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Abstract: We review the consequence of the causality in electrodynamics. The Kramers-Kronig relations are direct 

consequence of causality which has two ingredients: no perturbation in the remote past and irrelevance of future 

susceptibility to the present field. It is shown that the dielectric function obtained from the integration along the Landau 

contour can be derived from the Kramers-Kronig relations, thus the origin of the collisionless damping in plasmas is 

traced to the causality. An alternative derivation of the Kramers-Kronig relations based on the causal requirement is 

presented. 
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I. INTRODUCTION 

 Causality in electrodynamics means that the response 
must always follow the cause; the cause cannot be precedent 
to the effect. For a Fourier component of a wave with phasor 

eikx i t
 (1) 

the principle of causality can be operationally incorporated 

by assuming that the frequency  has an infinitesimally 

small positive imaginary part. Then the disturbance at 

infinitely remote past ( t = ) is nil in accordance with the 

causal notion that the time t =  is necessarily prior to the 

time of occurrence of any stimulus (cause) which gives rise 

to the onset of disturbance (effect). The small positive 

imaginary part ( ) of the frequency is called adiabatic 

switching on of the perturbation at t = .  The small 

positive imaginary frequency  arises mathematically if one 

solves the plasma equations as an initial value problem via 

Laplace transform, as Landau demonstrated [1], but it can be 

simply invoked as an imaginary frequency in accordance 

with the principle of causality. Adiabatic switching supplies 

a definition of causality that distinguishes the past from the 

future. It is well-known that the Kramers-Kronig (K-K) 

relations are the consequence of the the principle of the 

causality, as it can be found in the standard text books of 

electrodynamics. 

 In this work, we show that Landau damping can be 
derived from the K-K relations which connects the real and 
imaginary parts of the plasma dielectric functions. Landau 
damping which was discovered by Landau in his 1946 paper 
[1] is interpreted as a consequence of the wave-particle 
interaction occurring in the kinetic plasma. By deriving 
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Landau damping from the K-K relations as demonstrated in 
this work, another interpretation of Landau damping is 
possible: Landau damping is a consequence of the causality 
in electrodynamics. This interpretation of the Landau 
damping provides a new insight in the plasma 
electrodynamics. It has been accepted that Landau damping 
can be derived only from the kinetic equation. However, we 
ought to be able to derive it from the fluid equations as well 
since the causality prevails regardless of whether we employ 
kinetic or fluid descriptions of plasma. In this work, we 
demonstrate that Landau damping can be derived from the 
fluid equations as well with the aid of the K-K relations 
(Section III). 

 In most standard text books of electrodynamics, 

derivation of the K-K relations utilizes the mathematical fact 

that the dielectric function is analytic in the upper half - 

plane. Although this analyticity is a consequence of the 

causality, it is a little abstract to connect the K-K realtions to 

the causality. Here in this work, we derive the K-K relations 

directly from the causal requirement that the future value of 

the suscptibility has nothing to do with the present field (Eq. 

13 below). Derivation of the K-K relations along this line 

can be found in earlier work [2]. Here in this work, we use a 

different mathematical form of the causal requirement, thus 

enhancing the physical transparency of the relation between 

the K-K relations and the causality. 

 Incidentally, we mention that the phasor in the expression 

(1) is compatible with the Fourier transform convention 

adopted in this work: Fourier transform of a wave function 

g(x, t)  and its inversion are 

g(x, t) = g(k, ) eikx i t  
dk

2

d

2
 (2) 

g(k, ) = g(x, t) e ikx+i t  dxdt  (3) 
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 One who uses different sign in front of the time-phase in 

the exponential, the frequency  should be assumed to have 

a negative small imaginary frequency. 

 II. CAUSALITY AND SUSCEPTIBILITY 

 A direct definition of causality is expressed by the 
statement that susceptibility of future times must be zero. To 
begin with, we write the Maxwell equation 

1

c
 
D

t
=

1

c
 
E

t
+

4

c
J  (4) 

where D  is the electric displacement, J  the plasma current. 

We integrate Eq. (4) with the initial conditions D(t) = 0  and 

E(t) = 0  at t =  to obtain 

D(t) = E(t)+ 4
t
J(t )dt = E(t)+ 4

0
J(t )d  (5) 

where we made a change of variable, t = t . In the above 

equation, J  is related with E  through material relation. The 

displacement vector D(t)  then represents the response of the 

medium, or the effect caused by the input E(t) . Introducing 

the material relation 

J( ) = ( )E( ) =
4 i

( )E( )  

in terms of the conductivity  and the susceptibility , Eq. 

(5) can be written as a convolution integral 

D(t) = E(t)+ (t )E(t t )dt  (6) 

 Causality demands that the kernel (t)  in Eq. (6) be zero 

for t < 0 . This is so because D  at present time t  should be 

irrelevant to the values of E  at future times. This agrees 

with the basic idea of causality in natural phenomena, and is 

vindicated by experience. Thus we impose the condition 

(t) = 0 for  t < 0  (7) 

 This supplies a direct definition of causality. Then, 
Fourier transforming Eq. (6) gives 

D( ) = ( )E( ),   ( ) = 1+ ( )  (8) 

( ) =
0

(t) ei tdt  (9) 

 In the above, we considered implicitly a particular 
Fourier wave vector component, and the wave vector 
dependance will be reinstated at appropriate stage. 

 The half-sided Fourier integral along the positive t -axis 

is analytic in the upper half - plane ( i > 0; = r + i i )  

if (t)  is square-integrable [3], and (t)  is square-

integrable. To present an easier argument for the analyticity 

of ( )  in the region i > 0 , let us consider the Fourier 

integral 

(t) = ( ) e i td  

 In the above integral, we close the contour by encircling 

the upper half -plane when t < 0 . Then, for this integral 

to be zero, ( )  should be analytic in the upper half -

plane. The reverse proposition is also true. To summarize the 

state of the art so far, the analyticity of ( )  in the region of 

i > 0  is a direct consequence of the causality. 

III. KRAMERS-KRONIG RELATIONS 

 In the following, we derive the K-K relations by two 

different methods. The first method utilizes the analyticity of 

( )  in the upper half -plane, while the second method 

directly uses the causal requirement expressed by Eq. (7). 

 We review the first method which can be found in 

standard text books. Let us consider an analytic function 

F( ) , analytic in the upper half -plane with the property 

lim | F( ) |= 0 . Then, by Cauchy's integral formula, we 

can write 

F( ) =
1

2 i C
 
F( )

d  

where  is an interior point of the closed contour C  which 

consists of the real -axis and the infinite semi-circle in the 

upper half-plane. Since the contribution from the infinite 

semi-circle vanishes, the above integral is written 

F( ) =
1

2 i
 
F( )

d  (10) 

 This equation reads a complex function F( )  of a 

complex variable . Now we let the variable  become 

real by descending the point  downward so that it lands on 

the real axis. Then the integration path in Eq. (10), the path 

along the real -axis, gets deformed in a concave-down 

shape of infinitesimal semicircle around the singular point 

= . Thus, the integral in Eq. (10) is a sum of the 

principal value of the integral plus the contribution from the 

infinitesimal semi-circle. Equating the real and imaginary 

parts of Eq. (10) respectively to zero, we obtain the K-K 

relations in the form 

Re ( ) =
1

 P  
Im ( )

 d  (11) 

Im ( ) =
1

 P  
Re ( )

 d  (12) 

 The above process in the evaluation of F( )  in Eq. (10) 

when  is real is analogous to evaluation of the velocity 

integral in Eq. (27) along the Landau contour when we have 

the singularity v = / k  on the integration path. In the above 

equations the symbol P denotes the principal value. 

 Next, the second method which directly uses the causal 
requirement begins with Eq. (6) where we put 

(t) =
1

2
(S(t)+1) (t)  (13) 

where S(t)  is the step function:  S(t) = 1  for t > 0  and 

S(t) = 1  for t < 0 . The auxiliary function (t)  is set to 

(t)  for t > 0 . Then (t) = (t)  for t > 0 . (t)  for t < 0  

can be anything as far as the causality requirement is 
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concerned. However, (t)  should be somehow related with 

(t) , and we have two possible arrangements: either odd 

continuation or even continuation into the region t < 0 . For 

odd (even) continuation, the Fourier transform ( )  is 

purely imaginary (real). In the sequel, we only utilize the 

property of ( )  being imaginary or real. Different form for 

the step function S(t)  was used by Blundell and Blundell [2] 

in a similar derivation of the K-K relations. 

 Now the Fourier transform of (t)  in Eq. (13) is the 

following convolution integral: 

( ) =
1

2
d ( ) 

1

2
[S( )+ 2 ( )]  (14) 

 To find the Fourier transform of the step function S(t) , 
we use the identity 

P
eiax

x
dx = i  or i  (15) 

depending upon a > 0  or a < 0 . Equation (15) can be 

proved by performing the contour integration. Therefore we 

have the following expression for the step function S(t) : 

S(t) =
1

i
 P  

eitq

q
 dq  (16) 

 The above equation gives for the Fourier transform of the 
step function in the form 

S( ) = S(t)ei t  dt = 2i P 
1

 (17) 

 Using Eq. (17) in Eq. (14) gives 

( ) =
i

2
 P  

( )
 d +

1

2
 ( )  (18) 

 When ( )  is purely imaginary, we have 

1

2
 ( ) = i Im ( ) , which gives in turn 

Re ( ) =
1

 P 
Im ( )

 d  (19) 

 When ( )  is purely real, we have 
1

2
 ( ) = Re ( ) , 

which yields in turn 

Im ( ) =
1

 P 
Re ( )

 d  (20) 

 Equations (19) and (20) are the two K-K relations, which 
are a pair of Hilbert transforms. Any one of them can be 
obtained by Hilbert transform from the other. The Hilbert 
inversion is facilitated by the identity [4] 

1
2  P  

1

x x
 

1

x x
 dx = (x x )  (21) 

 In order to invert Eq. (19), let us multiply both sides by 

P 
1

 and integrate d ( ) : 

P 
Re ( )

d =
1

 P 
d Im ( )

d  

 Upon using formula (21) the right hand side of the above 

equation becomes  Im  ( ) . So we obtain 

Im ( ) =
1

 P  
Re ( )

 d  (22) 

IV. LANDAU DAMPING 

 As a concrete example of the K-K relations, we consider 
a one-dimensional Vlasov-Poisson plasma which is governed 
by the following linearized equations: 

t
g(x,v, t)+ v

g

x

e

m
E(x, t) 

dg0 (v)

dv
= 0  (23) 

x
E(x, t) = 4 e dv g(x,v, t)  (24) 

where g(x,v, t)  is the perturbed electron distribution 

function, g0 (v)  is the zero order equilibrium electron 

distribution function, and the ions are assumed to form the 

uniform neutralizing background. We Fourier transform Eqs. 

(23) and (24) by performing the integral e ikx+i t ( )dxdt . 

Assuming that  has a small positive imaginary part and 

using the causal boundary condition g(x,v, t = ) = 0  give 

g(k,v, ) =
e

m
 
dg0

dv
 

i

kv
E(k, )  (25) 

ikE(k, ) = 4 e dv g(k,v, )  (26) 

 The dielectric function is obtained from the above 
equations 

(k, ) = 1+ ( ,k) = 1+ pe
2

k
dv 

dg0

dv
kv

 (27) 

where pe  is the electron plasma frequency. We show that 

( ,k)  in Eq. (27) satisfies the K-K relations. The real part 

of (k, )  is given by the principal value: 

Re (k, ) = P dv 

dG0 (v)
dv

v
k

    (28) 

where G0 (v) =
pe
2

k2
g0 (v) . The imaginary part of (k, )  is 

obtained by using Eq. (28) in Eq. (20): 

Im (k, ) =
1
P

Re ( ,k)
d  

=
1
P

d
P dv

dG0 (v)
dv

v
k
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=
1

dv
dG0 (v)

dv
P d  

1

v
 

1

/ k
   ( = / k)  

 Upon using Eq. (21) the above expression becomes 

Im (k, ) =  
dG0

dv v=
k

 (29) 

 This result is completely equivalent to calculating the 
velocity integral in Eq. (27) along the Landau contour. 
Reversely, if Eq. (29) is substituted into Eq. (19), we recover 
Eq. (28). 

 As another example of application of K-K relations, we 

shall derive Landau damping by means of fluid equations. 

The plasma under consideration which obeys the kinetic 

equations, Eqs. (23) and (24), is considered as a group of 

beams [5]; each beam with the beam velocity v0  is described 

by fluid equations 

v

t
+ v0  

v

x
=

e

m
E(x, t)  (30) 

n

t
+ N(v0 ) 

v

x
+ v0  

n

x
= 0  (31) 

ikE(k, ) = 4 en(k, )  (32) 

where v  and n  are respectively perturbed velocity and 

perturbed density of the beam whose zero order velocity is 

v0 . N(v0 )  is the equilibrium zero order number density of 

v0 -beam. In terms of the Fourier variables, Eqs. (30) and 

(31) are written 

i( + kv0 )v =
e

m
E(k, )  (33) 

( + kv0 )n + kN(v0 )v = 0  (34) 

 The last two equations yield 

n = i 
e

m
 
kN(v0 )

( kv0 )2  E  (35) 

 The polarization P =
E

4
 is obtained after using Eqs. 

(32) and (35) 

P =
e2

m

N(v0 )

( kv0 )2  E  (36) 

 Therefore the dielectric function of v0 -beam is obtained 

from E + 4 P = b  E : 

b (k, ) = 1
4 e2

m
 
N(v0 )

( kv0 )2  (37) 

 The real part of b  is the principal value: 

Re b (k, ) = 1
4 e2N(v0 )

m
 P 

1

( kv0 )2  (38) 

 The imaginary part of b  is obtained from the K-K 

relation by evaluating the integral 

Im b (k, ) =
1

 P 
Re [ b (k, ) 1]

 d  

=
1

 
4 e2N(v0 )

m
 P  

d
 P 

1

( kv0 )2  

 Here we use the relation 

P 
1

( kv0 )2 =
1

k2  
v0

 P 
1

v0 k

 

 Then we obtain with the aid of Eq. (21) 

Im b (k, ) =  
4 e2N(v0 )

mk
 
v0

( kv0 )  (39) 

 The plasma susceptibility is obtained by summing all the 

beam susceptibilities since the susceptibility is additive. Let 

the distribution of beams be f (v0 ) . Putting 

N(v0 ) = f (v0 )dv0  and integrating over the beams, we obtain 

Re (k, ) = 1+ pe
2

k2  P  
v0

 
1

v0 k

 f (v0 )dv0  

= 1+ pe
2

k
 P  

df (v0 )
dv0

kv0

dv0  (40) 

Im (k, ) =  pe
2

k2  
df (v0 )

dv0 v0 =
k

 (41) 

 The dielectric function as obtained by Eqs. (40) and (41) 
entirely agrees with the kinetic theory results calculated 
according to Landau's prescription. 

V. DISCUSSION 

 Finally we show that separation of the real and imaginary 

parts of b  in Eq. (37) can be done without using the K-K 

relations; it can be done by putting + i  in 

correspondence to the adiabatic switching. We have 

1

( + i kv0 )
2 =

1

( kv0 )
2
+

2 i
2 ( kv0 )

[( kv0 )
2
+

2 ]2
 

 Now we let 0 . Then the real part of this expression 

is P
1

( kv0 )2  , the principal value. The imaginary part is 

2i ( kv0 )

[( kv0 )2
+

2 ]2 = i  
( 2

+
2 )

   ( = kv0 )  

 Letting 0 , the above expression becomes 

i ( ) = i  
1

k
 
v0

( kv0 )  
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 Using the above result Eq. (39) is recovered. This 
exercise shows that use of Plemelj's formula is a way of 
implementing the causal requirement. As it is well-known 
Plemelj's formula is equivalent to the Landau contour. 

 In conclusion, the principle of causality was enforced by 

two mathematical apparatus, namely, the adiabatic switching 

( + i ) and Eq. (13) which definitely specifies 

(t < 0) = 0 . The two mathematical implementations of the 

causal requirement resulted in the K-K relations, and 

equivalently the dielectric function calculated along the 

Landau contour. 

 In summary, we showed that Landau damping can be 
derived from the K-K relations which are direct consequence 
of the causality. Thus it appears to be possible to have a new 
interpretation of Landau damping: its fundamental reason 
can be traced to the causality. It has been usually accepted 
that derivation of Landau damping requires kinetic equation 
which explicitly comprises the wave-particle interaction in 
plasma. Our fluid derivation of Landau damping further 
supports this new interpretation since the causality is 

operative regardless of whether we adopt kinetic or fluid 
model of plasma. 
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