Molecular Physics of Elementary Processes Relevant to Hypersonics: Electron-Molecule Collisions

R. Celiberto*,1,2, V. Laporta2,3, A. Laricchiuta2, J. Tennyson3 and J.M. Wadehra4

1Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Bari, Italy
2Istituto di Metodologie Inorganiche e Plasmi, CNR, 70125 Bari, Italy
3Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
4Physics Department, Wayne State University, Detroit, MI 48202, USA

Abstract: Non-resonant, electron-impact, vibro-electronic excitation cross sections, involving vibrationally excited N2 molecules, to the mixed valence-Rydberg b,c,o 1Πu and b’,c’,e’ 1Σu+ singlet states are presented. These cross sections are calculated using the so-called similarity approach, accounting for the vibronic coupling among excited states, and compared with the experiments and different theoretical calculations.

New cross sections for the electron-impact resonant vibrational excitation of CO2 molecule are calculated, for the symmetric stretching mode, as a function of the incident electron energy and for the transitions (υi,0,0) → (υf,0,0) with υi = 0,1,2 and for some selected value of υf in the interval υf ≤ 10. A resonance potential curve and associated widths are calculated using the R-matrix method. Rate coefficients, calculated by assuming a Maxwellian electron energy distribution function, are also presented for the same (υi,0,0) → (υf,0,0) transitions.

Electron-impact cross sections and rate coefficients for resonant vibrational excitations involving the diatomic species N2, NO, CO, O2 and H2, for multi-quantic and mono-quantic transitions, are reviewed along with the cross sections and rates for the process of the dissociative electron attachment to H2 molecule, involving a Rydberg excited resonant state of the H2 ion.

Keywords: Dissociative attachment, non-resonant collisions, resonant-collisions, vibrational excitations.

1. INTRODUCTION

The presence of molecular species in gaseous systems gives rise to a large variety of collisional and radiative processes, which involve the internal degrees of freedom of the molecules. In non-equilibrium conditions, these processes play a role of fundamental importance in redistributing the energy, and while the rotational population, due to the quasi-continuum structure of the rotation levels, can be considered in many situations as thermalized, vibrational distributions can largely deviate from the equilibrium state, so that the collisional processes may involve highly-excited vibrational levels [1].

In low-temperatures plasmas, which can be characterized by a non-negligible molecular and electronic densities, the impact of electrons on vibrationally excited molecules may assume a role of paramount importance in affecting the plasma properties. With this in view, we roughly classify electron-molecule collisions in two categories represented by the non-resonant collisions, where only exchange of energy or momentum may occur, and which include vibrationally elastic and inelastic processes and ionization, and resonant collisions, where the incident electron can be momentarily captured by the target molecule with formation of a negative ion in a resonant state [2]. In this latter case, the resonant state is characterized by a finite lifetime and can either give rise to dissociative electron attachment (DEA), where the molecule can be broken in fragments, one of which carries the additional negative charge, or to the resonant vibrational excitation (RVE) occurring through emission of the extra electron back to the continuum, which usually leaves the molecule in a final excited vibrational level. Excited electronic states can also be involved in both the above resonant and non-resonant processes, so that combined vibro-electronic excitations become possible. In addition, when the excited levels fall in a vibrational continuum, molecular dissociation can also take place.

It is worth noting that this distinction in resonant and non-resonant collisions, is only conventional and refers to different scattering regimes where different approximations can be used in the theoretical calculations. In those collisions where the incident electron, at low energy, penetrates the molecular cloud, the formation of a resonance requires an accurate theoretical description of the scattering event, usually based on close-coupling methods. On the other hand,
for large collision energies, or also large impact parameters (distant collisions), the capture of the incident electron becomes improbable and the theoretical description of the scattering process can be strongly simplified. Hence, Born-like or semi-classical approximations can be applied.

A theoretical kinetic model of a non-equilibrium molecular plasma, aimed at a realistic and predictive description of the system, must take into account all the possible collisional and radiative processes involving both electrons as well as heavy particles in their ground or excited states [1]. This is usually implemented by resorting to the so-called state-to-state approach to plasma kinetic modeling, according to which each molecule, in a given internal quantum state, is considered as an independent chemical species [3]. This requires, in principle, the knowledge of the cross sections for all the scattering processes starting from each molecular quantum state accessible in the system. Examples of application of the state-to-state approach are provided, in space explorations, by the plasma arising during the re-entry conditions of space shuttles which, entering the atmosphere of a planet, are exposed to gas friction and their kinetic energy is then transferred to the internal motions of the atmospheric molecules, so that the level population assumes a non-equilibrium distribution [4].

In this article, which is part of a series of papers by our collaboration devoted to the study of planetary atmospheric molecules, we present electron-molecule cross sections for vibrationally excited molecules relevant for re-entry problems. In particular, we will discuss the cross sections for processes involving the N$_2$, O$_2$ and NO molecules, components of the Earth’s atmosphere, CO and CO$_2$ important for Venus and Mars atmospheres, and H$_2$ which is the main component of the gaseous giant planets. The article is divided in two parts. In Part I we will focus on electron-impact non-resonant collisions leading to vibro-electronic excitation of diatomic nitrogen molecules. The cross sections are calculated for excitation to the $b,c,o \, ^1\Pi_u$ and $b',c',e \, ^1\Sigma_e^+$ electronic states of the N$_2$ molecules. In Part II, we present new resonant cross section and rate coefficient calculations for vibrational excitations of the symmetric stretching mode of the CO$_2$ molecule. We also briefly review cross sections and rate coefficients for the vibrational excitation and dissociative attachment for the diatomic molecules mentioned above [5-10]. In particular in Part I, section 2, we introduce the non-resonant electron-N$_2$ molecule excitation processes, and in section 3 and 4 we will illustrate the similarity approach for cross section calculations and discuss the obtained results respectively. In Part II, section 5, we will briefly outline the theory for resonant collisions, and in section 6 we will present the original results for CO$_2$ molecule. In section 7 cross sections and rates for diatomic molecules will be reviewed and, finally, in section 8 we will give our conclusions.

PART I: NON-RESONANT COLLISIONS

2. N$_2$ MOLECULE DISSOCIATION: EXTREME ULTRAVIOLET SYSTEMS

Excitation to the lowest three electronic states of the $^1\Sigma$ and $^1\Pi$ spectroscopic series for N$_2$ system, being dipole-coupled to the ground state and representing the dominant contribution to the extreme ultraviolet spectrum of N$_2$ plasmas, has received considerable attention since the 1980s [11, 12]. These states, usually denoted as $b,c,o \, ^1\Pi_u$ and $b',c',e \, ^1\Sigma_e^+$ exhibit a strong inter-state coupling, due to their mixed valence-Rydberg character, resulting in significant perturbation of vibronic bands. Moreover, the vibrational levels are strongly predissociated [13, 14], therefore vibronic excitation channels contribute to the formation of atoms electronically excited, affecting the atomic concentration in the gas phase.

Among the previous works on the subject, special mention should be made of the pioneering work by Ermler et al. [11], who computed ab-initio potential energy curves and transition dipole moments for the singlet terms of the N$_2$ spectrum, and the work of Stahel et al. [12], who considered for the first time the electronic coupling and provided a complete quantitative vibrational analysis. Spelsberg and Meyer [15] performed new ab-initio calculations, within a multi-reference configuration interaction (MRCI) framework, giving accurate potential energy curves of singlet terms, both in the adiabatic and diabatic representations, and also for the R-dependent coupling terms in the region of effective interaction, while recently Khakoo et al. and Malone et al. [16, 17] have investigated experimentally the electron-impact excitation of these states, deriving differential cross sections from energy-loss spectra. Finally, very recently Little and Tennyson [18] have calculated a comprehensive set of curves for both singlet and triplet states of N$_2$.

Here we present excitation cross sections for the processes

$$\text{N}_2(X^1\Sigma_g^-,v') + e^- \rightarrow \text{N}_2(^1\Sigma_g^+,v') + e^-; \quad \text{(1)}$$

$$\text{N}_2(X^1\Sigma_g^-,v') + e^- \rightarrow \text{N}_2(^1\Pi_u,v') + e^-; \quad \text{(2)}$$

obtained in the framework of the phenomenological similarity approach, as discussed in the next section, modified to include the effects of vibronic coupling.

3. THEORETICAL APPROACH

Electron-impact excitation to these states has been considered in different theoretical approaches. Vibrationally-resolved cross sections are also derived in ref. [19], where however the vibronic coupling was not accounted for. The main consequence of vibronic coupling is that different electronic terms of the same symmetry lose their identity and should be treated as a complex of states.

The treatment of the vibronic coupling entails the numerical solution of a system of coupled radial Schrödinger equations [20],

$$\left[\hat{T} + \hat{V}^d(R) - i\hat{E} \right] \chi^d(R) = 0; \quad \text{(3)}$$

where $\hat{V}^d(R)$, depending on the internuclear distance R, is the symmetric interaction matrix, whose diagonal elements are represented by the diabatic potentials, while off-diagonal elements are the non-adiabatic coupling terms. The solution $\chi^d(R)$ is a normalized vector of final-state radial wave
functions, having a mixed character and containing information about all the coupled \(a\), \(b\) and \(c\) electronic states, i.e.

\[
\hat{\chi}^d(R) = \begin{pmatrix}
\chi_a^d(R) \\
\chi_b^d(R) \\
\chi_c^d(R)
\end{pmatrix}.
\] (4)

Equation (3) was solved using a numerical code for a system of coupled second-order differential equations, based on a second-order finite difference method [21], using the diabatic potentials and coupling terms calculated using an accurate MRCI approach in ref. [15].

The electron-impact induced vibronic transitions were calculated in the frame of the similarity approach [22], that allows a simplified expression for the state-to-state cross section, i.e.

\[
\sigma^b_{\nu\nu'}(E) = \sum_{\nu} \sigma^b_{\nu\nu'}(E),
\] (8)

The summation runs over levels lying below the lowest dissociation limit. Above this threshold the continuum of the dissociating state is coupled to the bound levels of the other electronic terms in the complex, and the dissociation character of the cross section should be estimated.

4. Vibronic Excitation Cross Sections

Total vibronic excitation cross sections are derived for the transitions to the singlet terms of the nitrogen spectrum. In order to compare the present calculations with different theoretical results, obtained in an independent-state description, each term in the summation is multiplied by the vibrational-dependent quantity \(P_{\nu} = \langle \chi_1^a | \chi_{\nu}^b \rangle\), which weights the state-character of the vibrational wave function with respect to the three coupled terms. For example in the case of the \(b\) \(\Pi\) state one has,

\[
\sigma^b_{\nu}(E) = \sum_{\nu} \sigma^b_{\nu\nu'}(E)P_{\nu}.
\] (9)

Fig. (1) displays the total cross section for excitation to the \(b\) \(\Pi\) complex from the \(\nu' = 0\) level. The vibronic excitation to the \(b\) state dominates, while the contributions to the \(c\) and \(o\) states are considerably smaller. The comparison with theoretical results of ref. [19], obtained using the Gryzinski approach, is reported in Fig. (1a). Though a fairly good agreement in found for the \(b\) state, for the \(c\) and \(o\) states the similarity approach seems to give much lower cross sections. However it should be stressed that in the coupled frame the number of final vibrational levels included in the calculations is lowered with respect to the decoupled description. In fact, as already stressed above, high-lying \(c\) and \(o\) vibrational levels are actually coupled to the \(b\) state continuum, thus contributing to the direct dissociation.

Integral excitation cross sections have been derived from recent accurate experimental differential total cross sections by Khakoo et al. [16], the angular integration being carried out under the assumption of constant \(\sigma(\theta,E)\) for the low \([\theta < 3^\circ]\) and high \([\theta > 130^\circ]\) scattering angles. In comparing the experiments with the theoretical results, it should be considered that the spectral energy window explored in the measurements is 12-13.82 eV, thus collecting emission from a finite number of \(\nu\) levels, i.e. \(b\) \([\nu' = 0-14]\), \(c\) \([\nu' = 0-3]\) and \(o\) \([\nu' = 0-3]\); furthermore, in the experimental paper [16] the vibrational analysis was performed assigning the emission intensity in a decoupled frame, i.e. considering each transition belonging only to one member of the coupled system, while in the present theoretical approach vibrational levels have a mixed character, the weight of each member being represented by \(P\). Accounting properly for both effects, and using a level-character \(P_{\nu} \) switching from 0 to 1, cross sections have been corrected and theoretical and experimental results in Fig. (1b) are thus found in good agreement.
An interesting point is the investigation of the role of vibronic coupling in changing the dependence of the excitation on vibrational quantum states. In Fig. (2) the state-to-state cross section for a transition from the $v''=0$ level to the vibrational levels of the b state, at the collision energy of 200 eV, is shown. The pattern of the final vibrational profile is strongly irregular, due to the coupling perturbation, and far from the expected bell-shape behavior, usually observed for transitions from the fundamental vibrational level. In this case the experimental state-to-state cross sections by Zipf [24] confirm the vibrational pattern. In particular the coincidence of cross section peaks for specific v' levels is observed, though the theoretical calculations predicts lower absolute values. It should be stressed that first order approaches are expected to be predictive at high collision energies, however results prove the possibility of using the similarity approach in systems characterized by a perturbed vibrational progression due to vibronic coupling.

Fig. (2b) reports the state-to-state cross sections for the excitation transitions populating the $v''=1$ level and originating the emission in the Birge-Hopfield system [24].

The cross sections follow the complex behavior of the vibronic transition moment elements and, due to the relative position of the potential energy curves for the ground and excited states and to the monotonic decrease of the diabatic transition dipole moment with the R-coordinate [15], the vibrational excitation for this system does not result in cross section enhancement.

For the $1\Sigma_+^+$ complex, the cross sections for the b' and c' components are comparable, while those for the e' state are considerably lower (Fig. 3a). In Fig. (3b) the excitation to the b' state from $v''=0$ level is compared with experimental integral cross sections in ref. [17] obtained by electron-energy loss spectroscopy allowing for the detection of a limited number of vibrational levels ($v''=0-10$), and with the estimated full-integral cross section, equivalent to $v''=0-16$. The large discrepancy is attributed to the inclusion in the theoretical cross section of excitations to higher vibrational levels lying outside the spectral energy range explored by experiments. In fact, the theoretical cross sections of Fig. (3), obtained by including in the summation...
of Eq. (8) a reduced number of final vibrational levels (dashed lines), are found to be in better agreement with the experiments.

PART II: RESONANT COLLISIONS

5. ELECTRON-IMPACT VIBRATIONAL EXCITATIONS FOR CO_2 MOLECULE: THEORETICAL MODEL

The low energy integrated cross section, for electron-CO_2 scattering, shows two distinctive features: a \(^3\Pi_u \) shape resonance around 3.8 eV (see for example refs. [25-28]) and, at energies below 2 eV, an enhancement due to the presence of the \(^2\Sigma_g^+ \) symmetry virtual state [29-32]. Both phenomena give rise to a temporary CO_2 system. For a general review see ref. [33] and references therein. In this section we report the electron-CO_2 resonant vibrational-excitation process, via \(^3\Pi_u \) shape resonance,

\[
e^+ + \text{CO}_2(X^1\Sigma_g^+, v_i) \rightarrow \text{CO}_2(^3\Pi_u) \rightarrow e^+ + \text{CO}_2(X^1\Sigma_g^+, v_f),
\]

where \(v_i (v_f) \) represents the initial (final) vibrational level of the ground state of CO_2. In its ground electronic state the CO_2 molecule has a linear geometry (D_2h) and it has three vibrational normal modes: symmetric stretching, bending mode and asymmetric stretching. The doubly degenerate \(^3\Pi_u\) symmetry of CO_2 splits the bending mode into two (Renner-Teller) non-degenerate \(^2A_1\) and \(^2B_1\) components (C_2v symmetry) [34]. In principle, as the CO_2 is a polyatomic molecule, the scattering cannot be described by a simple one-dimensional model, but it needs a multidimensional treatment of the nuclear motion. However, the present preliminary calculations are limited to a one-dimensional model where the symmetric stretch is decoupled from the two bending modes (see sec. 6). This permits the use of the local complex-potential model for cross section calculations, in its standard formulation for diatomic molecules [7]. Below the relevant equations are briefly illustrated.

The Schrödinger-like equation for the resonant nuclear wave function \(\vec{\chi}(R) \), is given by

\[
\left(T_N + V^- + \Delta - \frac{i}{2} \Gamma - E \right) \vec{\chi}(R) = -V_i(R) \chi_i(R),
\]

where \(E \) is the total energy and \(T_N \) denotes the nuclear kinetic energy operator. \(V^- + \Delta - \frac{i}{2} \Gamma \) is the optical complex potential where the real part, \(V^- \), is the adiabatic electronic potential for the resonant state, \(\Delta \) is the level shift and the imaginary part, \(\Gamma \), is the width of the resonance. All these quantities parametrically depend on the internuclear distance \(R \). In the present calculations the level shift \(\Delta(R) \) is assumed included in the resonant potential \(V^-(R) \) [7]. Moreover, \(\chi_i(R) \) is the initial vibrational wave function of the neutral molecule, and \(V_i(R) \) is the discrete-continuum coupling matrix element depending on the incident electron momentum \(k \).

The scattering \(T \) -matrix can then be written as:

\[
T_{ij}(E) = \langle \chi_j | V_i(R) | \chi_i \rangle \]

and the total cross section can be finally calculated by [27]

\[
\sigma_{\nu_i \nu_f} = \frac{4 \pi^4}{k^2} |T_{ij}|^2 .
\]

6. ELECTRON-CO_2 RESULTS

A common feature of polyatomic molecules, which is consequence of the multidimensional nature of the system, is the so-called stretch-bend ‘Fermi resonance’, which refers to an accidental degeneracy between certain vibrational modes. In the case of CO_2, the first Fermi resonance is between the pure symmetric stretching mode (1,0,0) and pure bending mode (0,2,0) which are nearly degenerate (Fermi dyad) and they mix, about 50 %, to form two physical states [28, 34]. In the following we ignore this mixing and only address the symmetric stretching mode.
Electron-CO\textsubscript{2} total cross section for the degenerate B_{2u} and B_{3u} symmetries of D\textsubscript{2h}, calculated at three different internuclear distances. The experimental data are taken from ref. [33].

The CO\textsubscript{2} potential energy curve was calculated using MOLPRO [35], an aug-cc-pVQZ basis and the coupled-cluster model. The UK polyatomic R-matrix code of UK-R-matrix code [36, 37] was used for the scattering calculations. A Static Exchange plus Polarization (SEP) model, and the same basis used for CO\textsubscript{2}, was used to calculate the complex potential energy curve for CO\textsubscript{2}. The R-matrix calculations were performed on a grid of fixed internuclear distances. The position and width of the resonant state was then calculated by fitting the corresponding eigenphases sum with a Breit-Wigner function [38]. The resonance curve for the symmetric stretch was obtained by changing the internuclear C-O separation. Fig. (4) shows the total cross sections, corresponding to the eigenphases calculated at three different geometries and for two degenerate symmetries, B_{2u} and B_{3u}, of D\textsubscript{2h} group. The position of the theoretical peak at equilibrium distance is close to the maximum in the experimental data and the peak position shifts as the internuclear distance changes.

The computed potential energy curves for CO\textsubscript{2} and CO\textsubscript{2-} are reported in Fig. (5) with the resonance width $\Gamma(R)$.

The ‘boomerang effect’ indicates that the resonance lifetime is about equal to the period of the linear symmetrical-stretching oscillation; using this observation it is justified, in a first approximation, to reduce the multidimensional problem of vibrational excitation in CO\textsubscript{2} to a simpler problem in one dimension involving only the linear symmetric-stretch coordinate [26]. Figs. (6, 7) show some preliminary results for symmetric stretching cross sections calculated for the excitation to the first few vibrational levels. In particular Fig. (6) compares the present calculated cross sections for the elastic transition $(0,0,0) \rightarrow (0,0,0)$ with both the 1-dimensional boomerang model and a multidimensional calculations of ref. [34]. Fig. (7) shows the calculated inelastic cross sections for the pure $(0,0,0) \rightarrow (1,0,0)$ and $(0,0,0) \rightarrow (2,0,0)$ transitions.

Fig. (8) shows the cross sections (left panel) and the corresponding rate coefficients (right panel) as a function of the electron energy, for the vibrational transitions $(0,0,0) \rightarrow (\nu_f,0,0)$, where $\nu_f = 0,1,2,5,10$. The rate coefficients were calculated by assuming a Maxwellian electron energy distribution function. The typical decreasing trend with the final vibrational levels is observed in both the figures.

Calculations have been performed also for the RVE processes starting from excited vibrational levels. Figs. (9, 10) show the cross sections and the corresponding rate coefficients for the transitions $(\nu_i,0,0) \rightarrow (\nu_f,0,0)$, with $\nu_i = 1$ and 2 respectively and $\nu_i \leq \nu_f \leq 5$. The cross sections, when compared with those of Fig. (8), exhibit new structure which overlaps the rapid oscillations. Two and three broad maxima are observed in the cross section curves of Figs. (9, 10) respectively, probably generated by the behavior of the corresponding wave functions of the initial vibrational levels. The rate coefficients, on the other hand, are not so strongly dependent on the initial vibrational quantum number: the trend with electron temperature and the absolute values are similar for all transitions.

![Fig. (4). Electron-CO\textsubscript{2} total cross section for the degenerate B_{2u} and B_{3u} symmetries of D\textsubscript{2h}, calculated at three different internuclear distances. The experimental data are taken from ref. [33].](image1)

![Fig. (5). Curves for the symmetric stretching mode: Left, potential energy curves for CO\textsubscript{2} and CO\textsubscript{2-}; Right, the corresponding resonance width. Both quantities are shown as a function of the displacement from the equilibrium O-O distance, which is twice the C-O bond length.](image2)
Fig. (6). Elastic electron-CO$_2$ resonant cross section: solid line refers to the present 1-dimensional results, short-dashed line is a 1D boomerang model and the long-dashed line is a multidimensional calculation (MCTDH) [34].

7. ELECTRON-DIATOMIC MOLECULES RESONANT COLLISIONS

A brief review on electron-molecule collisions is presented in this section. The aim is to provide a general survey on the most recent advances in cross section and rate coefficient calculations relevant for atmospheric plasmas.

7.1. N$_2$, NO and O$_2$ molecules

Electron-impact cross sections and rate coefficients have also been calculated for diatomic nitrogen, nitric oxide and oxygen molecules, relevant for terrestrial atmosphere. The calculations were performed for the following RVE processes, linking different ground state vibrational levels [5, 10],

\[
e^{-} + N_2(X^1\Sigma^+,\nu_i = 0 - 64, J) \rightarrow N_2(X^2\Pi_g) \rightarrow e^{-} + N_2(X^1\Sigma^+,\nu_f = 0 - 64, J), \tag{14}
\]

\[
e^{-} + NO(X^2\Pi,\nu_i = 0 - 54, J) \rightarrow NO\ (^1\Sigma^+, \Delta^1\Sigma^+) \rightarrow e^{-} + NO(X^2\Pi,\nu_f = 0 - 54, J), \tag{15}
\]

\[
e^{-} + O_2(X^3\Sigma_g^-,\nu_i = 0 - 41, J) \rightarrow O_2(^3\Pi_g, ^3\Pi_u, ^4\Sigma_u^- \rightarrow ^2\Sigma_u^-) \rightarrow e^{-} + O_2(X^3\Sigma_g^-,\nu_f = 0 - 41, J), \tag{16}
\]

where, in all cases, the molecule, initially in the (\nu_i, J) vibrational level, is excited by electron-impact to the final state.

Fig. (7). Cross sections for the pure linear symmetric stretching (0,0,0)→(1,0,0) and (0,0,0)→(2,0,0) transition.

Fig. (8). Electron-CO$_2$ cross sections (left panel) and rate coefficients (right panel) are shown for the transition (0,0,0)→(\nu_f,0,0) where \nu_f = 0,1,2,5,10.
level \((v_f, J)\). The range of the vibrational quantum numbers is shown in parenthesis. The process for \(N_2\) occurs through the formation of the resonant state \(N_2^{-}(2\Pi_g)\), while in the case of \(NO\) and \(O_2\) multiple contributions come from the three states \(3\Sigma^{-}, 1\Delta, 1\Sigma^{+}\) for \(NO\) and from the four resonant states \(2\Pi_g, 2\Pi_u, 4\Sigma^{-}, 2\Sigma^{-}\) for \(O_2\). A complete account of the calculations is reported in refs. [5, 10]. Here we limit ourselves only to the discussion of some relevant result.

The RVE calculations were extended to all the possible transitions \((v_i, J)\rightarrow(v_f, J)\) among all the vibrational levels, and for fixed different \(J\) values (rotationally elastic processes) running from 0 to 150 for \(N_2\) and \(NO\) and from 1 to 151 for \(O_2\) as allowed by nuclear symmetry considerations [10]. Examples of cross sections for process (14) are shown in Fig. (11a, b), for some elastic and inelastic transitions respectively. An evident feature is the strong oscillations present in all the curves which reproduce the vibrational structures of the resonant state \(N_2^{-}(X^{2\Pi_g})\). The cross section peaks, in fact, are placed at an energy corresponding to the resonant vibrational eigenvalues of \(N_2^{-}\) [9]. These structures disappear abruptly at the energy threshold of the vibrational continuum of the resonant state.

Correspondingly, Fig. (11c, d) shows the rate coefficients for the transitions given in Fig. (11a, b), calculated by adopting a Maxwellian electron energy distribution function. The rates show a very smooth behavior and no memory is retained of the vibrational oscillations in the cross sections.

The trend with respect to the vibrational quantum number is that expected for resonant collisions. In fact, the rates and the cross sections decrease as the vibrational level is increased.

This, in a simplified model for resonant collisions [39], is probably due to the product of the Franck-Condon factors for the two transitions \(v_i\rightarrow v_r\) and \(v_r\rightarrow v_f\), \((v_r\) is the resonance vibrational level) involved in the process. The Franck-Condon overlap, in fact, is expected to reduce as the \(v_i\) or \(v_f\) vibrational levels increase, due to the increasingly rapid wave function oscillations.

Analogous comments hold for the cross sections and rates for RVE process (15) involving \(NO\) molecules, shown in Fig. (12a, b).

The RVE process (16) for the \(O_2\) molecule gives the cross sections shown in Fig. (13). These display fast oscillations below \(\sim\)4 eV which are strongly reduced, but still present, for energies above this value. These structures are due to the different contributions, in different energy
and involving \(\nu_i \), respectively. The rotational quantum number is set to \(J = 0 \).

\[e^- + \text{CO}(X 1 \Sigma^+, \nu_i = 0 \rightarrow 80) \rightarrow \text{CO}^-(\tilde{\Pi}) \rightarrow e^- + \text{CO}(X 1 \Sigma^+, \nu_j = 0 \rightarrow 80), \]

occurring through the resonant state \(\text{CO}^-(\tilde{\Pi}) \) and involving 81 vibrational levels. Cross sections and rates, shown in

ranges, coming from the four resonant states involved in the process. For this molecule the rates for the excitation of low \(\nu_i \) states also show some structure.

7.2. CO Molecule

Cross sections and rate coefficients were calculated also for the resonant vibrational excitations involving the vibrationally excited CO molecule. This species, together

with carbon dioxide, is the main component of the Venusian and Martian atmospheres. The process considered is,

\[e^- + \text{CO}(X 1 \Sigma^+, \nu_i = 0 \rightarrow 80) \rightarrow \text{CO}^-(\tilde{\Pi}) \rightarrow e^- + \text{CO}(X 1 \Sigma^+, \nu_j = 0 \rightarrow 80), \]
Fig. (13). Same as Fig. (11) for O$_2$ molecule with $J = 1$ allowed by nuclear symmetry [10].

Fig. (14). Same as Fig. (11) for CO molecule with $J = 0$.

Fig. (14), are quite similar to the previous cases, except for the appearance of sharp peaks just below the vibrational continuum of the resonant state for some transitions.

7.3. Single Quantum Transitions

The RVE elastic transitions show the largest cross sections and rates. However they play no role in
 redistributing energy among the internal degrees of freedom of the molecular species. The major role, in this case, is played by transitions which change the vibrational state by just one quantum, \(v_i \rightarrow v_j \pm 1 \), whose cross sections are comparable with the elastic ones. Figs. (15, 16) show the cross sections and the corresponding rates coefficients for the transitions \(v_i \rightarrow v_j + 1 \) for the RVE processes involving the diatomic molecules.

7.4. \(\text{H}_2 \) Molecule

Resonant processes for \(\text{H}_2 \) molecule, the main component of the giant planets, have been studied over a long period. This has resulted in a vast theoretical and experimental literature on the topic, stimulated by the importance of hydrogen plasmas for both astrophysical and technological research. Sets of cross sections and rate coefficients have been calculated for \(\text{H}_2(v_i) \) by different authors [40-44] for dissociative attachment and vibrational excitations according to the reactions,

\[
e^− + \text{H}_2(X^1Σ_g^+, v_i = 0−14) \rightarrow \text{H}_2(X^2Σ_g^+) \rightarrow \text{H}(1s)+\text{H}^+(1s^2),
\]

both occurring through the ground resonant electronic state \(X^1Σ_g^+ \) of the \(\text{H}_2^- \) ion. Calculations have also been extended to the process involving the first excited valence state \(B^2Σ_g^+ \) [45] and to RVE leading to electron impact dissociation of \(\text{H}_2 \) [42, 46-48].

More recently, cross sections for DEA and RVE processes, involving a Rydberg excited resonance, were calculated in refs. [7-9]. Complete sets of \(\text{ab initio} \) cross sections and rate coefficients were obtained for the process

\[
e^− + \text{H}_2(X^1Σ_g^+, v_i = 0−14) \rightarrow \text{H}_2(^2Σ_g^+) \rightarrow \text{H}(n = 2)+\text{H}^+(1s^2),
\]

occurring through the Rydberg excited \(\text{H}_2(^2Σ_g^+) \), and yielding to the production of a negative ion and an excited atom. Cross sections and rates are shown in Fig. (17). In this case the cross sections for \(v_j = 0 \) shows the smallest values. For high levels (\(v_j > 5 \)) oscillations start to appear in the cross sections mainly determined by the vibrational continuum of the Rydberg state [9]. The variation of the rates with the vibrational quantum number is contained, at the peaks, within a factor of 100. This behavior is quite different for the case of the shape resonance in process (18) where, as is well-known, the rates increase with the initial vibrational levels by several orders of magnitude [45].

Fig. (15). RVE cross sections for the single quantum excitations (\(\Delta v = 1 \)) in \(\text{N}_2 \) (upper-left panel), \(\text{NO} \) (upper-right panel), \(\text{O}_2 \) (lower-left panel), \(\text{CO} \) (lower-right panel).
Differential cross sections were calculated also for RVE process occurring via the Rydberg resonance [7], namely,
\[e^- + H_2(X \Sigma^+_g, \nu_i = 0) \rightarrow H_2(\Sigma^+_u) \rightarrow e^- + H_2(X \Sigma^+_g, \nu_i = 0 - 14). \]

(21)

The cross sections have been obtained only for the transition \(0 \rightarrow \nu_j = 0 - 14 \). In Fig. (18) the differential RVE cross sections are shown for \(\nu_j = 4, 5, 6, 7 \), at a scattering angle of 85°. The theoretical calculations are in satisfactory agreement with the experimental data [39]. Extension to all the vibrational transitions \((\nu_i, \nu_j > 0) \) has been recently published in Ref. [49].

CONCLUSION

Non-resonant electron-impact total cross sections are presented for the vibro-electronic excitation of the N\(_2\) (X \(\Sigma^+_g \)) molecule to the electronic states \(b.c.o \Pi_u \) and \(b',c',e' \Sigma_u^+ \), taking into account the coupling among the three states for each symmetry. The results obtained are compared with previous (uncoupled) calculations and with experiment. For the \(\Pi_u \) symmetry, good agreement for cross sections is found for the \(b \) state with the results obtained by the Gryzinski method. Some discrepancy is observed however for the \(c \) and \(o \) states. This is attributed to the lower number of vibrational levels included in the present calculations, which recognize that higher levels lead to dissociation through a predissociation mechanism involving the continuum of the \(b \) states. Any comparison with experiments must take into account both the limited number of vibrational levels observed in the measurements and the emission intensity assignment which, as reported in literature, has been applied within a state-decoupled frame. Once these two restrictions are implemented in the preset theoretical calculations, the resulting cross sections are to be found in good agreement with the experimental data.

Good agreement with the experiments is found also for the excitation to the \(\Sigma_u^+ \) state of N\(_2\). However, the comparison with the measurements again required the inclusion of a lower number of vibrational levels in the calculations, in order to make the theoretical results consistent with the experiments.

Electron-impact theoretical cross sections and rate coefficients, for the resonant vibration excitation, for the symmetric stretching mode of the CO\(_2\) molecule only, are calculated using the local complex-potential model for resonant collisions. The potential curves for both CO\(_2\) (X \(\Sigma^+_g \)) molecule and CO\(_2\) (\(\Pi_u \)) resonant state are calculated using the MOLPRO electronic structure code. Resonance positions and widths are calculated by using the

Fig. (16), Same as Fig. (15) for the rate coefficients.
R-matrix method. The cross sections obtained are found to be in good agreement with previous theoretical calculations and with experiment. Rate coefficients are also calculated for the transition $\nu_f = 0, 1, 2, 5, 10$, for electron temperatures below 10 eV. No experimental or theoretical data are available for comparison with these rates.

The calculations presented in this work aim to provide input data (cross sections and rate coefficients) for models of planetary atmospheres and, in particular, are intended to acquire knowledge and information useful for (re)-entry problems in space exploration. It is with this perspective that we review all the recent calculations performed by our collaboration for different molecules. In particular we have considered the resonant vibrational excitation of N_2, O_2 and H_2.

Fig. (17). Resonant e-H_2 dissociative attachment cross sections (left panel) and corresponding rate coefficients (right panel) for process (20). For clarity, the cross sections and rates are shown for some of the vibrational levels, as indicated in the figure.

Fig. (18). Differential cross sections at a scattering angle of 85° for the resonant vibrational excitation of H_2 molecule through the process (21) for the transition $0 \rightarrow \nu_f = 4, 5, 6, 7$. The theoretical calculations (solid lines) [7] are compared with the experimental data (dashed lines) [39].
NO by electron impact, important for the Earth re-entry conditions, and of CO molecule, which, together with carbon dioxide, is the main component of the atmospheres of Mars and Venus. Finally, we also review the resonant vibrational excitations and dissociative electron attachment processes for H$_2$ molecule, the main component of gaseous planets, occurring through the 2Σ$_u^+$ Rydberg-excited electronic state of H$_2$ molecular ion. The RVE cross section calculations, for this system, are presently limited to transitions starting from the $v_j > 0$ only. Extension of calculations to the other levels ($v_j > 0$) are reported in [49].

The full set of numerical cross sections and rate coefficients, presented in this paper, is available at the website: http://users.ba.cnr.it/imip/cscp4/phys4entry/database.html

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

The present research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 242311. One of the authors (AL) would also like to thank support from contract C505-IMIP under ESA Contract 21029.

REFERENCES

