrium, the two species have 
the same temperature and all particles have equal charge 
magnitudes, but the plasma species confined by the outer 
well has a non-Maxwellian velocity distribution outside of 
the inner well. More details about possible plasma equilibria 
within nested Penning traps may be found in Refs. [4-7]. 

 There exist a variety of multiple-particle effects 

(including collective effects) that have been found to be 

important within nested Penning traps [3-7]. Such effects, 

which may also be important for the present concept, are 

beyond the scope of the single-particle limit considered here, 

and they will be considered in more detail in future work. 

Only a brief discussion of multiple-particle effects is given 

here. Collisions among particles can affect the first and third 

equilbria described within the preceding paragraph. 

Collisions tend to cause the two species in the first 

equilibrium to thermalize eventually and reside in separated 

confinement volumes or to be lost from confinement. 

Collisions tend to cause particles from one species in the 

third equilibrium to become trapped outside of the inner 

well. The two-stream instability could have a similar effect if 

the size of the non-Maxwellian plasma region located 

outside of the inner well is too large. Non-neutral regions of 

plasma can affect all three equilibria. For example, the 

plasma located outside of the inner well is not neutral, and 

the plasma density can be limited by space charge effects. 

The self-consistently produced electric field can have a 

component that is perpendicular to the magnetic field and 

cause plasma particles to experience an E B  drift. Because 
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noncurved line cusps are necessarily of finite extent, direct 

particle losses due to an E B  drift may occur. However, 

such losses can be avoided, in principal, if only ring cusps 

and point cusps are used to produce a force field. 

 Suppose that one of the three equilibria mentioned above 
is established using the configuration illustrated in Fig. (3d), 
and that the plasma is electrically neutral and effectively 
unmagnetized near the geometric center of the trap. There 
exist effects that can cause non-neutral regions to form. If 
the loss rate of one species is larger than the other, then a 
non-neutral plasma sheath may form along the periphery of 
the unmagnetized plasma. It is hypothesized that separate 
control of the electric confinement of each species by using 
applied electrostatic voltage variations similar to those found 
in nested Penning traps may allow a confinement 
equilibrium that is devoid of a non-neutral plasma sheath. 
Collisions will tend to cause electrons to diffuse into the 
magnetic field at a faster rate than ions, and the effect can 
cause the formation of a non-neutral layer with negative 
space charge within the magnetic field. On the other hand, 
Eq. (17) predicts a mass-dependent width for the density 
profile of a particle species that enters a cusp. For example, 
for an electron-ion plasma, with both species having the 
same temperature, the width of the ion density profile 
associated with ions that enter a cusp will be larger than that 
of the electron density profile. Such an effect can form a 
non-neutral layer with positive space charge within the 
magnetic field. It is hypothesized that an equilibrium is 
possible, whereby electrons that diffuse into the magnetic 
field distribute themselves so as to neutralize the ion space 
charge within the magnetic field. The hypothesized 
equilibria mentioned here will be sought in future work. 

 

Fig. (9). Experimental force field segment. (Compare to Fig. 3b). 

The four permanent magnets can be seen protruding from the clamp 

assembly. Electrostatic plugging is provided by copper electrodes 

that wrap around each magnet. 

6. EXPERIMENT 

 As an initial attempt to develop a force field, a few 

periods of such have been created and experimentally tested 

[37]. The experimental setup is shown in Fig. (9). Four 

neodymium-iron-boron permanent magnets (dimensions: 

5.08 cm  5.08 cm  0.635 cm, ~1 T maximum field) were 

clamped with like poles facing each other and with a 

separation of 0.64 cm in between them. Copper electrodes 

were attached to, but were electrically isolated from, the 

magnets in order to achieve electrostatic plugging of the 

magnetic cusps. To perform the initial experimental testing, 

the magnet structure was placed in a vacuum chamber where 

an Ar plasma was generated using a DC glow discharge. The 

plasma source consisted of a straight tungsten wire encircled 

by a tungsten wire loop, with a voltage difference applied 

between them to create a discharge. To obtain charged 

particles from the discharge region, an einzel-lens-like 

configuration of three electrodes was employed, with 

grounded first and last electrodes and a biased middle 

electrode. These extraction electrodes produced an electric 

field that penetrated the discharge region and extracted a 

species of a particular sign of charge. Several conditions 

(background pressure, discharge voltage, source bias with 

respect to ground, extraction electrode voltage) were 

empirically optimized to obtain a visible plasma. It was 

found that, for the present system, a background pressure of 

120 mTorr and a discharge voltage of ~200 V were sufficient 

to sustain a plasma that could be imaged. Extraction was 

achieved with the additional condition that the tungsten 

wires were biased to ~80 V with respect to the established 

ground, and the extraction electrode voltage was held at 

660  V. Extraction of electrons from the discharge region 

was achieved by literally reversing all the voltages but 

increasing the discharge voltage to ~300 V to keep the 

discharge stable. Ar ions (or electrons) were extracted from 

the discharge region and directed onto the magnet assembly. 

These Ar ions (or electrons) diffused through a region where 

the background pressure was relatively high (120 mTorr), 

with a mean free path of ~0.05 cm. The Ar ions (or 

electrons) collisionally excited residual gas atoms, which 

primarily consisted of Ar atoms. An ST-7 SBIG CCD 

camera was employed to record light emitted by de-

excitations, using typical integration times of 2 or 3 minutes. 

The plasma was imaged with electrostatic plugging either 

turned off or turned on. Some resulting images are presented 

in Fig. (10) for ion extraction and Fig. (11) for electron 

extraction. 

7. CONCLUSION 

 In conclusion, research has been reported on the 
properties of a short-range, static, electromagnetic force field 
that appears to be capable of reflecting incident charged 
particles of either sign of charge at any angle of incidence. 
Because of the wide variety of uses of plasmas, and the 
increasing uses of antimatter plasmas, basic studies of force 
fields may lead to a variety of applications. For example, 
force fields might be useful for confining antimatter or 
fusion plasmas, or for plasma thrusters or ion sources. A 
force field would merge two concepts that have been studied 
recently: the nested Penning trap and the artificially 
structured boundary. A nested Penning trap provides 
simultaneous confinement of oppositely signed plasma 
species by applying nested electrostatic potential wells along 
a magnetic field. An artificially structured boundary 
produces a spatially periodic static field, such that the spatial 
period and range of the field is much smaller than the  
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dimensions of a plasma that is confined by the field. A force 
field is envisioned as consisting of a spatially periodic 
sequence of magnetic cusps that are electrostatically plugged 
using applied electrostatic voltage variations similar to those 
found in nested Penning traps. 

ACKNOWLEDGMENTS 

 This material is based upon work supported by the 
Department of Energy under Grant No. DE-FG02-
06ER54883. An earlier version of this paper was presented 

at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion 
Conference & Exhibit, Paper No. AIAA 2011-6120. 

CONFLICT OF INTEREST 

 Declared none. 

REFERENCES 

[1] Dubin DHE, O'Neil TM. Trapped nonneutral plasmas, liquids, and 

crystals (the thermal equilibrium states). Rev Mod Phys 1999; 71: 
87-172. 

 

Fig. (10). (a) Ar ions incident on magnet structure with electrostatic plugging turned off (electrodes, magnets, and supporting structure at 

ground voltage). (b) Electrostatic plugging turned on (reflection electrodes at  30 V). Arrows represent a  1.3 cm length. Positively 

charged particles enter magnetic cusps in both (a) and (b). In (b) particles that enter a cusp experience an E B  drift that guides them into, 

or out of, the plane of the page, thereby extending the plasma perpendicular to the plane of the page. The brightness is enhanced where the 

E B  drifts occur. 

 

Fig. (11). Electrons incident on magnet structure (a) with electrostatic plugging turned off, and (b) with electrostatic plugging (  -200 V) 

turned on (b). In (b) the E B  drift caused the plasma to reach and pass in front of the ends of the magnets closest to the camera. 

!
"! #!

!
"! #!



10    The Open Plasma Physics Journal, 2012, Volume 2 Ordonez et al. 

[2] Gabrielse G, Rolston SL, Haarsma L, Kells W. Antihydrogen 

production using trapped plasmas. Phys Lett A 1988; 129: 38-42. 
[3] Ordonez CA, Weathers DL. Two-species mixing in a nested 

Penning trap for antihydrogen trapping. Phys Plasmas 2008; 15: 
083504. 

[4] Ordonez CA. Confinement of a neutral plasma using nested electric 
potential wells. Phys Plasmas 1997; 4: 2313-5. 

[5] Ordonez CA, Dolliver DD, Chang Y, Correa JR. Possibilities for 
achieving antihydrogen recombination and trapping using a nested 

Penning trap and a magnetic well. Phys Plasmas 2002; 9: 3289-
302. 

[6] Dolliver DD, Ordonez CA. Confinement physics for thermal, 
neutral, high-charge-state plasmas in nested-well solenoidal traps. 

Phys Rev E 1999; 59: 7121-7. 
[7] Ordonez CA. Time-dependent nested-well plasma trap. IEEE Trans 

Plasma Sci 1996; 24: 1378-82. 
[8] Amoretti M, Amsler C, Bonomi G, et al. Production and detection 

of cold antihydrogen atoms. Nature 2002; 419: 456-9. 
[9] Gabrielse G, Bowden NS, Oxley P, et al. Background-free 

observation of cold antihydrogen with field-ionization analysis of 
its states. Phys Rev Lett 2002; 89: 213401. 

[10] Enomoto Y, Kuroda N, Michishio K, et al. Synthesis of cold 
antihydrogen in a cusp trap. Phys Rev Lett 2010; 105: 243401. 

[11] Andresen GB, Ashkezari MD, Baquero-Ruiz M, et al. Trapped 
antihydrogen. Nature 2010; 468: 673-6. 

[12] Andresen GB, Ashkezari MD, Baquero-Ruiz M, et al. Confinement 
of antihydrogen for 1,000 seconds. Nat Phys 2011; 7: 558-64. 

[13] Robicheaux F. Atomic processes in antihydrogen experiments: a 
theoretical and computational perspective. J Phys B 2008; 41: 

192001. 
[14] Gabrielse G. Atoms made entirely of antimatter: two methods 

produce slow antihydrogen. Adv Atom Mol Opt Phys 2005; 50: 
155-217. 

[15] Fabris D, Belov AS, Bonomi G, et al. The AEGIS detection system 
for gravity measurements. Nucl Phys A 2010; 834: 751c-753c. 

[16] Charlton M, Eades J, Horvath D, Hughes RJ, Zimmermann C. 
Antihydrogen physics. Phys Rep 1994; 241: 65-117. 

[17] Holzscheiter MH, Charlton M, Nieto MM. The route to ultra-low 
energy antihydrogen. Phys Rep 2004; 402: 1-101. 

[18] Surko CM, Greaves RG. Emerging science and technology of 
antimatter plasmas and trap-based beams. Phys Plasmas 2004; 11: 

2333-48. 
[19] Madsen N. Cold antihydrogen: a new frontier in fundamental 

physics. Philos Trans R Soc A 2010; 368: 3671-82. 
[20] Ordonez CA. Effect of positron space charge on operation of an 

antihydrogen trap. Phys Rev E 2007; 76: 017402. 
[21] Gabrielse G, Kolthammer WS, McConnell R, et al. Adiabatic 

cooling of antiprotons. Phys Rev Lett 2011; 106: 073002. 

[22] Andresen GB, Ashkezari MD, Baquero-Ruiz M, et al. 

Autoresonant excitation of antiproton plasmas. Phys Rev Lett 
2011; 106: 025002. 

[23] Gabrielse G, Kolthammer WS, McConnell R, et al. Centrifugal 
separation of antiprotons and electrons. Phys Rev Lett 2010; 105: 

213002. 
[24] Andresen GB, Ashkezari MD, Baquero-Ruiz M, et al. Evaporative 

cooling of antiprotons to cryogenic temperatures. Phys Rev Lett 
2010; 105: 013003. 

[25] Ordonez CA. Drifting plasma confinement with a spatially periodic 
field. IEEE Trans Plasma Sci 2010; 38: 388-92. 

[26] Ordonez CA. Charged particle reflection from an artificially 
structured boundary that produces a spatially periodic 

magnetostatic field. J Appl Phys 2009; 106: 024905. 
[27] Ordonez CA. Effect of a periodic electrostatic potential on 

magnetized particle transport. Phys Plasmas 2008; 15: 114507. 
[28] Ordonez CA. Charged particle transport through a periodic 

electrostatic potential having a small spatial period. J Appl Phys 
2008; 104: 054903. 

[29] Correa JR, Ordonez CA, Weathers DL. Transverse confinement of 
an ion beam in a purely electrostatic configuration. Nucl Instrum 

Methods Phys Res B 2005; 241: 909-12. 
[30] Dolan TJ. Magnetic electrostatic plasma confinement. Plasma Phys 

Contr Fusion 1994; 36: 1539-94; and references therein. 
[31] Mohri A, Yuyama T, Kiwamoto Y, Yamazawa Y, Michishita T. 

Confinement of nonneutral plasmas in a trap composed of a cusped 
magnetic field and an electrostatic octapole field. Jpn J Appl Phys 

1998; 37: L1553-L1555. 
[32] Mohri A, Yamazaki Y. A possible new scheme to synthesize 

antihydrogen and to prepare a polarised antihydrogen beam. 
Europhys Lett 2003; 63: 207-13. 

[33] Saitoh H, Mohri A, Enomoto Y, Kanai Y, Yamazaki Y. Radial 
compression of a non-neutral plasma in a cusp trap for 

antihydrogen synthesis. Phys Rev A 2008; 77: 051403. 
[34] Lavrent'ev OA, Maslov VA, Germanova SV, Nozdrachov MG, 

Oboznyj VP, Shevchuk BA. Modeling of a starting mode of 
thermonuclear reactor “Elemag.” Fusion Sci Technol 2005; 47: 

224-7. 
[35] Dey I, Bhattacharjee S. Penetration and screening of 

perpendicularly launched electromagnetic waves through bounded 
supercritical plasma confined in multicusp magnetic field. Phys 

Plasmas 2011; 18: 022101; and references therein. 
[36] Martinez-Sanchez M, Ahedo E. Magnetic mirror effects on a 

collisionless plasma in a convergent geometry. Phys Plasmas 2011; 
18: 033509; and references therein. 

[37] Pacheco JL, Ordonez CA, Weathers DL. Plasma interaction with a 
static spatially periodic electromagnetic field. IEEE Trans Plasma 

Sci 2011; 39: 2424-5. 

 

 

Received: December 7, 2011 Revised: March 1, 2012 Accepted: March 4, 2012 

 

© Ordonez et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 

which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 
 


