
Send Orders for Reprints to reprints@benthamscience.net 

 The Open Plasma Physics Journal, 2014, 7, 1-17 1 

 
 1876-5343/14 2014 Bentham Open 

Open Access 

Macroscopic and Microscopic Structure of Electromagnetic Wakefield 
H. Lin*, C.P. Liu, B.F. Shen and Z.Z. Xu 

State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800-211, 
Shanghai 201800, China 

Abstract: Applying various stimuli to excite large-amplitude electrostatic structure within plasmas is a basic idea of 
plasma-based acceleration. However, because these stimuli are usually magnetized, whether or not their wakes within 
plasmas are purely electrostatic should be cautiously treated. By strict theory on self-consistent fields of charged particles, 
we make detailed investigations on the wakes of those magnetized stimuli and the acceleration by electromagnetic wakes. 
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1. INTRODUCTION 

 The generation of high-energy charged particles from 
plasmas has been an appealing issue of plasma physics for 
decades. In 1970s, authors found from their computer 
simulation on two-stream instability [1-5], that electron 
phase-space distribution function display a hole structure 
when self-consistent field is set up within plasmas. Such a 
hole structure reflects the population of some lower energy 
electrons being suppressed while that of some higher energy 
electrons being elevated, and hence is a signal of the 
generation of high-energy charged particles, or of particle 
acceleration. It has also been described by some authors with 
“negative temperature” conception [6]. Some authors have 
noticed that a temperature profile, which is time-space 
varying, is more appropriate than a constant temperature to 
describe plasmas [7]. All of these earlier works have clearly 
indicated that plasma is an effective matrix for generating 
high-energy charged particles. 
 On the other hand, at the end of 1970s, Tajima and 
Dawson definitely proposed a notion which was plasma-
based particle acceleration [8]. This notion stresses that 
plasma density wave can play a role of traditional 
accelerator. Because the plasma density wave is closely 
related to self-consistent electrostatic field within plasmas, 
this stimulates a lot of investigations on how to set up large-
amplitude electrostatic wave within plasmas via various 
stimuli [9-31]. Two familiar conceptions, laser wakefield 
[13] and plasma wakefield [12,14], are typical examples of 
such a large-amplitude electrostatic wave. In 1980s, authors 
have set up basic 1-D theories on these two conceptions  
[12-14]. Then, during following decades, a lot of 
investigations have been addressed to various wakefield-
related problems [15-31]. 
 Despite so many related investigations on so-called 
wakefield, there still exists a basic question. Does a realistic 
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3-D plasma electrostatic wave exist? Some authors have 
found from particle-in-cell (PIC) simulation, that the driven 
plasma density wave is accompanied by a similar magnetic 
energy density wave [32]. Because earlier 1-D theories [12-
14] cannot include magnetic field [12-14], this implies that 
we should set up a stricter theory on wakefields of various 
stimuli rather than simply treat them as electrostatic 
structures. A notable fact is that the stimuli to excite these 
wakefields usually do not correspond to zero self-consistent 
magnetic field. For example, laser pulse, (the stimulus 
driving the laser wakefield,) has a laser magnetic field and 
hence is a “magnetized” stimulus. Being stored usually in 
magnetic apparatus such as storage-ring, an electron beam is 
also a magnetized stimulus to excite the plasma wakefield. 
These “magnetized” stimuli force us to carefully treat their 
wakefields. Some authors have noticed that these wakefields 
are electromagnetic and set up a related nonlinear theory 
based on fluid approximation [27,39]. Moreover, some 
efforts have been paid to experimentally probe the magnetic 
fields structure of wakefields [33]. But the stress of their 
approximated fluid theory [27] is not focused on magnetic 
structure of every wake and hence does not predict the latter 
results found from the PIC simulation [32]. 
 Earlier investigations displaying phase space holes [1-6] 
have revealed that electromagnetic self-consistent field can 
also lead to high-energy charged particles. High-energy 
particles generated from magnetic reconnection [32,34-36] 
also suggest that the particle acceleration should not merely 
be related to the electrostatic wakefield but is also available 
for electromagnetic wakefield. The particle acceleration, or 
the generation of high-energy particles, from the 
electromagnetic wakefield is a part of the purpose of this 
work. Strictly speaking, for a realistic “magnetized” 
stimulus, if its wake is “automatically” taken as an 
electrostatic one, the strength of such an electrostatic wake 
might be greatly overestimated and hence the estimation on 
some aspects of acceleration quality might be very 
optimistic. 
 The purpose of this work is to present a stricter basic 
method, which is universally applicable to plasma physics, 
and then put the investigations on the magnetic wakefield on 
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a firm basis. The work is arranged as follows: By strictly 
analyzing several basic methods, we display a firm basic 
method in section.II. Subsection.III.A is for the applications 
of this firm basis to 3-D aperiodic electrostatic structure. The 
applications of this firm basis to the electromagnetic 
wakefield is conducted in subsection.III.C. Section.IV is a 
brief summary. 

2. BASIC METHODS 

 Many textbooks [43-45] have displayed clearly a 
fundamental fact: Liouville theorem and Hamilton's 
equations 

dt f r t( ), p t( ), t( ) = 0;  (1) 

dtr t( ) = ∂H
∂p t( ) = υ t( );dt p t( ) = − ∂H

∂p t( ) ;  (2) 

will lead to well-known Vlasov equation (VE). Maybe 
someone will find that according to Klimontovich-Dupree 
method [45], a functional 

N x,υ, t( ) ≡
i
∑δ x − xi t( )( )δ υ − dt xi t( )( )  (3) 

in which x  and υ  are independent of t , meets VE and 
hence conclude that the VE is defined over x,υ, t( ) -space. 
However, their method can also be extended to the following 
functional 

N x t( ),dt x t( ), t( ) ≡
i
∑δ x t( ) − xi t( )( )δ dt x t( ) − dt xi t( )( ).  (4) 

 One can find that it also meets a VE defined over 
x t( ),υ t( ), t( ) -space. Therefore, for generality, we take VE 

as being defined over x t( ),υ t( ), t( ) -space. 

 This fundamental fact reminds us that VE is for an 
element whose trajectory in phase space is r t( ), p t( )⎡⎣ ⎤⎦ . 
Strict expression of VE should outstand time-dependence of 
r t( )  and υ t( )  

∂t f t, r t( ),υ t( )( ) + dtr t( )*∂r t( ) f t, r t( ),υ t( )( )
+dtυ t( )*∂υ t( ) f t, r t( ),υ t( )( ) = 0

 (5) 

 In terms of fluid mechanics, VE and its fluid derivations 
are expressed by Lagrangian variables. On the other hand, 
Maxwell equations (MEs) are often expressed by Eulerian 
variables R, t( ) = x, y, z, t( ) , where R  and t  are independent 
variables. 
 Obviously, according to standard definition of fluid 
velocity (see standard textbooks [45] ) 

u x, t( ) =
∫

i
∑υδ x − xi t( )( )δ υ − dt xi t( )( )d 3υ

∫
i
∑δ x − xi t( )( )δ υ − dt xi t( )( )d 3υ

,  (6) 

we can find that there is usually Δ x,υ, t( ) = υ − u x, t( ) ≠ 0 . 
If we try to find the strict solution of a VE from a power 
series of Δ , we can formally write a trial solution 

 
ln f =

i≥0
∑ c2i x, t( )* Δ ⋅ Δ( )i + c2i+1 x, t( )* (Δ ⋅ Δ)i * (eΔ


⋅ Δ)⎡⎣ ⎤⎦ ,  (7) 

where  eΔ


 is unit vector along Δ . Also, this power series can 
be transformed in terms of p υ( ) − p u x, t( )( ) , where 

p var( ) = var
1− (var)2

. Inserting it back into a VE and 

comparing the coefficients of terms Δ j , we can easily find 
that for all terms 126Δ j  terms, there is 

{∂t c j x, t( ) + dt x *∇xcj x, t( )}  

+( j +1)* cj+1 x, t( )*{[∂t p u x, t( )( )
+dt x *∇x p u x, t( )( )]− E(x, t) + u x, t( ) × B x, t( )⎡⎣ ⎤⎦}

 

= 0.8  (8) 

 Here, we have used the fact Δ × B ⋅ Δ = 0 . Obviously, a 
set of functions ci  and u , if they meet 

∂t p u x, t( )( ) + dt x *∇x p u x, t( )( )]
− E(x, t) + u x, t( ) × B x, t( )⎡⎣ ⎤⎦ = 0;

 (9) 

∂t c j x, t( ) + dt x *∇xcj x, t( ) = 0,  (10) 

they can yield a strict solution of the VE according to Eq. 
(7). Note that Eq. (9) is expressed by Lagrangian variables 
r t( ), t( ) . Clearly, if expressing this equation in terms of 

Euler variables, there will be 

∂t p u X, t( )( )] + E(X, t) + u X, t( ) × B X, t( )⎡⎣ ⎤⎦ = 0.  (11) 

 Moreover, Eq. (10) is indeed dtcj = 0  and hence means 

cj x, t( ) ≡ cj x 0( ), 0( ) . 

 Above treatment differs from conventional fluid 
treatment, in which equations of different orders of 
momentums p  are derived (by timing pi υ( )  with the VE 
and then integrating them over υ -space) and form a closed 
equation set whose member is of infinite number. According 
to the conventional fluid treatment, an equation of fluid 
momentum, 

∂t p x t( ), t( ) + u x t( ), t( )*∇x t( ) p x t( ), t( )
+ E(x t( ), t) + u x t( ), t( ) × B x t( ), t( )⎡⎣ ⎤⎦

+ 1
n
∇ ⋅Pressure = 0

, 

can be derived. Here,  

Pressure = ∫ υ − u( )* υ
1−υ 2

− p
⎛
⎝⎜

⎞
⎠⎟

fd 3υ . Note that the 

fluid momentum p x t( ), t( )  differs from 
u

1− u2
 in finite 

temperature case. In the conventional fluid treatment, people 
will seek for the equation of Pressure  or that of the 
momentum of p  in next order. Actually, the conventional 
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fluid treatment describe the charged particles with their 
momemtums of p  in different orders. In contrast, in above 
treatment, these ci , and u , describe the system to be more 
straightforward. More important, two treatments are of a 
fundamental discrepancy. In the conventional fluid 
treatment, every order of momentum depends on those of 
higher order. This will inevitably invoke truncation 
approximation when seeking the exact momentum at 
specified order. In contrast, above treatment is free from the 
truncation approximation. 

 In the finite temperature case, the fluid momentum 

p x t( ), t( )  differs from 
u

1− u2
. In addition, according to 

the definition Eq. (6), u x t( ), t( )  also differs from dt x  when 

the temperature is non-zero. Both p x t( ), t( ) − u
1− u2

 and 

u x t( ), t( ) − dt x  are functions of the temperature. Pr essure  
is also a function of the temperature. In order to derive an 
equation of u  from the equation  

∂t p x t( ), t( ) + u x t( ), t( )*∇x t( ) p x t( ), t( )
+ E(x t( ), t) + u x t( ), t( ) × B x t( ), t( )⎡⎣ ⎤⎦

+ 1
n
∇ ⋅Pr essure = 0

,  

we should make equal approximation on those temperature-
dependent terms. Namely, if Pr essure  is taken as negligible 
because it is temperature-dependent, then we should also 

take p x t( ), t( ) − u
1− u2

 and u x t( ), t( ) − dt x  as negligible. 

Guided by this equal approximation spirit, we can derive Eq. 
(9) from the equation  

∂t p x t( ), t( ) + u x t( ), t( )*∇x t( ) p x t( ), t( )
+ E(x t( ), t) + u x t( ), t( ) × B x t( ), t( )⎡⎣ ⎤⎦

+ 1
n
∇ ⋅Pr essure = 0

.  

The convective operator u x t( ), t( )*∇x t( )  is also temperature 
dependent. When neglecting Pr essure , for same reason, 
some part of u x t( ), t( )*∇x t( )  should be neglected. Actually, 
even for the fluid velocity expressed by Euler variable, 

u R, t( ) = i∑ dtriδ R − ri t( )( )
i∑ dtriδ R − ri t( )( ) , if directly applying ∂t  on it 

we can find when T = 0 , any dtri  (if R − ri t( )  is satisfied) 

can be shifted out of the summation sign ∑  (because it is 
equal to a quantity independent of the subindex i , or 
u R, t( ) ). This leads to that when T = 0 , the equation 
satisfied by u R, t( )  is  

∂t p u R, t( )( ) = E(R, t) + u R, t( ) × B x t( ), t( )  

rather than  

∂t p u R, t( )( ) + u R, t( ) ⋅∇R p u R, t( )( )
= E(R, t) + u R, t( ) × B x t( ), t( )

. 

 Obviously, if using conventional fluid treatment, we will 
first obtain the equation of the fluid momentum p x t( ), t( )  
and then deal with this equation cautiously by further 
applying various approximations in order to derive an 
equation of u x t( ), t( ) . Actually, it is unnecessary to follow 
such a roundabout, cumbersome treatment because what we 
can know from such a treatment is the velocity 

corresponding to the fluid momentum, 
p x t( ), t( )

1+ p2 x t( ), t( )
, 

rather than the fluid velocity appearing in Maxwell equations 

(MEs), i.e, j
n

. 

 Eq. (11) and 4  MEs form a closed equation set 
expressed by Eulerian variables 

∂t
u

1− u2
= −E − u × B;  (12) 

∂t E = nu + ∇ × B;  (13) 

∇ ⋅E = −n + ZNi ;  (14) 

∇ × E = −∂t B;  (15) 

∇ ⋅ B = 0.  (16) 

 In addition, we also present a more straightforward 
process of deriving this equation set in an appendix. 

3. APPLICATIONS 

 From Eqs. (12-16), we can make more reliable 
investigations on both electromagnetic and electrostatic 
wakefields. 

3.1. 3-D Plasma Electrostatic Structure 

 Note that Eqs. (12-16) are nonlinear. For example, Eq. 
(12) is a nonlinear equation of u  and Eq. (13) also contains 
a nonlinear term nu . When studying 3-D version of Eqs. 
(12-16), we should be aware of that due to these nonlinear 
terms, the solution is unable to have a separable form 
func1(r)* func2(ξ) . Strictly speaking, for any nonlinear 

differential equation in high-dimensional case, the well-
known method of separation of variables often does not 
work. Therefore, we treat those related physical quantities 
appearing in Eqs. (12-16) as having a common form (where 
ξ =ηz − t ) 

Q r,θ, z, t( ) = Q r, z,ξ( ).  (17) 

 Moreover, sometimes the term “electrostatic” is 
understood loosely as referring to a time-independent 
B = B r, z,θ( ) ≠ 0 . However, such a time-independent 

B = B r, z,θ( ) ≠ 0 , which is “time-dependent” relative to the 
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1
η

-frame, does not favor a plasma electrostatic wave whose 

E  is static relative to the 
1
η

-frame. Unless such a time-

dependent B  is also z -independent, otherwise such a 
running wave form E = E r,ηz − t,θ( )  will not appear. This 
can be verified by strictly analyzing Eqs. (12-16). For a 
transverse inhomogeneous static B = B r,θ( ) ≠ 0 , we can 

find that there are three corresponding static quantities: E , 
n  and u  which meet E + u × B = 0 , ∇ ⋅E = n −αN  (α  is 
a constant coefficient ) and ∇ × B = nu . An equation of p ⋅  

B  can be derived in the same way like deriving Eq. (31) (see 
below). Then, because B  is ξ -independent, we can obtain 

an equation of p  which depends on B . But we can find that 

because such a B = B r,θ( ) ≠ 0  does not couple with ∂ξ p , it 

will not affect periodicity requirement β ∝ 1
r

, which is 

presented below. A severe constraint on transverse shape for 
warranting longitudinal periodicity still holds in 
B = B r,θ( ) ≠ 0  case. Detailed investigations on such a 

B = B r,θ( ) ≠ 0  case will be presented in other works. 

 In the 3-D case, we introduce two functions β  and λ  to 
denote the ratio between velocity components along with 
different directions 

ur = βuz ; pr = β pz ,  (18) 

uθ = λuz ; pθ = λpz .  (19) 

 Eqs. (12-16) will yield following formulas [40] 

Ez = −∂t pz = ∂ξ pz ;  (20) 

Er = ∂ξ pr = ∂ξ β pz( ) = β∂ξ pz + ∂ξβ( ) pz ,  (21) 

Eθ = ∂ξ pθ = ∂ξ λpz( ) = λ∂ξ pz + ∂ξλ( ) pz .  (22) 

−∂t Bθ = 0 = η∂ξEr − ∂rEz⎡⎣ ⎤⎦  

=η∂ξ β∂ξ pz + ∂ξβ( ) pz
⎡⎣ ⎤⎦ − ∂rEz  

= 2η∂ξβ( )∂ξ pz +ηβ∂ξξ pz +η ∂ξξβ( ) pz − ∂r∂ξ pz .  (23) 

−∂t Br = 0 = 1
r
∂θEz −η∂ξEθ

⎡
⎣⎢

⎤
⎦⎥

 

= 1
r
∂θEz −η∂ξ λ∂ξ pz + ∂ξλ( ) pz

⎡⎣ ⎤⎦  

= 1
r
∂θ∂ξ pz − 2η∂ξλ( )∂ξ pz −ηλ∂ξξ pz −η ∂ξξλ( ) pz  (24) 

 

−∂t Bz = 0 = 1
r

∂r rEθ( ) − ∂θEr⎡⎣ ⎤⎦  (25) 

= 1
r

r∂r λ∂ξ pz + ∂ξλ( ) pz
⎡⎣ ⎤⎦ + λ∂ξ pz + ∂ξλ( ) pz

⎡⎣ ⎤⎦

−∂θ β∂ξ pz + ∂ξβ( ) pz
⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

= 1
r

rλ∂r∂ξ pz − β∂θ∂ξ pz⎡⎣ ⎤⎦ + r∂r∂ξλ + ∂ξλ − ∂θ∂ξβ⎡⎣ ⎤⎦ pz

+
r ∂rλ( )∂ξ pz + r ∂ξλ( )∂r pz + λ∂ξ pz − ∂θβ( )∂ξ pz

− ∂ξβ( )∂θ pz

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 

 Because of Eqs. (23,24), we can rewrite Eq. (25) as 0  

=

rλ 2η∂ξβ( )∂ξ pz + rληβ∂ξξ pz + rλη ∂ξξβ( ) pz

−βr 2η∂ξλ( )∂ξ pz − βrηλ∂ξξ pz − βrη ∂ξξλ( ) pz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ r ∂rλ( )∂ξ pz + r ∂ξλ( )∂r pz + λ∂ξ pz − ∂θβ( )∂ξ pz − ∂ξβ( )∂θ pz
⎡⎣ ⎤⎦

+ r∂r∂ξλ + ∂ξλ − ∂θ∂ξβ⎡⎣ ⎤⎦ pz

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

 

=

rλ 2η∂ξβ( )∂ξ pz − βr 2η∂ξλ( )∂ξ pz + r ∂rλ( )∂ξ pz

+r ∂ξλ( )∂r pz + λ∂ξ pz − ∂θβ( )∂ξ pz − ∂ξβ( )∂θ pz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ rλη ∂ξξβ( ) − βrη ∂ξξλ( ) + r∂r∂ξλ + ∂ξλ − ∂θ∂ξβ⎡⎣ ⎤⎦ pz

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

.  (26) 

in which all second-order derivative terms of pz  disappear. 
Other MEs can be written as 

ZNi − n[ ]  

=η 1
r
∂ξ rEz⎡⎣ ⎤⎦ + 1

r
∂r rEr[ ] + 1

r
∂θEθ  

=η∂ξξ pz + ∂r β∂ξ pz + ∂ξβ( ) pz
⎡⎣ ⎤⎦ + 1

r
β∂ξ pz + ∂ξβ( ) pz
⎡⎣ ⎤⎦  

+ 1
r
∂θ λ∂ξ pz + ∂ξλ( ) pz

⎡⎣ ⎤⎦  

= η∂ξξ pz + β∂r∂ξ pz + λ
r
∂θ∂ξ pz

⎡
⎣⎢

⎤
⎦⎥

+ ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz + ∂ξβ( )∂r pz + 1

r
∂ξλ( )∂θ pz

⎡
⎣⎢

⎤
⎦⎥

 

+ ∂r∂ξβ +
∂ξβ
r

+ 1
r
∂θ∂ξλ

⎡

⎣
⎢

⎤

⎦
⎥ pz .  (27) 

∇ × B[ ] |z = 0 = ∂t Ez − nuz = −∂ξEz − nuz ;  (28) 

∇ × B[ ] |r = 0 = ∂t Er − nur = −∂ξEr − nur ;  (29) 

∇ × B[ ] |θ = 0 = ∂t Eθ − nuθ = −∂ξEθ − nuθ ;  (30) 
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where Eqs. (24-26,27,28-30) stand for Farady' law, Gauss' 
law and Ampere' law, respectively. From Eqs. (20-30), we 
can obtain 

∂ξξ pz = −nuz  

=

η∂ξξ pz + β∂r∂ξ pz + λ
r
∂θ∂ξ pz

⎡
⎣⎢

⎤
⎦⎥

+ ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz + ∂ξβ( )∂r pz + 1

r
∂ξλ( )∂θ pz

⎡
⎣⎢

⎤
⎦⎥

+ ∂r∂ξβ +
∂ξβ
r

+ 1
r
∂θ∂ξλ

⎡

⎣
⎢

⎤

⎦
⎥ pz − ZNi

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

 

pz

1+ 1+ β 2 + λ2( ) pz
2

 

=

∂rβ + β
r

+ 1
r
∂θλ + 2ηβ∂ξβ + 2ηλ∂ξλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz

+ ∂ξβ( )∂r pz + 1
r

∂ξλ( )∂θ pz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

η 1+ β 2 + λ2( )∂ξξ pz⎡⎣ ⎤⎦

+ ∂r∂ξβ +
∂ξβ
r

+ βη∂ξξβ + 1
r
∂θ∂ξλ + λη∂ξξλ

⎡

⎣
⎢

⎤

⎦
⎥ pz − ZNi

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

 

pz

1+ 1+ β 2 + λ2( ) pz
2

.  (31) 

 Likewise, two similar equations for pr = β pz  and 
pθ = λpθ  exist 

−nβuz = ∂ξξ β pz( ) = β∂ξξ pz + 2∂ξβ∂ξ pz + pz∂ξξβ.  (32) 

−nλuz = ∂ξξ λpz( ) = λ∂ξξ pz + 2∂ξλ∂ξ pz + pz∂ξξλ.  (33) 

and hence there are 

2∂ξβ∂ξ pz + pz∂ξξβ = 0,  (34) 

2∂ξλ∂ξ pz + pz∂ξξλ = 0,  (35) 

which yields 

∂ξβ =
C1 r,θ( )

pz
2 or∂ξβ = 0,  (36) 

∂ξλ =
C2 r,θ( )

pz
2 or∂ξβ = 0,  (37) 

where C1,2 r( )  are binary functions of r  and θ . 

 Obviously, if pz  is a periodic function of ξ , the 
equation of pz  should correspond to first integral. Because 
β  and λ  appear in Eq. (31), if β  and λ  meet the former 

case ∂ξβ =
C1 r,θ( )

pz
2  and ∂ξλ =

C2 r,θ( )
pz

2 , Eq. (31) will be 

very complicated and cannot warrant pz  being a periodic 
function of ξ . For finding periodic solutions of Eq. (31), we 

only need to consider the latter case ∂ξβ,∂ξλ( ) = 0, 0( )  in 

which β = β r,θ( ) , as well as λ = λ r,θ( ) , are binary 
functions of r  and θ . Thus, we can rewrite Eq. (31) as 

1−
η 1+ β 2 + λ2( ) pz

1+ 1+ β 2 + λ2( ) pz
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
∂ξξ pz  

= ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz

⎡
⎣⎢

⎤
⎦⎥
− ZNi

⎧
⎨
⎩

⎫
⎬
⎭

pz

1+ 1+ β 2 + λ2( ) pz
2

.  (38) 

 Actually, if our aim is aperiodic electrostatic structure, we 
can directly start from more general forms of β,λ( ) . However, 
as pz  comply with two equations, Eq. (38) and Eq. (26), special 
attention should be paid to ensure two different equations of the 
same quantity pz  agreeing with each other. Obviously, there 
are two ways to achieve this goal. The first way is that two 
equations are alike, i.e., one equation can, by timing a function, 
become the other. By considering Eqs. (27-30) and verifying 
different combinations of β  and λ , we can find that if 

∂ξβ,∂ξλ( ) ≠ 0, 0( ) , Eqs. (38) and (26) cannot be the same. 
Therefore, this requires to focus our attention to 
∂ξβ,∂ξλ( ) = 0, 0( )  case. The other way is that an equation of 

pz  becomes degenerated (i.e., its coefficients are equal to 0 ). 
If only Eq. (38) is degenerated then, pz  should become a fixed 
value, and this can be easily verified through Eq. (38). 
Consequently, when only Eq. (26) is degenerated, two different 
equations can yield a varying pz . By considering Eqs. (27-30) 
and verifying different combinations of β  and λ , we can find 

that if ∂ξβ,∂ξλ( ) ≠ 0, 0( )  exist, Eq. (26) cannot be 

degenerated. When ∂ξβ,∂ξλ( ) = 0, 0( ) , Eq. (26) can be 

degenerated if r ∂rλ( ) + λ − ∂θβ( )⎡⎣ ⎤⎦ = 0  exists. This also 

requires us to focus our attention to the ∂ξβ,∂ξλ( ) = 0, 0( )  
case. In short, to ensure Eq. (38) and Eq. (26) agree with each 
other, we should focus our attention to the case of 
∂ξβ,∂ξλ( ) = 0, 0( )  and  

r ∂rλ( ) + λ − ∂θβ( )⎡⎣ ⎤⎦ = 0 . 

By re-writing Eq. (38) and timing ∂ξ pz  at both sides 

∂ξ pz *∂ξξ pz

∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz − ZNi

⎡
⎣⎢

⎤
⎦⎥

=
pz *∂ξ pz

1+ 1+ β 2 + λ2( ) pz
2 −η 1+ β 2 + λ2( ) pz

⎡
⎣⎢

⎤
⎦⎥

,

 (39) 
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we can find a conservation law 

ξ − independentconst  

=
sign( ∂rβ + β

r
+ 1

r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz − ZNi )* ZNi

∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟

2

ln | ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz − ZNi |⎡

⎣⎢
⎤
⎦⎥

 

− 1
2

2 1+ 1+ β 2 + λ2( ) pz
2

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )⎡

⎣
⎤
⎦

+

η 1+ β 2 + λ2( )
η2 1+ β 2 + λ2( )2

− 1+ β 2 + λ2( )⎡
⎣⎢

⎤
⎦⎥

3

ln

| 1+ 1+ β 2 + λ2( ) pz
2

−
η 1+ β 2 + λ2( )

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

|

| 1+ 1+ β 2 + λ2( ) pz
2

+
η 1+ β 2 + λ2( )

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

|

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

−
η 1+ β 2 + λ2( )

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )⎡

⎣
⎤
⎦

*  

pz + 1
2

1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

ln

| pz −
1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

|

| pz + 1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

|

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

+
∂ξ pz

∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟

.  (40) 

where sign(x) = x
| x |

 is the sign function. 

 Transverse factors β r,θ( )  and λ r,θ( )  are determined 
by the transverse geometrics of the driving stimulus. 
Moreover, Eq. (40) reveals an important universal property 
of aperiodic structure. That is, it is possible for a pz -value to 
correspond to different ∂ξ pz -values. Because the phase 

velocity 
1
η

 is a characteristic constant velocity, there is 

∂ξ pz = 0  for pz = 1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

 (i.e. 

uz = 1
η

). If calculating Eq. (40), we can find, from Fig. (1), 

that in addition to ∂ξ pz = 0 , there are other three values of 

∂ξ pz  when pz = 1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

. The 

first is greater than ZNi / ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟  and denoted as 

∂ξ pz |uz =
1
η

⎡
⎣
⎢

⎤
⎦
⎥

+

. The second is smaller than 

ZNi / ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟  and denoted as ∂ξ pz |uz =

1
η

⎡
⎣
⎢

⎤
⎦
⎥

−

. The 

third is smaller than 0 . 

 Multiple possible values of ∂ξ pz  determine very subtle 
behavior of the aperiodic structure at the neighborhood 

region of pz = 1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

 or uz = 1
η

. 

For a periodic structure, the constraint n ≥ 0  always 

confines pz < 1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

. In 

contrast, in an aperiodic structure, multiple possible values 

of ∂ξ pz  at pz = 1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

 can reach 

pz ≥
1

η2 1+ β 2 + λ2( )2
− 1+ β 2 + λ2( )

 regime without 

violating the constraint n ≥ 0 . For instance, Eq. (40) 
indicates that if there are 

0 < 1+ 1+ β 2 + λ2( ) pz
2 −η 1+ β 2 + λ2( ) pz → 0+ ;  

0 > ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz − ZNi → 0− ,  (41) 

∂ξξ pz  can maintain a finite value and therefore warrant the 
constraint n ≥ 0  (because of ∂ξξ pz ≠ ∞ ). 

3.2. phase Space Structure 

 According to ref. [40], the phase space profile can be 
calculated from solved E, B( ) : 

 
f = fmono +

i1
∑bi * υ − u( )* υ 2 −1( )⎡⎣ ⎤⎦

i
;  (42) 

fmono = ∫ fd 3υ − ∫
i
∑bi * υ − u( )* υ 2 −1( )⎡⎣ ⎤⎦

i
d 3υ

⎧
⎨
⎩

⎫
⎬
⎭

*δ υ − u( ).  (43) 
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Fig. (1). The behavior of the ∂ξ pz -dependent part of Eq. (40) is illustrated by a function f y( ) = y + sign y −1( )* log(| y −1 |) + 2 * log(ZNi ) , 

where y =  ∂rβ + β
r

+ 1
r
∂θλ

⎛
⎝⎜

⎞
⎠⎟ ∂ξ pz / ZNi  and sign x( ) = | x |

x
. Note that f y( )  is the difference between the ∂ξ pz -dependent part of Eq. (40) 

at any ∂ξ pz -value and that at ∂ξ pz = 0  case. (a) is for large-scale global behavior, (b) and (c) are two close-up of the curve in (a) for 
describing small-scale subtle behaviors nearby y = 0  and y =1  respectively. 
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 The equation of bi  can be obtained by comparing terms 
in VE 

∂tbi + u ⋅∇bi + ∇bi−1 − bi∇u '

+ 1

1+ p2 u( )⎡
⎣

⎤
⎦

3 bi−1B ×
υ − u[ ]

| υ − u[ ] |
= 0.  (44) 

 Strict analysis indicates that the function coefficient set 
bi ; i ≥ 1{ }  meeting 

b2i−1 = 1
η
− u⎡

⎣
⎢

⎤
⎦
⎥ * ci ; andb2i = −ci  (45) 

where the constant set ci ; i ≥ 1{ }  is independent of space-
time coordinates, is a strict solution of VE in B = 0  case. 

 For the aperiodic electrostatic structure, u -profile and 
corresponding space profile in Fig. (2) were plotted. The phase 
space profiles presented in Fig. (2A-C) also display structures 

which imply particles acceleration. Here, because 
uz

1− u ⋅u
 

display very drastic oscillation at large- | ξ |  regime (such as 
ξ < −40  regime in Fig. (2C, D)), for clearance of figures, we 
plot these profiles over long interval (Fig. 2) and over short 
interval (Fig. 2B-D), respectively. 
 Because the aperiodic electrostatic structure is more 
general than the periodic one, above results seem to suggest 
a very optimistic prediction of that plasma-based particle 
acceleration. However, because stimuli driving those 
wakefields are often magnetized, we should be cautious to 
treat their wakefields as electrostatic ones. Whether or not 
these wakefields are electrostatic this should be known 
through strict initial-value problem calculation of self-
consistent fields, which is given in the next subsection. 

3.3. Electromagnetic Wakefield 

 Some authors [12-14] have described wakefields with 
charge density n , which is only related to Elong . This  
 

Figs. (2). (A, B, C, D) Examples of contours of f − fmono , where max υz⎡⎣ ⎤⎦ = c
1+ β 2 r,θ( )

 and E  has a phase velocity 1
η

= 0.5c . The upper 

panels in Figs. (2-5) reflect the relation between the fluid momentum p  and the coordinate ξ . 

(A) (B) 

  

(C) (D) 
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n -description cannot reflect Etrans  and Btrans  in the region 
behind the stimulus. Therefore, we started from more basic 
equation set of E, B( ) . Moreover, it was noted that when 
laser-plasma interaction was simulated, the initial condition 
reflected laser electric field meeting ∇ ⋅Elaser = 0 . If ignoring 
this constraint and using an initial condition ∇ ⋅Elaser ≠ 0 , we 
might have unconciously made a “distorted” simulation 
which cannot correspond to laser-plasma interaction. Which 
means that, if starting from ∇ ⋅E |t=0≠ 0 , we might have 
simulated the interaction of a magnetized charged particles 
beam with plasmas. Such a “distorted” simulation might 
yield a marked electrostatic wakefield. 

 Eqs. (12-16) with a constraint 

n − ZNi = ∂t∇ ⋅ u
1− u2

+ ∇ ⋅ u × B[ ] = 0  and a condition 

Ni = 0  describes light (or pure transverse electromagnetic 
wave) in vacuum. In this situation, the solution of Eqs. (12-
16) is : 

u = Vconst = c; E = −∂t A; B = ∇ × A,  

andA = ∇ × Smeets∇ ⋅ A = 0.  (46) 

where Vconst  represents a constant vector. Likewise, Eqs. 
(12-16) with a condition Ni ≠ 0  describes light-matter 
interaction. Strictly speaking, Eqs. (12-16) with a condition 
Ni ≠ 0  describes the interaction between plasmas and any 
magnetized charged particles beam. A light beam is a special 
charged particles beam whose charged density is 0  
anywhere and anytime. 

 Eq. (12) indicates that E  can be expressed by u  and B . 
This implies that in Eqs. (12-16), only u  and B  can vary 
independently. From Eqs. (12-16), we obtain (where 

p = u
1− u2

) 

−∂t uZNi[ ] = ∂tt ∂t p + u × B[ ]− Δ ∂t p + u × B[ ]  

+∂t u∇ ⋅ ∂t p + u × B( )⎡⎣ ⎤⎦ + ∇ ∇ ⋅ ∂t p + u × B( )⎡⎣ ⎤⎦  (47) 

or∂tt ∂t p[ ]− Δ ∂t p[ ] + ∂t u∇ ⋅ ∂t p( )⎡⎣ ⎤⎦  

+∇ ∇ ⋅ ∂t p( )⎡⎣ ⎤⎦ + ∂t uZNi[ ]  

= ∂tt −u × B[ ]− Δ −u × B[ ] + ∂t u∇ ⋅ −u × B( )⎡⎣ ⎤⎦  

+∇ ∇ ⋅ −u × B( )⎡⎣ ⎤⎦  (48) 

 If θ  stands for the angle between u  and B , we can find 
that in Eq. (48), the left-side terms are θ -independent while 
the right-side terms will explicitly depend on θ . Thus, for 
any value of sinθ , the left-side terms of Eq. (48) remain 
unchanged. Therefore, it is known that unchanged value of 
the left-side terms of Eq. (48) by is zero by setting θ = 0. It 
should be noted that θ  has been assumed zero wherever it 
appears. On the contrary, θ  is solved from the right-side 
terms of Eq. (48) = 0 . Note that following relation 

left − side terms of Eq.(48)[ ]  

= ∫ left − side terms of Eq.(48)[ ]δ θ( )dθ  

= ∫ right − side terms of Eq. (48)[ ]δ θ( )dθ = 0,  (49) 

i.e,∂ttt p + ∂t ∂t∇ ⋅ p( ) p
1+ p2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ∂t∇ ×∇ × p + ∂t uZNi[ ] = 0; (50) 

where δ θ( )  represents the Dirac function of θ . Subtracting 
Eq. (47) and Eq. (50), we have 

−∂t u∇ ⋅ u × B( )⎡⎣ ⎤⎦ − ∂tt u × B[ ]− ∇ × ∇ × u × B[ ] = 0,  (51) 

which has an obvious solution  u  B . Because of Eqs. (12-
16), this obvious solution implies 

 E  p  u  BorE × B = 0.  

 ∇ × p = λp, orp ∇ × p, where λ is a scalar.  (52) 

i.e., p × ∇ × p = 0.  

In addition, another obvious solution B = 0  just implies 
unmagnetized charged particles. 
 Eq. (50) directly implies 

∂tt p + ∂t∇⋅ p( ) p
1+ p2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+∇×∇× p = − uZNi[ ]+ POT  (53) 

where POT  is a constant vector. Moreover, for any charged 
particles system, there should be a constraint 

n ≥ 0or∇⋅∂t p +∇⋅ u × B[ ]+ ZNi ≥ 0.  (54) 

 The initial condition for the light-plasma interaction, if 
matter is initially a stationary plasma, should read as 
E |t=0 = Elight−in−vacuum + 0;  

B |t=0 = Blight−in−vacuum + 0;55  (55) 

u |t=0 =
Vconst * ∇ ⋅Elight−in−vacuum⎡⎣ ⎤⎦ + 0

∇ ⋅Elight−in−vacuum⎡⎣ ⎤⎦ + Ni

= 0.  

 Because Eq. (53) is a second-order partial differential 
equation, there should be another initial condition for 
∂t p |t=0 . According to Eq. (12), there is 

∂t p |t=0 = E |t=0 .  (56) 

 Note that even though E |t=0  meets ∇ ⋅E |t=0 = 0  (because 
E |t=0 = Elight−in−vacuum = −∂t A = −∂t∇ × S ), p  still able to meet 
∇ ⋅ p ≠ 0  because uNi  meets 

∇ ⋅u = 1
Γ
∇ ⋅ p + ∇ 1

Γ
⋅ p ≠ 0evenif∇ ⋅ p = 0.  (57) 

and hence is a source responsible for ∇ ⋅ p ≠ 0 . This means 
that, ∇Γ  will lead to ∇ ⋅ p ≠ 0  and hence n − ZNi ≠ 0  
(according to Eq. (54)). 
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 In principle, the light-matter interaction should be treated 
as an initial-value problem. For any initial condition, we 
calculate its subsequent evolution described by Eq. (53). 
Here, for determination of n  and B  are described as 
follows: 

 Eqs. (47,50) indicate that ∂t p + u × B  and ∂t p  comply 
with the same equation. If we apply ∇ ⋅  to Eqs. (47, 50), we 
will find that ∇ ⋅ ∂t p + u × B[ ]  and ∇ ⋅ ∂t p  also agree with 
the same equation. This implies a possible relation between 
∇ ⋅ ∂t p + u × B[ ]  and ∇ ⋅ ∂t p  

∇ ⋅ ∂t p + u × B[ ] = function ∇ ⋅ ∂t p[ ]( ).  (58) 

 One can easily find that if function x( ) = c1x + c0 , where 
c1  and c0  are two constants and meet c0 = 2 * max | x |,  
1 > c1 > −1,  

i.e.,∇ ⋅ ∂t p + ∇ ⋅ u × B[ ]  

= 2 * max | ∇ ⋅ ∂t p + ZNi[ ] | +(1+ c1 ) *∇ ⋅ ∂t p  (59) 

= cons tan t + (1+ c1 ) *∇ ⋅ ∂t p  

the constraint (54) will always be valid. This just implies 

∂t p + u × B[ ] = cons tan t *Vunit + (1+ c1 ) *∂t p;  (60) 

where ∇ ⋅Vunit = 1 . Here, the constant c1  is determined by 
initial conditions ∂t p |t=0 , u |t=0  and B |t=0 . Thus, after 
obtaining pz  from Eq. (50), we can solve B  according to 
Eq. (60). Finally, n  can also be determined from the solved 
pz  and B . 

 Here, special attention is given to the collective modes of 
the laser-plasma system. Such a collective mode is 

characterized by a phase velocity 
1
η

 and implies u, E, B( )  

being functions of ξ =ηz − t . People are familar with some 
typical colloective modes in plasmas, for example, plasma 
electrostatic wave. Likewise, the collective modes of the 
laser-plasma system also describe states of the interacting 
system. For simplicity, here we only consider the case of 
pθ = 0 , Br = 0 = Bz , or pr ≠ 0 , pz ≠ 0  and Bθ ≠ 0 . From 

two equations 

∂ttt pr + ∂t

∂t∇ ⋅ p( ) pr

1+ p2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ r − componentof ∂t∇ ×∇ × p[ ] = 0;  (61) 

∂ttt pz + ∂t

∂t∇ ⋅ p( ) pz

1+ p2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ z − componentof ∂t∇ ×∇ × p[ ] = 0;  (62) 

we find that when 

β is a constant;  (63) 

 
 

and ∂r pz = β∂z pzorpz = pz β iηiri + ηz − t( )i( )exists,  (64) 

 Eqs. (61,62) can be satisfied. More complicated cases in 
which β  is a complex space-time function is not considered 
because it might lead to meaningless solution of pz . After 
straightforward deduction, we re-write Eq. (53) as 

POTz = ∂tt pz + ∂t
β
r

pz + β∂r pz + ∂z pz
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

pz

1+ 1+ β 2( ) pz
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

+∂z
β
r

pz + β∂r pz + ∂z pz
⎡
⎣⎢

⎤
⎦⎥
− 1

r
∂r pz + ∂r∂r pz + ∂z∂z pz

⎡
⎣⎢

⎤
⎦⎥

 

= ηβ( )−2 − ηβ( )−1 1 / β + β( ) pz

1+ 1+ β 2( ) pz
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
β 2∂zz pz  

+ZNi
pz

1+ 1+ β 2( ) pz
2

.  (65) 

 Here, we focus ourselves on the case of larger phase 
velocity, i.e. the 0 < η < 1  case. The so-called conservation 
law for Eq. (65) reads: 

ifη2 1+ β 2( )2
− 1+ β 2( ) < 0, therewillbe  

cons tan t  

=η2β 2 (ZNi − POTz )  

*

1+ 1+ β 2( ) pz
2

| η2 1+ β 2( )2
− 1+ β 2( )⎡

⎣
⎤
⎦ |

−
η 1+ β 2( )

|η2 1+ β 2( )2

− 1+ β 2( ) |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 arctan

|η2 1+ β 2( )2

− 1+ β 2( ) |

η 1+ β 2( )
1+

1+ β 2( ) pz
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

+η2β 2 (ZNi − POTz )*

η 1+ β 2( ) pz

| η2 1+ β 2( )2
− 1+ β 2( )⎡

⎣
⎤
⎦ |

−
η 1+ β 2( )

|η2 1+ β 2( )2

− 1+ β 2( ) |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 arctan
|η2 1+ β 2( )2

− 1+ β 2( ) |
pz

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

 

−η2β 2POTz * pz + 1
2

β∂z pz⎡⎣ ⎤⎦
2 ;  (66) 

ifη2 1+ β 2( )2
− 1+ β 2( ) ≥ 0, there will be constant  
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= −η2β 2 (ZNi − POTz )*

1+ 1+ β 2( ) pz
2

| η2 1+ β 2( )2
− 1+ β 2( )⎡

⎣
⎤
⎦ |

+ 1
2

η 1+ β 2( )
|η2 1+ β 2( )2

− 1+ β 2( ) |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 ln

| 1+ 1+ β 2( ) pz
2 −

η 1+ β 2( )
|η2 1+ β 2( )2

− 1+ β 2( ) |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

|

| 1+ 1+ β 2( ) pz
2 +

η 1+ β 2( )
|η2 1+ β 2( )2

− 1+ β 2( ) |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

|

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

−η2β 2 (ZNi − POTz )*

η 1+ β 2( ) pz

| η2 1+ β 2( )2
− 1+ β 2( )⎡

⎣
⎤
⎦ |

+ 1
2

η 1+ β 2( )
|η2 1+ β 2( )2

− 1+ β 2( ) |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 ln

| pz −
1

|η2 1+ β 2( )2

− 1+ β 2( ) |

|

| pz + 1

|η2 1+ β 2( )2

− 1+ β 2( ) |

|

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

+η2β 2POTz * pz + 1
2

β∂z pz⎡⎣ ⎤⎦
2 .  (67) 

 The value of the cons tan t  is determined by the 
boundary condition at z = ∞ , which is usually defined as 
∂z pz |z=∞ = 0  and pz |z=∞ = 0 . From these first integrals in 
Eqs. (66,67), we can analyze various solutions qualitatively. 
We calculate these “potential functions” (or ∂z pz -
independent part) in Eqs. (66,67) and present results in Fig. 
(3). In terms of mathematics, any solution will correspond to 
a trajectory on the ∂z pz − pz  “phase plane”. The above-
mentioned boundary condition requires that any trajectory 
must contain the point ∂z pz , pz( ) = 0, 0( ) . 

 We can find that for the case of POT = 0  and 

η2 1+ β 2( )2
− 1+ β 2( ) < 0 , the solution only corresponds to 

a point in the ∂z pz − pz  “phase plane”, ∂z pz , pz( ) = 0, 0( )  

because at this time, the point 0, 0( )  is the minimum of the 
“potential function”. According to Fig. (3a), 0 < POT < ZNi  

and η2 1+ β 2( )2
− 1+ β 2( ) < 0  could correspond to a 

periodic solution (See Fig. 4a). In contrast, for the case 

POT > ZNi  and η2 1+ β 2( )2
− 1+ β 2( ) < 0 , the solution is 

aperiodic and corresponds to n1260  over a large-scale 
region. 

 The behaviors of these physical quantities depend on the 
value of POT / ZNi . This agrees with previous discussions. 
For the periodic solutions, the oscillation of pz  agrees with 
those of n  and B . For the aperiodic solution, the plots of 
three physical quantities also have a common trend. That is, 
after experiencing an extreme value point (maximum or 
minimum), three quantities monotonically vary with respect 

to ξ . This can only be determined by the potential function 
curve (the dash dot line) in Fig. (3a). 

 Above theory and numerical results indicate that if 
plasma parameter ZNi  is given, different POT -values, 
which can be determined by the initial condition when the 
EM bunch begins to interact with plasmas, lead to different 
behaviors of the whole system. From Eqs. (50) and (53), we 
can find that the POT -value depends on 
∂tt p |t=0 = ∂tt A |t=0 = ∂t Elight−in−vacuum , i.e., the initial shape of the 
EM bunch. Because the phase velocity of an EM bunch in 
vacuum is c , there should be ∂tt p |t=0 = ∂zz p |t=0 . Considering 
that POT  is a constant, we can define 
POT = max ∂zzA |t=0{ } . As a result, larger value of 

max ∂zzA |t=0{ }  will correspond to aperiodic solution in Fig. 
(4b) whereas smaller value correspond to periodic one in 
Fig. (4a). This implies that if light pressure is large enough, 
it is possible to appear as a large scale region in which 
n1260 . This agrees with the so-called “bubble” observed in 
Particle-in-Cell simulation [37]. Moreover, some authors 
have found from the PIC simulation, that with the stimulus 
strength increasing, a transition from periodic wake to 
“bubble” wake can occur [38]. Above theory confirms such a 
transition. 

 On the other hand, another constant parameter β  should 
also be determined by initial conditions. Because of its 

definition β = pr

pz

, we can relate β  with the ratio between 

transverse light pressure and longitudinal one, i.e. 

β = max ∂r | A |2 |t=0

∂z | A |2 |t=0

⎧
⎨
⎩

⎫
⎬
⎭

. Thus, for suitable β -values, the 

solution will correspond to Eq. (67). But differing from Eq. 
(66) where periodic solution corresponds to POT / ZNi < 1 , 
Eq. (67) requires periodic solution corresponding to 
POT / ZNi > 1 . 

 From Fig. (4), we can find that both n -profile and 
corresponding B -profiles have similar periodic (or 
aperiodic) structure. These results indicate that the wake of a 
magnetized stimulus is electromagnetic. Moreover, the phase 
space profile will assume some hole-like structure and hence 
suggest particle acceleration. However, for a given u -
profile, if it is accompanied by a B -profile, its 
accompanying profiles E  and n , will be affected. As a 
result, phase space profiles, as well as electron energy 
spectrum, will be different for respective B -profiles. The 
phase space profiles under different strengths of B  are of the 
same shapes but of different strengths. This implies that the 
presence of a B -profile will affect energy spectrum or 
acceleration quality. Therefore, when studying plasma-based 
particle acceleration, one should not automatically take the 
wakefields as electrostatic one. Otherwise, optimistic 
overestimation might be obtained. 
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 Some authors have applied two different methods 
(plasma cold fluid theory and the PIC algorithm) to study the 

magnetic field generated from laser-plasma interaction 
[41,42]. Unfortunately, all the initial forms of laser in these 

 

 
Fig. (3). Examples of the plots of ∂z pz -independent part in Eqs. (66-67). (a) is for Eq. (66) and (b) is for Eq. (67). (c) and (d) are local close-

ups of (a) and (b) respectively. Here, Potential Function is defined as “ ∂z pz -independent part in Eq. (6?)” *η2β 2 (ZNi − POTz )  − “ ∂z pz -

independent part in Eq. (6) when pz = 0 “ *η2β 2 (ZNi − POTz ) . 
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works [41,42] were not seriously considered and met 
∇ ⋅Elaser ≠ 0 . Thus, even if the basic theoretical method is 
perfect, the investigations by these authors will still be away 
from their purpose because this initial condition makes the 
investigation not being addressed to the laser-plasma 
interaction but to the interaction of plasma with a 
magnetized charged particles beam. These inadequacies 
leave much room for further improvements in these works. 

 

 

4. SUMMARY 

 Although the wakes of these stimuli are often expressed 
by the density waves, such a density wave might be 
accompanied by a wave of magnetic energy density B2 . 
Therefore, the plasma-based accelerator should be viewed as 
an electromagnetic structure, which is manifested by both 
the density wave and the magnetic energy density wave. 
Ignoring the magnetic energy density wave might cause 
overestimation on plasma-based particle acceleration. 

 

 

 

 
Fig. (4). Examples of pz -profiles of plasma electrons and corresponding n -profiles and Bθ -profiles. Here, n  is in unit of 
8.85 *0.511

1.6
*107 µm[ ]−3 , E  is in unit of 0.511*106 Volt / µm[ ] , B  is in unit of 0.3*0.511*106 Volt * fs / µm( )2⎡⎣ ⎤⎦ = 0.3*0.511*103 Tesla[ ] . 
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APPENDIX 

 In the following paragraph, all equations are expressed in 
terms of Euler variables r, t( ) , and υ  is independent of r  
and t . 

 It is easy to verify once f  is a solution of VE with a 
given pair E r, t( ), B r, t( )( ) , 

∂t +υ ⋅∇r − E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p⎡⎣ ⎤⎦ f r,υ, t( ) = 0,  (68) 

where the particle charge e  and the particle mass m  have 
been absorbed into E  and B , and p = υ / 1−υ ⋅υ , a zero-
temperature type distribution function  

∫ fd 3υ *δ υ − ∫υ fd 3υ / ∫ fd 3υ( ) = n r, t( )*δ υ − u(r, t)( )  

(where n r, t( ) = ∫ fd 3υ  and u(r, t) = ∫υ fd 3υ / ∫ fd 3υ ) will 
meet the following formula 

∂t +υ ⋅∇r − E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p⎡⎣ ⎤⎦[n *δ υ − u( )]  

= ∂t +υ ⋅∇r[ ]n *δ  

+n *{ ∂t +υ ⋅∇r[ ](−u)*δ
'
− E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ (∂pυ)*δ

'
}  

= ∇r υ − u( )n⎡⎣ ⎤⎦ *δ + n *{−∫υ E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p fd 3υ / ∫ fd 3υ  

+∫υ fd 3υ∫ E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p fd 3υ / ∫ fd 3υ⎡
⎣

⎤
⎦

2

− E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ (∂pυ)}δ
'

 

= ∇r υ − u( )n⎡⎣ ⎤⎦ *δ − n *{∫υ E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p fd 3υ / ∫ fd 3υ  

− E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ (∂pυ)}δ
'
 

= ∇r υ − u( )n⎡⎣ ⎤⎦ *δ − n *{−∫( E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦

[ 1−υ 2 ]3 ) fd 3υ / ∫ fd 3υ
 

+ E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅[ 1−υ 2 ]3}δ
'
 

= ∇r υ − u( )n⎡⎣ ⎤⎦ *δ + n *{∫( E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦

[ 1−υ 2 ]3 ) fd 3υ / ∫ fd 3υ
 

− E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅[ 1−υ 2 ]3} * dυδ υ − u( ),  (69) 

where δ
'
 stands for the derivative of the Dirac function δ  

with respect to its variable and the relations xδ
'

x( ) = −δ x( )  
and xδ x( ) = 0  have been applied in above formula. 

Obviously, Eq. (69) is not a VE of n r, t( )*δ υ − u(r, t)( ) . 
Actually, it is easier to find above result if we start from 
Klimontovich-Dupree (K-D) theory [43-45]. According to 
the K-D theory, a particle system can be described by a 
function N r,υ, t( ) =

i∑δ rt t( ) − r( )δ dtri t( ) −υ( )  which 
meets the VE. Obviously, a function with more constraint 
N0 r,υ, t( ) =

i∑δ rt t( ) − r( )δ dtri t( ) −υ( )δ υ − u r, t( )( )  will 
correspond to a zero-temperature distribution function. Even 
though N r,υ, t( ) =

i∑δ rt t( ) − r( )δ dtri t( ) −υ( )  always 
meet the VE,  

N0 r,υ, t( ) =
i∑δ rt t( ) − r( )δ dtri t( ) −υ( )δ υ − u r, t( )( )  

does not. Moreover, if trying another form of zero-

temperature distribution function δ υ − u
n

⎛
⎝⎜

⎞
⎠⎟ , which can also 

ensure ∫δ
υ − u

n
⎛
⎝⎜

⎞
⎠⎟ d 3υ = n , we can also find that it usually 

cannot meet the VE. 

 For any particle system described by a microscopic 
distribution function f , we can always view it as the 
summation of two subsystems of a same fluid velocity u , 
one consists of all particles whose velocities are equal to 

u = ∫υ fd 3υ

∫ fd 3υ
 and the other is described by a “hollow” 

distribution fho  which meets fho r,υ = u, t( ) = 0  and 

u = ∫υ fhod
3υ

∫ fhod
3υ

. Above results revealed that each subsystem 

does not have a conserved total particle number and hence 
exchanges particles with the other. This might be the root 
cause for the zero-temperature type subsystem, which 
corresponds to f0 = f − fho , which does not meet the VE 
(Eq. (68)). Now that any f  can be viewed as f0 + fho , it is 
necessary to find the equation which is satisfied by f0 . Once 
this equation is found, an exacter macroscopic equation of 
u can be found Otherwise, we have to deal with a 
macroscopic equation derived from the VE. 

 The microscopic dynamics equation of 
f0 = n0 r, t( )δ υ − u r, t( )( ) , where n0 = ∫ f0d

3υ , can be 
derived straightforward. Clearly, there are 

∂t f0 = ∂tn0 *δ υ − u r, t( )( ) − n0 *∂tu *δ
'
; 70  (70) 

∇r f0 = ∇rn0 *δ υ − u r, t( )( ) − n0 *∇ru *δ
'
71  (71) 

and hence 

∂t +υ ⋅∇r − E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p⎡⎣ ⎤⎦ f0  

= ∂tn0 +υ ⋅∇rn0[ ]*δ − n0 ∂tu +υ ⋅∇ru[ ]δ '

− E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ 1−υ ⋅υ( )3
⋅ ∂υ n0δ( )
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= ∂tn0 + u ⋅∇rn0[ ]*δ − n0 ∂tu +υ ⋅∇ru[ ]δ '

−n0 E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ 1−υ ⋅υ( )3
⋅δ

'  

= ∂tn0 + u ⋅∇rn0[ ]*δ − n0 ∂tu +υ ⋅∇ru[ ]δ '
− n0

E(r, t) + u × B r, t( )⎡⎣ ⎤⎦ 1− u ⋅u( )3
⋅δ

'  (72) 

where we have used the relationships 
υ ⋅∇rn0 *δ υ − u r, t( )( ) = u ⋅∇rn0 *δ υ − u r, t( )( )  and 

1−υ ⋅υ( )3
− 1− u ⋅u( )3

υ − u
*δ υ − u r, t( )( ) = 0  etc. We 

introduce polynom  defined as 

polynom = ∂t +υ ⋅∇r − E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p⎡⎣ ⎤⎦

f0 +υ ⋅∇r
∫υ f0d

3υ

∫ f0d
3υ

∂υ f0 .
 (73) 

 It is easy to verify that Eq. (72) can be written as follows 
and is definitely an equation of polynom  

0 = polynom − ∫polynom * d 3υ⎡
⎣

⎤
⎦ *δ + ∫(polynom *υ)d 3υ⎡

⎣
⎤
⎦ *δ

'
.  (74) 

 Clearly, there is a strict solution of Eq. (74) 

0 = polynom = ∂t +υ ⋅∇r − E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅ ∂p⎡⎣ ⎤⎦ f0

+υ ⋅∇ru∂υ f0 .
 (75) 

Compared with the VE or Eq. (68), there is a new operator 
υ ⋅∇ru∂υ  appearing in Eq. (75). Due to this new operator, 
the continuity equation associated with n0  becomes 

∂tn0 + u ⋅∇rn0 = 0,  (76) 

rather than our familiar ∂tn0 + u ⋅∇rn0 = −n0∇r ⋅u  (i.e. 
∂tn0 + ∇r ⋅ (n0u) = 0 ). This new operator reflects the 
subsystem described by f0  having particle exchange with 
other. Specifically, because E  is space-time dependent, a 
charged particle system cannot be at zero-temperature state 
in which at any space position, all particles have the same 
velocity. Space-inhomogeneous E  will lead to, in some 
space positions, the temperature derivating from 0  and 
hence thermal spread in particles' velocities appear (which 
means some particles being out of the kernel group described 
by f0  and into the hollow group described by f − f0 ). 

 Likewise, following a standard procedure, we can obtain 
a macroscopic fluid motion equation from Eq. (75) 

∂t
u

1− u2
+ E + u × B = 0.  (77) 

 In contrast, Eq. (68) can yield our familiar fluid motion 
equation 

∂tu + ∫(υ − u)∇r [υ f ]d 3υ
n

+ ∫ E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅[ 1−υ 2 ]3 * fd 3υ
n

= 0.

 (78) 

 Obviously, two strict equations of u  suggest a balance 
relation 

∫(υ − u)∇r [υ f ]d 3υ
n

 

=
− ∫ E(r, t) +υ × B r, t( )⎡⎣ ⎤⎦ ⋅[ 1−υ 2 ]3 * fd 3υ

n

+ E + u × B[ ] 1− u2( )3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,  (79) 

 Above strict mathematics theory revealed that the zero-
temperature type distribution function n r, t( )*δ υ − u(r, t)( )  
cannot meet the VE. This implies that once we derive a fluid 
motion equation from the VE, it is inconsistent for us to put 
this fluid motion equation in the zero-temperature limit. If 
following this inconsistent treatment, we will find that there 
will be a convective term remained in the fluid motion 
equation in the zero-temperature limit. 

 In short, if f  is a strict solution of the VE, we can 
construct a zero-temperature distribution function f0 , which 
corresponds to a fluid velocity which is similar to the one by 
f , according to a standard procedure: 

f0 = [∫ f *δ υ − ∫υ fd 3υ

∫ fd 3υ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

d 3υ]δ υ − ∫υ fd 3υ

∫ fd 3υ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. From the 

equation of this microscopic distribution function, we can 
follow a traditional procedure to derive a new motion 

equation of ∫υ fd 3υ

∫ fd 3υ
. This new motion equation and 4 MEs 

can form a closed equation set. 
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