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Abstract: In a magnetized inhomogeneous warm plasma having ionization/recombination, usual version of the KdV 
equation is found to be modified by two additional terms arising due to the inclusion of ionization/recombination and the 
density gradient in the plasma. The density gradient in the plasma shows its dependence on the ionization/recombination 
rate, ion-to-electron temperature ratio, obliqueness of the magnetic field and drift velocity of the ions. In the considered 
plasma, only the compressive solitary structures are found to propagate corresponding to two different types of modes. A 
significant effect of magnetic field and ion temperature is found on these structures in both the cases of ionization and 
recombination, though these structures show weak dependence on the charge of the ions. Interestingly the solitons with 
prominent tailing structures are evolved in the plasma under the effect of stronger density gradient and higher ionization 
or recombination. The tailing structure with bigger size evolves in the plasma in the case of only recombination, 
suggesting that the exchange/transfer of energy from the main soliton to its tail is on a greater scale in the case of 
recombination than the case of ionization. There exists a critical value of the ionization rate at which the tailing structure 
associated with only the fast (not slow) solitary structure is vanished. Similarly, the tailing structure associated with only 
the slow (not fast) solitary structure is disappeared at a critical value of recombination rate. 
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1. INTRODUCTION 

 Solitary waves are special kind of waves which neither 
grow nor dissipate and preserve their shape during the 
propagation despite the nonlinearity and dispersion of the 
medium. If a solitary wave during its collision with another 
solitary wave retains its shape, it is called a soliton (because 
of the particle like nature). The soliton structure can travel up 
to a longer distance without losing its energy. Owing to this 
property, the solitons are very useful in the transportation of 
energy from one place to the other in laboratory, 
astrophysical and space related plasmas. Electromagnetic 
solitary structures have been used in the communication as 
well. 
 The first analysis with regard to the solitary wave 
propagation in a plasma was given by Washimi and Taniuti 
[1], where they had derived the Korteweg-deVries (KdV) 
equation and showed that this equation governs the behavior 
of solitary wave. An extensive review on the ion-acoustic 
waves and solitons has been made in different situations 
including both homogeneous and inhomogeneous plasmas 
[2−42]. Kuehl and Imen [11] have investigated the 
characteristics of an ion-acoustic soliton in an 
inhomogeneous plasma taking into account the full set of 
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fluid equations. Nejoh [12] has examined the contribution of 
finite ion temperature to the soliton propagation 
characteristics in collisionless relativistic plasma. His theory 
was extended by Singh and Dahiya [13] for an 
inhomogeneous plasma, where they had obtained the KdV 
equation for one-dimensional soliton using Reductive 
Perturbation Technique (RPT) along with appropriate 
coordinate transformation. The oblique propagation of 
solitons has been studied by Aziz and Stroth [14] in an 
inhomogeneous plasma, where the effect of ion temperature 
was examined on the soliton propagation characteristics. On 
the other hand, Nakamura [15−17], Nishida [7, 8, 10] and 
Lonngren [18−22, 39−41] groups have conducted several 
experimental studies on solitons in different types of plasmas. 
In addition to the experimental and theoretical studies, 
researchers have also investigated the propagation of solitary 
waves under the effect of magnetic field [23, 25, 28, 32], 
where they observed different behavior of the solitary waves. 
 Although an extensive work has been accomplished on 
the solitary waves, the inhomogeneity has been neglected in 
most of the investigations, which may arise in the plasmas 
due to the density gradient, temperature or the magnetic 
field. In addition, low current discharges may lead to the 
generation of charged particles in plasmas by the process of 
ionization of neutral particles that play an important role in 
the plasma dynamics. If we look at theoretical approaches, 
we find that mainly two types of models (thermal ionization 
model and beam ionization model) are appropriate for 
studying the waves in such plasmas. Thermal ionization 
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model assumes the ionization to take place due to thermal 
electrons and this is applicable to low pressure discharges. 
The beam ionization model is appropriate to magnetic 
multidipole devices. Here, the ionization is considered to be 
carried out by a small group of fast electrons that have 
energies much larger than that of the bulk plasma electrons 
and the density of such fast electrons is taken to be 
negligibly small compared to the total electron density. 
 Considering weak discharges, recently we have 
investigated the solitary wave evolution in a magnetized 
inhomogeneous plasma under the effect of a constant 
ionization rate [34]. For the sake of simplification of 
calculations, however, in [34] we had neglected the finite 
temperature of the ions and also the recombination. Not only 
this, the evolution of density gradient due to the ionization 
and initial drift of the ions was not discussed in the 
equilibrium/unperturbed state of the plasma. Therefore, in 
the present article, we consider all these points and also 
include the recombination. Through the present cumbersome 
calculations, we derive relevant modified KdV equations for 
both the cases of the ionization and recombination (inverse 
of the ionization). Then we make a comparison study of the 
solitary wave characteristics in both these situations. Our 
calculations reveal that there exist two types of compressive 
solitons with which a tailing like structure is associated. This 
tailing structure grows prominently under the effect of 
recombination in comparison with the case of ionization. 

2. BASIC FLUID EQUATIONS 

 We consider an inhomogeneous plasma consisting of 
ions and electrons under the effect of an external magnetic 
field  


B  applied in the z-direction. The wave propagation is 

taken to be oblique at an angle θ  with the direction of 
magnetic field in the (x, z) plane. It means the angle θ  is the 
angle between the directions of magnetic field and wave 
propagation. The plasma response to the oscillations in the 
presence of constant ionization is governed by the equations 
[34, 47, 48] 

∂np
∂t

+ x̂ ∂
∂x

+ ẑ ∂
∂z

⎛
⎝⎜

⎞
⎠⎟ ⋅ np vx x̂ + vyŷ + vzẑ( )⎡⎣ ⎤⎦ −γ p = 0 , (1) 

 

mpnp
∂ vx x̂ + vyŷ + vzẑ( )

∂t

+mpnp vx x̂ + vyŷ + vzẑ( ) ⋅ x̂ ∂
∂x

+ ẑ ∂
∂z

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
vx x̂ + vyŷ + vzẑ( )

+npZpe x̂ ∂
∂x

+ ẑ ∂
∂z

⎛
⎝⎜

⎞
⎠⎟ϕ − npZpe vx x̂ + vyŷ + vzẑ( )× B⎡⎣ ⎤⎦

+CpTp x̂ ∂
∂x

+ ẑ ∂
∂z

⎛
⎝⎜

⎞
⎠⎟ np +mpγ p vx x̂ + vyŷ + vzẑ( ) = 0

, (2) 

ne − ne0 exp
eϕ
Te

⎛
⎝⎜

⎞
⎠⎟
= 0 , (3) 

∂2

∂x2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ϕ − ne − Zpnp( ) eε0 = 0 . (4) 

 Eq. (1) is the continuity equation and Eq. (2) is the 
equation of motion of the ion fluid. The electrons are 

assumed to follow the Boltzmann distribution that yields  
Eq. (3) for the electron fluid. Finally, Poisson’s equation 
[Eq. (4)] is used that connects the electric field and charges 
during the oscillation of ion and electron fluids. In Eqs.  
(1) − (4), np  and ne  are the concentrations of ions and 
electrons, respectively, ϕ  is the electric potential, Zpe  is the 
amount of charge associated with a single ion, vx ,vy  and vz  
are the velocity components of the ion fluid in the x-, y- and  
z-directions, γ p  is the ionization rate, mp  is the ion mass, 

Cp  is the specific heat ratio at constant pressure, Tp Te( )  is 

the ion (electron) temperature in eV, and  

B(≡ B0 ẑ) is the 

magnetic field. 

 The basic Eqs. (1) − (4) are written in the dimensionless 
form. For this, the densities are normalized by the 
unperturbed plasma density np0 , velocities by the ion 

acoustic speed Cs ≡ Te
mp

⎛

⎝
⎜

⎞

⎠
⎟ , electric potential by Te

e
, 

distance by 
Cs

ω pi

; time by ω pi
−1  and γ p  by ω pinp0 , where 

ω pi ≡
np0Zp

2e2

ε0mp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

is the ion plasma frequency. The 

unperturbed density with which we have normalized the ion 
and the electron densities is the density at some reference 
point, say x = z = 0. We can write this as np00 ≡ np0( )  for the 
easy understanding of the readers. So the normalized 

densities are ′np = np / np00  
and ′ne = ne / np00  together with 

their equilibrium (unperturbed) values as ′np0 = np0 / np00  and 
′ne0 = ne0 / np00 , where np0  

and ne0  are the unperturbed 
densities at the point other than the reference point. 
Similarly, the normalized velocities are ′vx , ′vy  and ′vz  
together with their equilibrium values as ′vx0 , ′vy0  and ′vz0 , 
respectively. The normalized potential is ′ϕ  together with its 
equilibrium value as ′ϕ0 , normalized ionization rate is ′γ p , 
normalized time is ′t  and normalized space coordinates are 
′x  and ′z . For the sake of simplicity, we henceforth remove 

the prime from these quantities. Finally, Eqs. (1) − (4) take 
the following form after normalization: 

∂np
∂t

+
∂ npvx( )
∂x

+
∂ npvz( )
∂z

−γ p = 0 , (5) 

np
∂vx
∂t

+ npvx
∂vx
∂x

+ npvz
∂vx
∂z

+ npZp
∂ϕ
∂x

−

npZpAvy + 2σ p

∂np
∂x

+ γ pvx = 0
, (6) 

np
∂vy
∂t

+ npvx
∂vy
∂x

+ npvz
∂vy
∂z

+

npZpAvx + γ pvy = 0
, (7) 
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np
∂vz
∂t

+ npvx
∂vz
∂x

+ npvz
∂vz
∂z

+

npZp
∂ϕ
∂z

+ 2σ p

∂np
∂z

+ γ pvz = 0
, (8) 

ne − ne0 exp ϕ( ) = 0 , (9) 

Zp
2 ∂2ϕ

∂x2
+ ∂2ϕ
∂z2

⎛
⎝⎜

⎞
⎠⎟
− ne + Zpnp = 0 , (10) 

where σ p =
Tp
Te

 is the ion to electron temperature ratio, 

A ≡ ε0B0
2

np0Zp
2mp

is the ion cyclotron frequency to ion plasma 

frequency ratio, and Cp has been taken as 2 in view of ions’ 
compression in the (x, z) plane, i.e. due to number of degrees 
of freedom as 2. 

 Taking λ0  as the phase velocity of the wave and 
following [23, 33, 34], we introduce the following stretched 
coordinates and the expansion of physical quantities 

 
ξ = ε1/2 k̂ ⋅ r

λ0
− t

⎛

⎝⎜
⎞

⎠⎟
= ε1/2 xsinθ + zcosθ

λ0
− t

⎛
⎝⎜

⎞
⎠⎟

, (11) 

 
τ = ε 3/2 k̂ ⋅ r( ) = ε 3/2 xsinθ + zcosθ( ) . (12) 

f = f0 (x,z)+ ε
3/2 f1(x,z,t)+ ε

2 f2 (x,z,t)+ .... , f ≡ vx ,vy , (13) 

d = d0 (x,z)+ εd1(x,z,t)+ ε
2d2 (x,z,t)+ .... , d ≡ np ,ne,ϕ,vz , (14) 

γ p = ε 3/2γ p1 . (15) 

 We assume the ionization to take place at a constant rate 
along with γp1 as the rate of ionization per unit volume. 
Owing to its constant magnitude and for the sake of 
simplicity, we take γp1 = γp in the forthcoming sections. 
Based on the use of Eqs. (11) – (15) in Eqs. (5) – (10), we 
obtain the following zeroth order equations: 

sinθ
∂ np0vx0( )

∂τ
+ cosθ

∂ np0vz0( )
∂τ

−γ p = 0 , (16) 

vx0 sinθ + vz0 cosθ( ) ∂vx0
∂τ

+ Zp sinθ
∂ϕ0

∂τ
+

2σ p sinθ
np0

∂npo
∂τ

+
γ pvx0
np0

= 0
, (17) 

vx0 sinθ + vz0 cosθ( ) ∂vz0
∂τ

+ Zp cosθ
∂ϕ0

∂τ
+

2σ p sinθ
np0

∂npo
∂τ

+
γ pvz0
np0

= 0
, (18) 

ne0 − Zpnp0 = 0 , (19) 

ne0 = ne0 exp ϕ0( ) . (20) 

 The zeroth - order Eqs. (16) − (20) are used in the higher 
order equations. However, we can also draw the following 
information regarding the plasma in its 
equilibrium/unperturbed state based on which the phase 
velocity relation and the KdV equation are obtained. From 

Eq. (20) we can write ϕ0 = 0  which implies that ∂ϕ0

∂τ
= 0 . 

This is consistent with the observation of other investigators 
[30, 47, 48, 53, 54]. Using this in Eqs. (17) and (18), we get 

∂npo
∂τ

=
2γ p vx0 sinθ + vz0 cosθ( )
vx0 sinθ + vz0 cosθ( )2 − 2σ p

. (21) 

 
Fig. (1). Variation of density gradient with angle of obliqueness θ 
for different values of ion to electron temperature ratio σp and the 
ionization rate γp. Here, we show the cases of vx0  = vz0  

and 
vx0 ≠ vz0 . 

 From this relation, we can analyze the 
equilibrium/unperturbed state of the plasma by looking at the 
dependence of the density gradient on the obliqueness of 
magnetic field (θ), ionization rate (γ)p, ion to electron 
temperature ratio (σp) and the drift velocity of the ions  
(vx0  and vz0 ).  For better understanding, in Fig. (1), we have 

shown the variation of npoτ ≡
∂np0
∂τ

⎛
⎝⎜

⎞
⎠⎟

with θ for different 

values of σp, γp, vx0  and vz0 . From the figure this is clear 
that the higher ionization rate and ion temperature lead to 
higher density gradient in the plasma. The density gradient 
attains a minimum value, when the angle θ is 450 in the case 
of equal drift velocity components vx0  and vz0 . This is 
obvious, as the Lorentz force introduces inhomogeneity if 
the magnetic field is applied at angles other than 450 due to 
its unequal amounts in the x- and z-directions. However, for 
unequal drift velocities of vx0  and vz0 , this angle is different 
from 450 and is as per Eq. (21). 
 The first order equations are obtained as 

sinθvx0
λ0

+
cosθvz0

λ0
−1

⎛
⎝⎜

⎞
⎠⎟
∂np1
∂ξ

+ cosθ
λ0

np0
∂vz1
∂ξ

= 0 , (22) 



Inhomogeneity Effect on Solitary Structures in a Magnetized Warm Plasma The Open Plasma Physics Journal, 2014, Volume 7    21 

sinθvx0
λ0

+
cosθvz0

λ0
−1

⎛
⎝⎜

⎞
⎠⎟
np0

∂vz1
∂ξ

+
Zp cosθ

λ0
np0

∂ϕ1
∂ξ

+
2σ p cosθ

λ0

∂np1
∂ξ

+ 2σ p cosθ
∂np0
∂τ

+ vx0 sinθ + vz0 cosθ( )np0 ∂vz0∂τ

+Zp cosθnp0
∂ϕ0

∂τ
+ γ pvz0 = 0

, (23) 

sinθ
λ0

Zpnp0
∂ϕ1
∂ξ

− Zp
ε0

np00Zp
2mp

⎛

⎝⎜
⎞

⎠⎟

1/2

B0np0vy1

+
2σ p sinθ

λ0

∂np1
∂ξ

+ 2σ p sinθ
∂np0
∂τ

+ sinθvx0 + cosθvz0( )np0 ∂vx0∂τ

+Zpnp0 sinθ
∂ϕ0

∂τ
+ γ pvx0 = 0

, (24) 

Zp
ε0

np00Zp
2mp

⎛

⎝⎜
⎞

⎠⎟

1/2

B0vx1 + γ pvy1 = 0  (25) 

ne1 = ne0ϕ1 exp ϕ0( ) , (26) 

ne1 − Zpnp1 = 0 . (27) 

 In order to obtain the phase velocity relation, we make 
use of Eqs. (22) − (27). In the present case of 
inhomogeneous plasma, the unperturbed (zeroth order) 

quantities are functions of only τ. Hence 
∂ f0
∂ξ

= 0 , where 

f ≡ np0, ne0, vx0, vy0, vz0, ϕ0 . Now first order equations are 
integrated w.r.t. ξ under the boundary conditions that 
np1, ne1, vx1, vy1, vz1  and ϕ1→ 0  as ξ → ∞  in order to obtain 
the relations between np1, ne1, vx1, vz1  and ϕ1  [46]. Since 
zeroth order quantities are self consistently determined by 
Eqs. (16) – (20), we use these equations in first order 
equations before their integration. Therefore, the integration 
of Eqs. (22) − (23) yields 

vx0 sinθ
λ0

+
vz0 cosθ

λ0
−1

⎛
⎝⎜

⎞
⎠⎟
np1 =

−cosθnp0
λ0

vz1 , (28) 

vx0 sinθ
λ0

+
vz0 cosθ

λ0
−1

⎛
⎝⎜

⎞
⎠⎟
np0vz1

=
−Zp cosθnp0

λ0
ϕ1 −

2σ p cosθ
λ0

np1

. (29) 

 From these relations, we obtain 

np1 =
Zpnp0 cos

2θ
R2λ0

2 − 2σ p cos
2θ

ϕ1 . (30) 

 
 

 Also, Eq. (28) yields 

ne1 = ne0ϕ1 . (31) 

 Finally, we use Eq. (27), i.e. ne1 = Zpnp1  and put 
np0Zp = ne0  from Eq. (19) in order to obtain the following 
quadratic equation in λ0: 

λ0
2 − 2λ0vθ + vθ

2 − Zp + 2σ p( )cos2θ = 0 . (32) 

Here, vθ = vx0 sinθ + vz0 cosθ .  The phase velocity relation 
that we obtain after solving the above quadratic equation is 
as follows: 

λ0 = vx0 sinθ + vz0 cosθ ± cosθ Zp + 2σ p . (33) 

 Corresponding to ± sign in Eq. (33), we get two types of 
the phase velocity relations. The relation corresponding to 
plus sign yields the fast mode (say phase velocity λF ),  
whereas the relation with minus sign corresponds to the slow 
mode (say phase velocity λS ). For the propagation of these 
modes, their phase velocities should be positive (as the 
direction of wave propagation has been fixed as per stretched 
coordinates). Here, it is obtained that λF always remains 
positive, but the following condition on the wave 
propagation angle θ  should be satisfied for the propagation 
of the slow mode (for λS  to be positive) 

θ > tan−1 Zp + 2σ p − vz0
vx0

⎛

⎝
⎜

⎞

⎠
⎟ . (34) 

 Eq. (34) shows that there exists a minimum wave 
propagation angle (say θmin ), below which the slow mode 
does not propagate in the plasma. The angle θmin is given as 

θmin = tan
−1 Zp + 2σ p − vz0

vx0

⎛

⎝
⎜

⎞

⎠
⎟ . (35) 

 For better understanding of this, we have plotted in  
Fig. (2) the variation of θmin  with the temperature ratio σ p  
and the charge Zp on the ions. Evidently the minimum angle 
θmin  attains larger values for the ions having charge Zp >1 ; 
the same is the case for the plasma having the ions of higher 
temperature. Since the ion oscillations experience larger 
force due to magnetic field applied at a larger angle, it is 
understood that the slow mode is excited in the plasma only 
in the presence of a stronger magnetic field. Moreover, the 
slopes of the solid lines in the figure reveal that θmin varies 
slowly with the ion temperature, if the ions carry higher 
charge Zp. On the other hand, the angle θmin is found to 
reduce for the higher values of vx0  and vz0 . 

3. MODIFIED KDV (MKDV) EQUATION AND ITS 
SOLUTION 

 In order to derive the relevant KdV equation, we make 
use of higher order equations. In this context, the second 
order equations are obtained as: 
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Fig. (2). Variation of θmin  with σ p  (ion to electron temperature 

ratio) for the two cases of vx0 = vz0 , and when vx0 ≠ vz0  for Zp = 1. 

Rnp0
∂vx2
∂ξ

+ Zpnp0 sinθ
1
λ0

∂ϕ2

∂ξ
+ ∂ϕ1
∂τ

⎛
⎝⎜

⎞
⎠⎟

+2σ p sinθ
1
λ0

∂np2
∂ξ

+
∂np1
∂τ

⎛
⎝⎜

⎞
⎠⎟

+vz1 cosθnp0
∂vx0
∂τ

−
2σ p sinθnp1

npo

∂np0
∂τ

−
γ pvx0np1
np0

= 0

, (36) 

R
∂vy1
∂ξ

+ Zp
ε0

np00mpZp
2

⎛

⎝⎜
⎞

⎠⎟

1
2

B0vx2 + γ pvy2 = 0  (37) 

R
∂vz2
∂ξ

+ sinθvx0 + cosθvz0( ) ∂vz1
∂τ

+ Zp cosθ
1
λ0

∂ϕ2

∂ξ
+ ∂ϕ1
∂τ

⎛
⎝⎜

⎞
⎠⎟

+cosθ vz1
λ0

∂vz1
∂ξ

+ vz1
∂vz0
∂τ

⎛
⎝⎜

⎞
⎠⎟
+ 2σ p sinθ

1
λ0

∂np2
∂ξ

+
∂np1
∂τ

⎛
⎝⎜

⎞
⎠⎟

−
2σ p cosθnp1

np0
2

1
λ0

∂np1
∂ξ

+
∂np0
∂τ

⎛
⎝⎜

⎞
⎠⎟
−
γ pvz0np1
np0
2 +

γ pvz1
np0

= 0

, (38) 

where  

R = sinθvx0
λ0

+
cosθvz0

λ0
−1 , (39) 

ne2 = ne0
ϕ1
2

2
+ϕ2

⎛
⎝⎜

⎞
⎠⎟

, (40) 

ne2 − Zpnp2 −
Zp
2

λ0
2
∂2ϕ1
∂ξ 2

+
Zp
2

λ0
∂2ϕ0

∂ξ ∂τ
= 0 . (41) 

 In obtaining Eq. (36), we have used first order Eq. (24) in 
order to eliminate the terms containing 1yv . Based on the 
first and second order equations, finally, we obtain the 
following modified KdV (mKdV) equation after making use 
of the phase velocity relation (33): 

∂ϕ1
∂τ

+ Kϕ1
∂ϕ1
∂ξ

+ L ∂3ϕ1
∂ξ 3

+Mϕ1
∂np0
∂τ

+ Nϕ1 = 0 . (42) 

 This equation is different from the usual KdV equation 
by two additional terms arising because of the density 
gradient and ionization in the plasma. The coefficients K, L, 
M, and N in Eq. (42) are given by 

K =
−Zp cosθ R2λ0

2 +σ p cos
2θ( )

λ0 σ pRλ0Rλ − Zp cosθ R2λ0
2 −σ p cos

2θ( ){ } , 

L =
Zp
2 cosθ
λ0

3R
+
Zpλ0R

3 sin 2θnp0
RλZp

2A2 cosθ
⎛

⎝⎜
⎞

⎠⎟

RRλ

2Zp cosθnp0 R2λ0
2 −σ p cos

2θ( )− 2σ pnp0λ0RRλ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,  

M =
Zpλ0

3R2

Rλ

−
Zpλ0

2R
vx0 sinθ
+vz0 cosθ

⎛
⎝⎜

⎞
⎠⎟
1+ cos2θ( )

Rλ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

RRλ

2Zp cosθnp0
R2λ0

2

−σ p cos
2θ

⎛

⎝
⎜

⎞

⎠
⎟ − 2σ pnp0λ0RRλ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, 

N =Q1
−RRλ

2Zp cosθnp0 R2λ0
2 −σ p cos

2θ( )− 2σ pnp0λ0RRλ

⎛

⎝
⎜

⎞

⎠
⎟ , 

together with 

Q1 =
−2σ pZpλ0 cos

2θ
Rλ

−
Zpλ0 cosθγ pvzo

Rλ

+
Zpλ0

2Rγ p

Rλ

(−S sinθ cosθ − cos2θ )
, 

S =
vz0 sinθ − vx0 cosθ( )
vxo sinθ + vz0 cosθ( ) , and Rλ =

λ0
2R2 − 2σ p cos

2θ
λ0
2R

. 

 The above coefficients are not constant but depend on the 
zeroth order quantities. Therefore, the normal integration 
process does not qualify for obtaining its soliton solution. 
Hence, we introduce the following variable [27] 

ϕ1(ξ,τ ) = φ(ξ,τ )b(τ ) , (43) 

where b(τ ) ≡ exp − τ M
∂npo
∂ ′τ

d ′τ∫
⎛
⎝⎜

⎞
⎠⎟

 and φ(ξ,τ )  are the new 

variables. With this, the Eq. (42) takes the form 

∂φ
∂τ

+ Kbφ ∂φ
∂ξ

+ L ∂3φ
∂ξ 3

+ Nφ = 0 . (44) 

 Here Kb is the coefficient of nonlinearity, L is the 
coefficient of dispersion, and the coefficient N accounts for 
the effect of ionization. The coefficient L carries the effect of 
magnetic field via the term A. It means the dispersive 
properties of the plasma are modified by the external 
magnetic field. Since a balance between the effects of 
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nonlinearity and dispersion leads to the evolution of solitary 
wave, the ionization and the magnetic field considered in the 
present analysis shall modify the propagation characteristics 
of the solitary waves. 

 We make use of a transformation η =WL (τ −VLξ ),  
where WL represents the inverse of the width of solitary 
wave and VL is the velocity of the new frame of reference 
moving with the solitary wave with respect to the ion 
acoustic wave of velocity λ0. Along with the use of 
transformation η , Eq. (44) reads 

WL
∂φ
∂η

− KφbWLVL
∂φ
∂η

− LWL
3VL

3 ∂3φ
∂η3 + Nφ = 0 . (45) 

 Here it would be worth mentioning that the parameter b 
depends only on the coordinate τ .  More specifically it 
shows the variation of unperturbed quantities with space 
including the density gradient (τ  being the space like 
coordinate in Eqs. (11) and (12)). However, the coordinate 
η =WL (τ −VLξ ) , which encompasses both the space and 
time like coordinates, is used to find the stationary solution 
of the mKdV equation (31). Infact η  is the coordinate of the 
frame, which is moving with the soliton and VL is the 
velocity of the soliton with respect to the frame of reference 
having coordinates as stretched coordinates. If φ  had been 
the function of b, then it would have been wrong to consider 
φ = φ(η) for finding the solution of Eq. (44). However, this 
is appropriate to make use of such transformation as only φ 
is the function of η in accordance with ϕ1(ξ ,τ )= φ(ξ ,τ )b(τ ).  
The transformation b is used to club the density gradient 
term with the nonlinear term and then to transform the 
modified KdV equation to an equation suitable for solving 
using the so called sine-cosine method proposed by Yan [55] 
and employed by several authors [14 and references therein]. 
 Now following Aziz and Stroth [14], Singh and Malik 
[27], Das and Sarma [48] and Yan [55], we suppose the 
following solution of Eq. (45): 

φ(η) = tanh j−1(η)
j=1

s

∑ [Bj sech(η)+ Aj tanh(η)]+ A0 , (46) 

where 
dω
dη

= sinω  and ω ⇔η  transformations are related 

through sinω = sechη  and cosω = tanhη . The balance of 
the leading order of the linear terms to that of the nonlinear 
terms of Eq. (45) determines the degree of the polynomial 
solution (46) as s = 2. Hence, the solution becomes 

φ(ω ) = B1 sinω + B2 sinω cosω + A1 cosω + A2 cos
2ω + A0 . (47) 

 The above expression represents the general solution of 
Eq. (45) and corresponding to the values of coefficients A0, 
A1, A2, B1 and B2 different types of solutions would be 
possible. However, the drawback of this method [14, 24, 26, 
27, 32 – 34, 55] is that it yields more number of equations 
than the number of variables (coefficients A0, A1, A2, etc.). 
This way n number of solutions may be possible. Hence, to  
 

be closer to the correct solution and in view of single soliton 
solution, we restrict our calculations to the case where 
B1 = B2 = 0 . This gives 

φ(ω ) = A0 + A1 cosω + A2 cos
2ω . (48) 

 The substitution of the formal solution (48) in Eq. (45) 
changes the differential equation into a trigonometric 
polynomial identity of the intermediate variable ω , from 
which we collect all the terms with the same powers in 
cosω ,  cosmω , cosm+1ω  (m = 0, 1, 2, …) etc., and set their 

coefficients equal to zero. With this we obtain WL =
1

2LVL
3  

and hence, A0 =
1

3KbVL
, A1 =

N
KbWLVL

 and A2 =
−1

3KbVL
. 

Finally, the solution of Eq. (45) is obtained as 

φ(ω ) = φ(ξ,τ ) = 1
3KbVL

sech2 WL (τ −VLξ )[ ]

+ N
KbWLVL

tanh WL (τ −VLξ )[ ].
 (49) 

 The above solution contains two terms, which can be 
written in a simpler form, as follows: 

φComplete ≡φMain (sech
2term)+φTail (tanh term) . (50) 

 The first term of solution (50) determines the main 
soliton and the second term shows a tailing like structure 
associated with the soliton. 

4. RESULTS AND DISCUSSION: CASE OF 
IONIZATION 

 It is evident that the present plasma supports the 
propagation of solitons that are modified by the presence of 
tailing like structure. Such solitary structures are possible for 
both the slow and fast modes, which are named as fast 
solitary structure (Fss) and slow solitary structure (Sss), 
respectively. Our numerical results show that these structures 
corresponding to density np1  attain hill type shape (the shape 
as shown in Fig. (3) for potential φ1). Hence, the 
compressive solitary structures are supported by the present 
plasma. In the forthcoming figures, where ϕComplete ≡φComplete , 
we shall investigate the behavior of these structures under 
the effect of magnetic field (via A), ionization rate (γ p ), 
charge of ions (Zp), temperature of ions (via σ p ) and the 
density gradient np0τ . 

 In Fig. (3), we have plotted the complete solitary 
structures for the fast mode as well as for the slow mode. 
Here, a significant enhancement in the width is observed at 
stronger magnetic field, which is in contrast to the 
investigations made in homogeneous and inhomogeneous 
magnetized plasmas without consideration of the ionization 
[24, 33]. Hence, it is understood that the dispersive property 
of the plasma is modified oppositely in the plasma, when the  
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Fig. (3). Fast and slow solitary structures corresponding to ϕComplete  

for two different values of A ≡ ε0B0
2

np0Zp
2mp

, when np0 = 0.9, γp = 0.01, 

Zp = 1, θ  = 50°, σ p = 0.01 , vx0  = vz0  = 0.08 for fast mode, and 

vx0  = vz0  = 0.8 for slow mode. Fss (Sss) shows the fast (slow) 
solitary structure. 

ionization is taken into account; owing to this a wider 
solitary structure is realized. This type of behavior of the 
width with magnetic field is also contrary to the observation 
made by El-Labany and El-Shamy [29] for solitary waves in 
a hot magnetized dusty plasma and by Mishra et al. [23] in a 
negative ion containing homogeneous plasma, where they 
had neglected the ionization. If we examine the solitary 
profile for the slow mode, the amplitude of this structure is 
found to be smaller than that of the structure for the fast 
mode, but consistently there is no effect of the magnetic field 
on the amplitude. Also, the structure corresponding to the 
slow mode is narrower. The width of the structure is given 
by the expression WL

−1 = 2LVL
3 , which means the width is 

real as long as L is positive. In the present model, we find 
that L is positive for both the fast and slow modes, contrary 
to the case of weakly relativistic plasma [26], in which the 
width is not real for the fast mode. 

 In Fig. (4), we have plotted the solitary structures at 
different rates of the ionization. It is found that due to the 
presence of ionization the structures get modified drastically. 
We observe the identical behavior of both the fast and slow 
solitary structures for the different ionization rates, and their 
amplitudes are enhanced for the higher ionization in the 
plasma. It is a point of observation that in the presence of 
higher ionization the tailing structure takes the prominent 
form (which is also shown in Fig. 5). This can be explained 
based on the solution (50), i.e. φComplete ≡φMain +φTail , where 
φMain  can be understood as the soliton structure obtained 
from the usual KdV equation in the case of homogeneous 
plasma and φTail  as the tailing structure (tanh profile) arising  
 

because of the plasma inhomogeneity due to the ionization. 
In the present case, the behavior depends completely on the 
variation of inhomgeneity constant N that appears in the 
solution through the constant A1. From the expression of N, 
we can see that the inhomogeneity in the plasma is directly 
related to the ionization and hence, the amplification and 
damping of the tailing structure also depend. Thus, one can 
see that the ionization plays a vital role in determining the 
characteristic behavior of ion-acoustic solitons in spatially 
inhomogeneous plasmas [30]. An interesting result of the 
solitary wave solution in such plasmas is a continuous 
generation of the energy from the main soliton to the tailing 
structure. Thus, the tailing profile has a tendency to grow up 
as the soliton propagates in the inhomogeneous medium. The 
whole process of evolution of the tailing like structure 
depends on the order of the nonlinear and dispersive effects 
as compared to that of the inhomogeneity and ionization. 
These features exhibit only when the factor N appears in the 
mKdV equation. Thus, the combined contribution of 
inhomogeneity and ionization gives rise to the formation of a 
precursor in the soliton dynamics. The amplitude and width 
of the solitons depend on the generation of tailing structure 
that varies when the soliton propagates in the inhomogenous 
plasma. These results are very similar to the experimental 
observations, where the fission or production of a precursor 
behind the main soliton was realized [31]. 

 
Fig. (4). Fast solitary structure Fss and slow solitary structure Sss for 
two different values of ionization rate γ p , when A = 0.5, np0 = 0.9, 

Zp = 1, θ  = 50°, σ p = 0.01 , vx0  = vz0  = 0.08 for fast mode, and 

vx0  = vz0  = 0.8 for slow mode. 

 Fig. (6) shows the fast and slow solitary profiles for 
different values of the charge number, where larger widths of 
both the fast and slow solitons are observed for the higher 
value of Zp. However, the amplitudes of these solitons 
behave oppositely and they show very weak dependence on 
Zp. This is related to the weak variation of the phase velocity 
of both types of the modes with Zp. On the other hand,  
Fig. (7) shows the fast and slow solitary structures for  
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Fig. (5). Tailing structure ϕTail ≡φTail  of the fast and slow solitons, 
represented respectively by Fss and Sss, for two different values of 
ionization rate γ p , when A = 0.5, np0 = 0.9, Zp = 1, θ  = 50°, 

σ p = 0.01 , vx0  = vz0  = 0.08 for fast mode, and vx0  = vz0  = 0.8 
for slow mode. 

 
Fig. (6). Fast solitary structure (Fss) and slow solitary structure (Sss) 
for different values of Zp, when A = 0.5, np0 = 0.9, θ  = 50°, 
σ p = 0.01 , γ p =0.01, vx0  = vz0  = 0.08 for fast mode, and  

vx0  = vz0  = 0.8 for slow mode. Here solid lines are for Zp = 1 and 
dashed-dotted lines (middle ones) are for Zp = 2 and dashed lines 
(upper ones) are for Zp = 3 in an Ar gas plasma. 

different values of ion to electron temperature ratio σ p . 
Here, we see that the width decreases with the increase in σp 
for both the fast and slow solitary structures. This is 
consistent with the observation made by Aziz and Stroth 
[14]. The amplitude of both the solitary structures is also 
reduced for higher σ p , which is also seen by Malik and 
Singh [25] in a weakly relativistic magnetized plasma 
without ionization. This is very interesting to observe that 
the ion temperature, which was neglected by other 
investigators, modifies the solitary structures in a very 
significant manner. Also, the ion temperature has a 
pronounced effect on θmin (Fig. 2). A comparison of Eq. (27) 
with Eq. (31) of [34] shows that the finite temperature limits 

the range of θ for the propagation of slow mode and hence, 
the slow solitary structure. 

 

Fig. (7). Fast and slow solitary structures ϕComplete( )  for two 

different values of ion to electron temperature ratio, when A = 0.5, 
np0 = 0.9, Zp = 1, θ  = 50°, γ p   

= 0.01, vx0  = vz0  = 0.08 for fast 

mode, and vx0  = vz0  = 0.8 for slow mode. Here, Fss (Sss) represents 
the fast (slow) solitary structure. 

5. RECOMBINATION VERSUS IONIZATION 

 So far we have considered the effect of ionization on the 
ion acoustic waves and their evolution as solitary structures. 
However, in real situation, when there are no external 
sources to cause the ionization, the recombination takes 
place due to internal collisions. The recombination may be 
Radiative Recombination (RR), collisional or Dielectronic 
Recombination (DR) or the Three Body Recombination 
(TBR) depending on the plasma characteristics, such as 
particle density, charge valency, temperature, etc. [56, 57]. 
Depending on the radiations emitted in the recombination 
processes (whether continuous or discrete frequency), we 
can estimate whether these are radiative recombination or 
dielectronic recombination. There are several processes like 
excitation (in the case of after-glow) that can also take place 
along with ionization and recombination. In our calculations, 
we neglect such excitation processes and consider the 
recombination process, which is the inverse of the ionization 
process taken into account in section IV. Hence, we assume 
the constant rate of the recombination and investigate the 
behavior of the fast and slow solitary structures based on the 
appropriate mKdV equation. The relevant mKdV equation is 
obtained, when γ p  is taken as sink in the continuity 
equation, i.e. Eq. (5) is written as  

∂np
∂t

+
∂ npvx( )
∂x

+
∂ npvz( )
∂z

+ γ p = 0 .  

Rest of the basic fluid equations remain the same. Following 
the same procedure, as used in section 3, we derive the 
mKdV equation in the case of recombination. This is given 
by 
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∂ϕ1
∂τ

+ KRϕ1
∂ϕ1
∂ξ

+ LR
∂3ϕ1
∂ξ 3

+MRϕ1
∂np0
∂τ

+ NRϕ1 = 0 . (51) 

 Here KR, LR and MR are the same as K, L and M of  
Eq. (32), while NR is given by 

NR =Q1R
−RRλ

2Zp cosθnp0 R2λ0
2 −σ p cos

2θ( )− 2σ pnp0λ0RRλ

⎛

⎝
⎜

⎞

⎠
⎟ , 

together with 

Q1R =
−2σ pZpλ0 cos

2θ
Rλ

−
Zpλ0 cosθγ pvzo

Rλ

+
2Zpλ0

2Rγ p

Rλ

+
Zpλ0

2Rγ p

Rλ

(−S sinθ cosθ + cos2θ )
, (52) 

S =
vz0 sinθ − vx0 cosθ( )
vxo sinθ + vz0 cosθ( ) , and Rλ =

λ0
2R2 − 2σ p cos

2θ
λ0
2R

. (53) 

 Eq. (51) is the similar type of mKdV equation as 
obtained in section 3. However, only the coefficient N is 
different in Eq. (51). In view of this, we directly use soliton 
solution (49) for investigating the soliton behavior in the 
case of recombination. 
 Fig. (8) shows the effect of the magnetic field on both the 
solitary structures corresponding to the fast and slow modes 
in a plasma, where the recombination is dominating. The 
effect of the magnetic field in the case of ionization has 
already been discussed in Fig. (3). When we compare  
Fig. (8) with Fig. (3), we find that in the case of 
recombination the tail is very much dominating as compared 
to the case of ionization. On the other hand, the effect of the 
recombination rate is shown in Fig. (9), where it is realized 
that the recombination process modifies the solitary structure 
in a very significant manner. It is interesting to note that the 
 

 

Fig. (8). Fast and slow solitary structures ϕComplete( ) , showing the 

effect of magnetic field (through coefficient A), when np0 = 0.9,  
γp = 0.01, Zp=1, θ  = 50° and σ p = 0.01 , vx0  = vz0  = 0.08 for fast 

mode, and vx0  = vz0  = 0.8 for slow mode. Fss (Sss ) shows the fast 
(slow) solitary structure. 

structure corresponding to the slow mode is very drastically 
modified in comparison with the fast solitary structure. 
Actually this happens due to the coefficient NR that shows a 
strong dependence on the recombination rate. Since the 
growth of tailing structure is coupled with the energy 
exchange mechanism between the soliton and its tail, it is 
understood that the energy of the slow soliton is transferred 
at a higher rate to the tail, when the higher recombination 
takes place in the plasma. Hence, the tail grows very 
significantly in the case of fast recombination. 

 
Fig. (9). Fast and slow solitary structures, showing the effect of 
recombination rate γ p , when A = 0.5, np0 = 0.9, Zp = 1, θ  = 50°, 

σ p = 0.01 , vx0  = vz0  = 0.08 for fast mode, and vx0  = vz0  = 0.8 for 
slow mode. 

 In Fig. (10), we have examined the effect of ion 
temperature (which was neglected in earlier investigations) 
on the fast and slow solitary structures in the presence of the 
recombination. Here also, the similar effect of the ion 
temperature on the soliton amplitude is realized, as in the 
case of ionization. However, the point of observation is that 
the tailing structure shows a strong dependence on the ion 
temperature. In the case of only ionization the shape of the 
soliton structure remains almost the same, whereas in the 
case of only recombination the tailing structure grows very 
well and modifies the main soliton. For example, in the case 
of fast solitary structure the tail grows faster, when the ions 
carry higher temperature in the plasma. The slow solitary 
structure, however, shows opposite behavior and its tail 
becomes less prominent. Further, based on the magnitude of 
tails of the fast and slow solitary structures, it can be 
deduced that the transfer of energy between the soliton and 
its tailing structure is more in the case of slow solitary 
structure. This is also consistent to the observation made in 
Fig. (9). 

 In order to compare the solitary structures under the effects 
of ionization and recombination, when the ions carry more 
charge, we have plotted the effect of Zp on ϕComplete  in Fig. (11). 
On comparing this figure with Fig. (6), it is observed that the 
effect of the charge of ion is very weak on both the solitary 
structures in both the cases of ionization and recombination. 
However, the solitary structures with smaller amplitudes and 
larger widths are observed in the case of only recombination. 
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Fig. (10). Fast and slow solitary structures, showing the effect of 
ion temperature (ratio σ p ) in the case of recombination, when  

np0 = 0.9, γp = 0.01, Zp = 1, θ  = 50°, A = 0.5, vx0  = vz0  = 0.08 for 
fast mode, and vx0  = vz0  = 0.8 for slow mode. Fss (Sss) shows the 
fast (slow) solitary structure. 

 
Fig. (11). Weak effect of charge valency Zp on the fast and slow 
solitary structures in the case of recombination, when np0 = 0.9,  
γp = 0.01, σ p = 0.01 , θ  = 50°, A = 0.5, vx0  = vz0  = 0.08 for fast 

mode, and vx0  = vz0  = 0.8 for slow mode. Fss (Sss) shows the fast 
(slow) solitary structure. 

 In order to see the effects of the density gradient on the 
solitary structures in the cases of ionization and 
recombination, we have plotted ϕComplete  for different values 
of np0τ  in Figs. (12, 13), respectively. On comparison, we 
find that the soliton maximum increases with increasing 
np0τ  for the slow solitary structure as well as for the fast 
solitary structure, when we consider the ionization in the 
plasma (Fig. 12); the same is true for the case of the 
recombination also (Fig. 13). However, the effect of the 
density gradient is most significant on the tailing structure in 
the case of recombination. Moreover, we find that the soliton 
amplitude is enhanced by ~ 14% in the case of ionization, 
whereas it is increased by ~11% when the recombination 
takes place. Over and all, we conclude that the density 

gradient modifies the solitary structures very significantly in 
the case of recombination. 

 
Fig. (12). Variation of soliton profile with change in density 
gradient for the case of ionization when np0 = 0.9, γp = 0.01, 
σ p = 0.01 , Zp = 1,θ  = 55°, A = 0.5, vx0  = vz0  = 0.09 for fast 

mode, and θ  = 50°, vx0  = vz0  = 0.9 for slow mode. Fss (Sss) shows 
the fast (slow) solitary structure. 

 
Fig. (13). Variation of soliton profile with change in density 
gradient for the case of recombination, when np0 = 0.9, γp = 0.01, 
σ p = 0.01 , θ  = 55°, Zp = 1, A = 0.5, vx0  = vz0  = 0.09 for fast 

mode, and θ  = 50°, vx0  = vz0  = 0.9 for slow mode. Fss (Sss) shows 
the fast (slow) solitary structure. 

 We can find the set of plasma parameters for which the 
tailing structure associated with the soliton is disappeared for 
a particular/critical value of the ionization and 
recombination. Since in the case of ionization the coefficient 
N encompasses the contribution of the ionization rate, we 
can find the critical value of the ionization rate by setting 
this coefficient to zero so that the soliton solution does not 
carry the coefficient N and hence, the effect of ionization. 
The critical value of the ionization rate constant for which 
the tailing structure will disappear is given by the following 
expression: 
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γ pc =
−2σ p cosθ(vθ )

vz0 vθ ± Zp + 2σ p cosθ{ } . (54) 

 Here vθ  is the same as defined earlier for Eq. (32). Here, 
negative (positive) sign in the denominator corresponds to 
the fast (slow) solitary structure. From this expression we 
can see that γ pc  will be positive only when 

vx0 sinθ + vz0 cosθ < Zp + 2σ p cosθ . This provides an 

upper limit on the angle θ, as given below 

θmax = tan
−1 Zp + 2σ p − vz0

vx0

⎛

⎝
⎜

⎞

⎠
⎟ . (55) 

 Our numerical calculations show that γ pc will always be 
negative for the case of slow solitary structure. Hence, the 
coefficient N will not vanish in the case of slow structure 
and the tailing structure will always be associated with the 
slow soliton. However, the tail will disappear for the fast 
solitary structure, if the ionization rate matches the value of 
γ pc  for the given set of parameters. On the other hand, for 
the case of recombination, the critical value of the 
recombination rate constant is obtained by setting the 
coefficient NR to zero. This is given by 

γ pc =
2σ pvθ cosθ

vz0 −vθ ± Zp + 2σ p cosθ cos2θ( )
±2 Zp + 2σ p vx0 cos

2θ sinθ + vθ( )

. (56) 

 Here, negative (positive) sign in the denominator 
corresponds to the fast (slow) solitary structure. It can be 
obtained from Eq. (56) that for the case of recombination 
γ pc  

will be positive only for the slow solitary structure. 
However, this is possible only when the following condition 
is satisfied 

vz0 +
2 Zp + 2σ p vθ + cos

2θ sinθvx0( )
Zp + 2σ p cosθ cos2θ − vθ

> 0 . (57) 

 Hence, we can say that the tailing structure will disappear 
in the case of the slow solitary structure, when the 
recombination effect is dominating, while a tail will always 
accompany the main soliton for the fast solitary structure. On 
the other hand, the tailing structure will disappear in the case 
of the fast solitary structure, when the ionization effect is 
dominating, while a tail will always accompany the main 
soliton for the slow solitary structure. These solitary 
structures without tail are shown in Fig. (14) for the critical 
values of the ionization and recombination for the fast and 
slow solitary structures, respectively. 

 Fig. (15) shows the dependence of the critical values of 
the ionization and the recombination rate constants γ pc  on 
σ p , θ, vx0 and vz0 . Here, it is evident that γ pc for both the 
cases of the ionization (solid lines) and recombination 
(dashed lines) attain larger values for the higher values of 
σ p . It means, if the plasma contains higher temperature 

ions, a faster rate of the ionization/recombination rate is 
required so that the solitary structures do not see the effect of 
the ionization/recombination; similar is the case for the 
plasma where the ions with higher drifts are present. 
However, the effect of angle θ is opposite in the cases of 
ionization and recombination. Higher value of γ pc  is 
required in the case of the ionization, if the magnetic field is 
applied at a larger angle θ. However, lower value of γ pc  is 
required in the case of the recombination, if the magnetic 
field is applied at a larger angle θ. 

 
Fig. (14). Complete soliton for the critical values of ionization and 
recombination rates γ pc , when np0 = 0.9, σ p = 0.01 , θ  = 55°,  

Zp = 1, A = 0.5, vx0  = vz0  = 0.09 for fast structure (Fss), and θ  = 
50° vx0  = vz0  = 0.9 for slow solitary structure (Sss). 

 

Fig. (15). Variation of critical ionization (recombination) rate γ pc
constant with ion to electron temperature ratio σ p  for different 

values of θ and drift velocities. Here solid (dashed) lines represent 
the case of ionization (recombination) for singly charged ions 
(Zp=1). 

6. ESTIMATION OF IONIZATION/RECOMBINATION 
EFFECT 

 With regard to the estimation of the ionization/recombi-
nation effects on the soliton propagation for typical plasma 
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parameters of laboratory and space, and the observation of 
ionization/recombination-modified solitary structures in the 
experiments, we discuss the ratio of amplitudes of the tail 
and the main soliton. For a typical laboratory plasma, kept in 
a chamber of ~ 40 cm diameter and when plasma density n00
= 1014 /m3, B0 = 0.1 T, Te = 3 eV and Ti = 0.3 eV, we find that 
the Larmor radius ~ 5 × 10−

4 m (considering the thermal 
velocity as perpendicular component of velocity v⊥ ) and the 
tail is ~ 7% of soliton amplitude that is enhanced to ~ 23%, 
when the ion drift is reduced from 0.6Cs to 0.06Cs (Cs is the 
ion acoustic speed) in the hydrogen plasma. However, the 
tail is 27% of soliton amplitude that is enhanced to ~ 78%, 
when the ion drift is reduced from 0.6Cs to 0.06Cs in the 
argon plasma. The tailing structure is found to reduce if the 
magnetic field is increased or the plasma density is 
enhanced. Hence, this is clear that these modified solitary 
structures can be easily observed in the laboratory. In view 
of space plasma, we can take the example of Van Allen 
radiation belts, which are dominated by the protons and have 
the parameters: n00  ~108 /m3, Ti = 1 eV, Te ~ 1000 eV and  
B = 5 × 10−

7 T. Here, the Larmor radius comes out to be  
~ 200 m and the tail is ~ 42%, when the protons drift with 
the speed of 0.6Cs. However, the tail is ~ 89%, when the 
protons drift with the speed of 0.06Cs. Hence, the solitary 
structures with prominent tail can be observed in the space 
related plasma, where the plasma density and the magnetic 
field are smaller in comparison with the laboratory plasmas. 

CONCLUDING REMARKS 

 The present calculations describe the real situation of the 
plasma, where the ionization and/or recombination take place 
and the ions carry finite temperature. A modified form of the 
KdV equation governs the behavior of solitary waves in this 
type of plasma. We have discussed separately the cases of 
ionization and recombination, and compared the two for better 
understanding of occurrence of solitary structures. In both the 
cases, the ion temperature is found to reduce the amplitude 
significantly. Consistent to the investigations made by other 
investigators, the dispersive property of the plasma is found to 
be modified in the presence of magnetic field, but the solitons 
with wider widths evolve under the effect of stronger magnetic 
field in a plasma having ionization or recombination. The main 
soliton is found to propagate along with its tailing structure, 
when the ionization or recombination takes place in the plasma, 
and the tail with more prominent form arises in the case of 
recombination; the same is observed in the case of stronger 
density gradient. The effect of charge of the ions affects only the 
tailing structure; however, the tail shows weak dependence on 
the charge number. We have also derived the expressions for 
critical rates of ionization and recombination, based on which it 
is deduced that the fast solitary structure in the case of 
ionization and the slow solitary structure in the case of 
recombination can evolve without their tailing structures. 
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