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Abstract: The occurrence and propagation of large amplitude dust-acoustic solitary waves (DASWs) are studied in a 

three-component plasma consisting of negatively charged dust grains and electron-positron pairs by employing a pseudo-

potential technique. Here, we focus on a superthermal plasma modeled by a -like distribution and consider a finite tem-

perature for dust particulates. It is shown that the solitary waves with negative polarity are allowed in the system and there 

is a critical value for dust charge 
 
Z

d
 above/below which the subsonic/supersonic solitary structures can propagate. In the 

case of negative fullerene ions, 
  
Z

d
= 1,  it is observed that subsonic DASWs can propagate in the plasma. In addition, it is 

revealed that the propagation of double layers is not possible in this plasma system. 
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1. INTRODUCTION 

In recent years, dusty plasmas have attracted a great deal 
of attention due to their ubiquitous nature. Dusty plasmas 
may occur in several situations related to the astrophysical 
environment such as cometary tails, asteroid zones, planetary 
rings, interstellar medium, nebulas, earth’s ionosphere and 
magnetosphere [1-5]. Electron-positron-dust (e-p-d) plasma 
is a kind of dusty plasma in which electrons and positrons 
have equal masses. Such plasmas can occur in supernovae 
and pulsar environments, as well as in cluster explosions by 
intense laser beams in laboratory experiments. The produc-
tion of electron–positron (EP) pairs in supernovae and pulsar 
magnetosphere is significant, where the environment include 
large quantities of EP pairs, as well as dust particles [6]. 
Clusters, on the other hand, are produced as bonded atomic 
structures in laboratory to form nanoscale plasmas by intense 
laser fields. These plasmas have a life span of the order of 
femtoseconds, after which they erupt in a release of highly 
energetic electrons and dust particles [7-9]. On the other 
hand, the production of EP pairs and dust particles due to 
cluster explosions can be possible by the next generation 
lasers [10].  

Nowadays, it is believed that the study of nonlinear 
waves in space plasmas improves our knowledge about the 
earth’s magnetosphere and the other plasma environment. 
Generally, small-amplitude nonlinear waves in plasma can 
be described either by the Korteweg-de Veries (KdV) equa-
tion or nonlinear Schrödinger equation (NLSE), derived via  
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reductive perturbation method [11], but the nonlinear waves 
with arbitrary amplitude can be analyzed by using the stand-
ard Sagdeev pseudo-potential approach [12]. For example, 
dust-acoustic solitons of large amplitude with variable parti-
cle charge are studied using the Sagdeev quasi-potential 
analysis by Ivlev and Morfill [13]. Moreover, the character-
istics of solitons in Earth's dusty mesosphere have been ex-
amined by Popel et al. [14]. Furthermore, because of the 
coexistence of EP pairs and dust grains in many astrophysi-
cal environment, there are some theoretical studies about 
nonlinear wave propagation in e-p-d plasmas, see for exam-
ple [15-17]. It is found that the presence of charged dust 
grains modifies the existing plasma wave spectra and may 
even introduce new eigenmodes in the plasma. In the low-
frequency limit the dust motion has to be taken into account, 
which leads to dust-acoustic (DA) modes [18-20].  

Most of studies on the waves in plasmas are based on the 

assumption of a Maxwellian distribution function being the 

most probable distribution function for multicomponent spe-

cies [21-25]. However, with more and more empirical data 

becoming available from space plasma systems, it is realized 

that in such systems, the particle distribution significantly 

deviates from the Maxwellian distribution [26-28] due to the 

presence of superthermal particles having high energy tails 

[29]. These superthermal particles can be described by -

distribution rather than Maxwellian [30-38]. The Lorentzian 

(or Kappa) distribution has been widely used for convention-

al plasmas (not for a dust component). The  distribution 

was first suggested by Vasyliunas [29] to model space plas-

mas, and was later adopted by many authors in various phys-

ical contexts. Superthermal (accelerated) particles are often 

present in laboratory experiments in the solar atmosphere 

[39] and in space plasma [30] environment. The parameter  
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 determines the high energy power law index (which ap-

proaches to Maxwellian distribution for ) [40]. The 

 distribution function was argued to provide a much better 

fit to existing observations than the Maxwellian [29-41]. The 

kappa distribution function applications include; for in-

stance, the interpolation of observations in the Earth’s fore-

shock with 3 <
e

< 6  [42, 43] and the solar wind models 

with coronal electrons with 
  
2 <

e
< 6  [42, 44].  

The commonly used three-dimensional, isotropic kappa 

( )  distribution is given by [45, 46]; 

  

f v( ) =
n

0

v
eff

2( )
3

2

+1( )
1

2

1+
v2

v
eff

2

+1( )

,  

where, n
0

, is the equilibrium number density, 

v
eff
2

= ( -3/2)  2K
B
T m( )  is the effective thermal speed 

modified by the spectral index > 3 2( )  with  T  being the 

temperature, m  the mass of species, and 
 

x( )  is the gam-

ma function. By using the kappa distribution function and 

integrating over velocity space, one may obtain the number 

density of the plasma species. It is emphasized that this 

“Kappa” distribution tends to a Maxwellian one for   . 

As mentioned above, the  distribution function gives 
rise to much better fit to the experimental observations than 
the Maxwellian one [29, 41]. On the other hand, the e-p-d 
plasmas can occur in space plasmas as well as in laboratory 
plasmas. According to our knowledge, the study of dust-
acoustic solitary waves (DASWs) in the e-p-d plasmas con-
sisting of superthermal electrons, positrons and dust particu-
lates has not been done yet. Therefore, the aim of the present 
paper is the studying such structures in the e-p-d plasmas. 
One must notice that the EP annihilation time scale is very 
small compared with the time scale of DA waves. So, we 
assume that the recreation of EP pairs can be taken place by, 
for example, sunlight or intense laser radiation in DA wave 
time scale.  

The paper is organized as follows: in Section 2, the basic 
set of fluid equations is presented and reduced in Section 3 
to an energy balance equation, which defines a pseudo-
potential model of the nonlinear DA excitations. In Section 
4, we define conditions for the existence of large amplitude 
DASWs and illustrate the dependence of existence region of 
these modes on some plasma parameters. Finally, Section 5 
is devoted to conclusions. 

2. THE MODEL EQUATIONS 

Let us consider a collisionless plasma comprising of a 

population of superthermal distributed electrons and posi-

trons in the background of extremely massive inertial dust 

grains which are negatively charged. Therefore, in  

 

 

one-dimension, the nonlinear dynamics of DAWs in e-p-d 

plasma is governed by the following system of fluid equa-

tions; 

n
d

t
+

x
n

d
v

d( ) = 0,
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and the Poisson's equation; 

  

2

x2
= 4 e(n

e
+ Z

d
n

d
n

p
),

 

(3) 

where, , 
e

n  and 
 
n

p
 refer to the number density of dust 

particles, electrons and positrons, respectively; 
d

v  is the 

velocity of dust fluid; 
 
p

d
 is the pressure of dust fluid; 

 
Z

d
 is 

the atomic number of dust particulates and  is the electro-

static potential. The pressure 
 
p  is related to the density n  

by the thermodynamic equation of state 
  
p n = const. , 

where  is the polytropic index or the ratio of specific heats 

 
C

p
C

v
. By using the thermodynamic equation of state, we 

may find an explicit expression for compression of the spe-

cies we are dealing with as 
p

p
=

n

n
. In the present work 

in which we are studying the low-frequency DA waves, the 

electrons (or positrons) move so fast relative to the wave that 

they have sufficient time to equalize their temperature eve-

rywhere; it means that the electrons (or positrons) are iso-

thermal. For these isothermal particles we have 

   
p = (nk

B
T ) = k

B
T n  which leads the value 

  e( p)
= 1  for 

them. On the other hand, it is assumed that the dust particles 

suffer one-dimension compressions in the plane wave. These 

heavy particles have not the time to equalize their tempera-

ture everywhere in the wave motion and so 
 
k

B
T

d
will change 

in the compression process. So we have a pressure-gradient 

as 
   

p
d

= (n
d
k

B
T

d
) = k

B
T

d
n

d
+ n

d
k

B
T

d
, combining with 

the equation of state result 
d

 would have a value larger 

than one; it means that the dust particles have adiabatic com-

pressions. Generally, if  N is the number of degrees of free-

dom,  is given by 
  

= (2 + N ) N [47]. It is to be men-

tioned that we have essentially assumed that the heat flow in 

the system is negligible in order to have an equation of state 

like 
  
p n = const.  In the present study, we have to take 

  d
= 3  for one-dimension adiabatic compressions for dust 

particles ( N = 1 ).  

We emphasize that the dust particle charge depends gen-
erally on the electrostatic potential and hence, in different  
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places of the soliton the dust charge should be different. The 
variation of dust charge is because of collisions between 
electrons and positrons with dust particles. In practice, the 
collision of electrons and positrons with dust grains produces 
a charged current. The time evolution of charge on a dust 
grain immersed in a plasma is determined by the charging 
equation as follows;  

   
t

+ v
d
. Q

d
= I

e
+ I

p
,

 

(4)  

where I
e

 and 
  
I

p
 are, respectively, the currents which charg-

es the dust grain via electrons and positrons, reaching the 

grain surface. The currents 
  
I

e
 and 

  
I

p
 are given by following 

relations [48]; 

  

I
e

= e r
d

2 8T
e

m
e

2

n
e
exp

e

T
e

 

(5) 

  

I
p

= +e r
d

2 8T
P

m
P

2

n
p

exp
e

T
e

 

(6) 

where r
d

 is the radius of dust grains, and  denotes the dust 

grain surface potential relative to the plasma potential . In 

many cases, the dust charge can quickly reach the local equi-

librium at which the currents from the electrons and posi-

trons to the dust grains are balanced. We further suppose that 

the streaming velocities of electrons and positrons are much 

smaller than the thermal velocities. So, the charge-current 

balance equation reduce to 
  
I

e
+ I

p
0.  

In the present work, we are interested in examining the 
nonlinear propagation of the low phase velocity electrostatic 
modes (in comparison with the electron and positron thermal 
speeds) on the time scale of the DA wave period. So, by con-
sidering the situations in which the typical dust charging 
time scale is longer than DA time scale, it is anticipated that 
the dust charge fluctuations have no essential effect on DA 
modes [49]. So, we can assume that the dust charge inside 
the solitons is constant. 

Following Gill et al. [50], the number densities of elec-
trons and positrons are expressed as:  

n
e

= n
e0

(1
e

(
3

2
)K

B
T

e

)
+

3

2 ,

n
p

= n
p0

(1+
e

(
3

2
)K

B
T

p

)
+

3

2 .

 

(7) 

The right hand side of Eq. (3) cancels at equilibrium due 
to the overall neutrality condition, then: 

n
p0

= n
e0

+ Z
d
n

d0
.  (8) 

 

We define the DA speed as c
d

= K
B
T

e
m

d( )
1 2

and take 

the Debye length 
 D

 given by the formula 
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D

2
=

j
4 n
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q

j

2
K

B
T

j
( j = e, p) , where 

 
q

j
 denotes the 

charge of electron or positron. Now, we may normalize the 

time t by the inverse of dust plasma-frequency 

  
pd
1

= m
d

4 Z
d
2e2n

d0( )
1 2

, the distance x  by 
 D

, the pres-

sure 
 
p

d
 by 

  
p

d 0
= n

d 0
K

B
T

d
, the potential  by 

  0
= K

B
T

e
eZ

d
, the velocity 

d
v  by DA speed 

d
c , and 

finally 
  
n

e,p,d
 by n

d0
. So, the nonlinear dynamics of the low-

frequency DA waves in our dusty plasma is governed by the 
following reduced equations; 

  

n
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where we have defined the fractional temperatures as 

de
= T

d
T

e
and 

 pe
= T

p
T

e
, in which T

e
,

 
T

p
 and T

d
 

refer to the temperature of electrons, positrons and dust par-

ticles, respectively. Furthermore 
  ed

= n
e0

n
d0

 and 

  pd
= n

p0
n

d0
 refer to the ratios of unperturbed densities of 

electron to dust and positron to dust, respectively, and also 

the parameter 
 1

 is given by 

  

1
=

Z
d
2

ed
+

pd pe

. It is to be 

noted that the right-hand side of Eq. (11) cancels at equilib-

rium due to the overall neutrality condition and yield the 

following result: 

  pd
=

ed
+ Z

d
,
 

(12) 

3. THE EXACT NONLINEAR FORMALISM 

To obtain a solitary wave solution, we assume that all 

fluid variables in the evolution equations depend on a single 

variable = x Mt , where  M is the Mach number (the  

velocity of the solitary wave normalized by DA speed  
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d
c ). Appling appropriate boundary conditions for localized 

waves: i.e., 0,v
d

0,n
d

1  as ± , and then 

integrating Eqs. (9) and (10), we obtain:
 

  

n
d

=
M

M v
d

,  (13) 

  
3

de
n

d

4
n

d

2
M

2
+ 2 + 3

de( ) + M
2

= 0.
 

(14) 

From Eq. (14), two solutions are obtained for the dust 

density 
d

n  as follows: 

  

n
d±

=
1

6
de

M
2
+ 3

de
+ 2 ±

( M
2
+ 3

de
+ 2 )2

12
de

M
2

1

2

.

 

(15) 

The difference between two solutions implies an inspec-

tion in terms of the interplay between the values of parame-

ters M, 
 de

 and . Three criteria need to be considered 

here;  

(i) First, the reality of 
d

n  needs to be ensured.  

(ii) Furthermore, one has to impose 
  
n

d
1  as 0 , 

i.e. the equilibrium state must be accessible as expected.  

(iii) Finally, 
 
n

d
 should be analytical (non-singular) for 

all positive values of 
de

0 . In fact, it should tend smooth-

ly to the correct cold dust density 
  
M ( M

2
+ 2 )1/2

 in the 

limit 
  de

0 . We find that 
d

n  satisfies these criteria only 

if;  

(a) 
  
M > 3

de
 (necessary for 

  
n

d
1  as  0 ) and  

(b) 
  

>
1

2
M 3

de( )
2

1
 (which is necessary be-

cause must be real). (16) 

Note that the cold-dust limit is smoothly recovered upon 

setting 
  de

= 0 . On the other hand, we find that as 

 0  if the inequality 
  
M < 3

de
 is satisfied. However, 

since  is not analytical for 
  de

0 , we shall therefore 

abandon this solution. 

Introducing the ansatz (see Ref. [51]); 

= exp cosh 1( )( )   (17) 

where 

  

=
M

2
+ 3

de
+ 2

M 12
de

,   

the expression (15) for the dust density, n
d±

, may now be 

written in the form:  

  

n
d±

=
M

1/2

(3
de

)1/4

±
1

2 .

 

(18)  

 Note that the inverse-hyperbolic-cosine function is de-

fined for values of the argument larger than zero 
 
( > 0) . 

Indeed, this is ensured by the reality of n
d±

 given in Eq. 

(15).  

By substituting 
 
n

d
 from Eq. (18) into the Poisson's  

Eq. (11), multiplying the resulting equation by d d , then 

integrating and applying the boundary condition  0  and 

d d 0  at , we find the following energy-

balance equation; 

1

2

d

d

2

+ ( ,M) = 0,  (19) 

where 
  

( , M )  is the Sagdeev pseudo-potential. The Gali-

lean transformation 
 

= x Mt  is reminded, where  is the 

distance in the commoving framework with the wave. The 

physical interpretation of the energy-balance Eq. (19) is that 

a fictitious particle (soliton) with position  and velocity 

 
d d  moves in the potential well 

  
( , M ) . The pseudo-

potential 
  

( , M )  is given by; 

( , M ) =
1

3
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M
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4
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2
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 ,

 

(20)  

which is derived only for the 
d

n  branch with 
  
M

2
3

de
. 

Here, the notation 
 0

= ( = 0)  implies the unperturbed 

quantities.  

4. SMALL AMPLITUDE LIMIT 

Before proceeding to the large amplitude solitary waves, 

we consider the small-amplitude limit in the above analysis. 
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By Taylor expanding the Sagdeev potential 
  

( , M )  

around = 0  we obtain; 

( , M ) 0

2

2
+

0

6

3,  (21) 

where we may calculate 
  

0
= d

2
d

2

=0

 and 

  
0

= d
3

d
3
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 from Eq. (20) as follows: 

  

0
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M
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3
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Substituting Eq. (21) into Eq. (19) and integrating, we 
find a solitary solution in the form of: 

  

( ) =
3

0

0

sec h
2( 0

2
).

 

(24) 

The pulse profile given by (24) is identical to the solution 

of the Korteweg-de Vries (KdV) equation, which is obtained 

by the reductive perturbation method, (for example see Ref. 

[52], page 260). It is reminded that the soliton width 

  
L = 2

0
 and the amplitude

 0
= 3  satisfy the 

relation 
  0

L
2

= 12 , as we know from the standard KdV 

theory.  

5. CONDITIONS FOR OCCURRENCE OF DA SOLI-
TONS: NUMERICAL ANALYSIS 

The existence of soliton-like excitations is characterized 

by inspection of the pseudo-potential 
  

( , M ) . It should be 

noted that 
  

( , M )  is real when the inequality (16) is satis-

fied. Now, the conditions for existence of solitary wave 

structures are outlined below.  

The first condition involves the curvature of the function 

  
( , M ) , which must have a maximum at  = 0 . In addi-

tion to 
 

( = 0) = ( = 0) = 0  (here readily satisfied at 

equilibrium, as a result of the neutrality condition), we must 

have 
 

( = 0) < 0  (the primes denote differentiation). The 

latter condition implies the following inequality: 

( = 0) =
1

M
2 3

de

1

2
3

2

< 0.  (25) 

This relation shows the minimum possible values of the 
excitation speed (Mach number) M, at which localized pulses 
can propagate in the plasma.  

Another conditions that we should apply them are as fol-

lows: ( , M ) < 0  in the interval (
m
,0]  and [0,

m
)  and 

  

d / d
=

m

0 , where 
m

 is the root of 
 

( ) , viz. 

  
(

m
) = 0 . For negative potential structures we have 

m
=

min
< 0

 
and for positive potential structures we have 

  m
=

max
> 0 . It is reminded that the (absolute value of the) 

abscissa where the curve intersects with the horizontal axis, 

 m
, corresponds to the maximum amplitude of solitary 

waves. Here, it is understood that there are no other roots in 

between. These requirements are tantamount to imposing the 

requirement 
  

(
cr

) 0 , where the critical value 
 cr

 is 

given by 
  cr

=
1

= 1 2( M 3
de

)  for negative poten-

tial structures (see Eq. (16)). 

Now, in order to elucidate the characteristics of solitary 

waves structure involved in Eq. (19), we have numerically 

analyzed the pseudo-potential function 
  

( , M )  and inves-

tigated the effects of some plasma parameters on existence 

regions of solitary waves and double layers, i.e.; the super-

thermal index  ,  the charge of dust particles 
 
Z

d
, and

 
the 

fractional temperature of dust to electron, 
de

, fractional 

temperature of positron to electron, 
pe

, and fractional den-

sity of electron to dust, . 

Since the dust particles are much heavier than the elec-

trons and positrons, the temperature of the dust particles 

have been considered much less than that of the electrons 

and positrons. Therefore, we have chosen a typical value as 

de
= 0.01 . On the other hand, the electrons and positrons 

have the same mass and they can be in equilibrium with each 

other. Hence, we have chosen 
  pe

= 1 . On the other hand, 

inspired with astrophysical observations, we have considered 

the spectral index  in the range 2 < < 6  (see, e.g., Ref. 

[44]). It is to be mentioned that for values of the spectral 

index  above  10 , our results tends practically to that 

of a Maxwellian plasma.  

(Figs. (1-3)) represent the allowed regions for the exist-

ence of dust-acoustic solitons in a subtle manner. Please note 

that these graphs are plotted in the plane 
  
( , M ) , where 

the solid curve indicates the contour of 
 

= 1 2( )
M 3

de( )
2

. So, the regions above this contour indicate 

condition for reality of n
d

. We remind that only n
d

 satis-

fies the three criteria (i), (ii) and (iii), given in Sec. 3, and 

then result in the equation (16). On the other hand, in Figs. 

(1-3), we have plotted the contour 
  

( , M ) = 0  with dotted, 
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Fig. (1a). The contours of 
  

=
1

2
( M 3

de
)2

 (solid curve), ( ) = 0
 
(doted, dashed, dot-dashed and long dashed curves for 

  
Z

d
= 15, Z

d
= 30, Z

d
= 45  and 

  
Z

d
= 60,  respectively) and 

 
''(0) = 0  (doted, dashed, dot-dashed and long dashed horizontal lines for 

  
Z

d
= 15, Z

d
= 30, Z

d
= 45  and 

  
Z

d
= 60, respectively) in the  M plane. The other plasma parameters set to 

= 2, pe = 1, de = 0.01, ed = 2 . 

 

Fig. (1b). Same as in Fig. (1a), for = 2  and 
  ed

= 5 . 
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Fig. (1c). Same as in Fig. (1a), for = 2  and 
  ed

= 10 .  

 

Fig. (2a). Same as in Fig. (1a), for 
  ed

= 2  and  = 5 . 
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Fig. (2b). Same as in Fig. (1a), for 
  ed

= 2  and = 10 . 

 

Fig. (2c). Same as in Fig. (1a), for 
  ed

= 2  and  = 100 . 
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Fig. (3). The contours of 
  

=
1

2
( M 3

de
)2

 (solid curve), 
 

( ) = 0  (doted, dashed, dot-dashed and long dashed curves for 

 
= 2, = 5, = 10  and 

 
= 100, respectively) and 

 
(0) = 0  (doted, dashed, dot-dashed and long dashed horizontal lines for 

 
= 2, = 5, = 10  and  = 100  respectively) in the  M plane. The other plasma parameters set to 

  de
= 0.01,

pe
= 1,

ed
= 2  and 

  
Z

d
= 1 . 

 

dashed, dot-dashed and long dashed curves for various val-

ues of 
 
Z

d
 and the contour 

 
( = 0) = 0  with dotted, 

dashed, dot-dashed and long dashed horizontal lines for the 

same values of 
  
Z

d
.  Knowing that the condition 

  
( , M ) = 0  indicates the nontrivial root of the pseudo-

potential 
  

( , M )  or the maximum value of amplitude, i.e., 

 m
, we may find that the regions below the contour 

( , M ) = 0  in the ( , M )  plane indicate the formation of 

a typical potential well in which 
  

( , M ) < 0 . On the other 

hand, knowing that the condition ( = 0) < 0  defines the 

threshold Mach number  M , at which localized pulses can 

propagate in the plasma, we can find that the region above 

the contour 
 

( = 0) = 0  in the 
  
( , M )  plane indicate the 

frormation of a typical potential well. So, we may discuss the 

allowed regions for the existence of dust-acoustic solitons 

via these graphs. 

It is remarked that both of the acceptable minimum and 

maximum Mach numbers increase as dust charge 
 
Z

d
 in-

creases. Also, it is observed that only negative potential 

pulses can propagate and their amplitudes increase as the 

Mach number  M  increases (this is in contrast to the result 

given in Ref. [37] for an electron-positron-ion plasma).  

(Fig. (1a)) shows the contours of = 1 2( M 3
de

)2
 

(solid curve), ( , M ) = 0 , (dotted, dashed, dot-dashed and 

long dashed curves for 
  
Z

d
= 15 , 

  
Z

d
= 30 , 

  
Z

d
= 45  

and 
  
Z

d
= 60, respectively) and 

 
( = 0) = 0  (dotted, 
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dashed, dot-dashed and long dashed horizontal lines for 

  
Z

d
= 15, Z

d
= 30, Z

d
= 45  and 

  
Z

d
= 60,  respectively) in the 

plane 
  
( , M ) . The other plasma parameters have been con-

sidered as 
  de

= 0.01,
pe

= 1,
ed

= 2  and  = 2.  One must 

note that, 
  

( , M )
 
is negative (positive) for values of  

and  M which are to be chosen from upper (lower) relevant 

curves, whereas, it is complex for values  and  M  under 

solid curve in Fig. (1a).  

To inspect the effect of the fractional density of electron 

to dust, 
ed

, on the existence regions of large amplitude 

solitons and their amplitude, we have depicted Figs. (1a-c) 

similar to Fig. (1a), for 
  ed

= 5  and 10, respectively. Fur-

thermore, it is found that the minimum/maximum Mach 

number increases as the dust charge 
 
Z

d
 increases for the 

fixed 
  ed

,  whereas, it decreases as 
 ed

 increases for the 

fixed 
  
Z

d
.  

In order to inspect the effect of the spectral index  on 

the existence regions of solitary waves and on their ampli-

tudes, we have depicted Figs. (2a-c) for 
 

= 5, = 10  and 

= 100,  respectively. The values of the other parameters 

and the description of various curves in Figs. (2a-c) are simi-

lar to Fig. (1a). We see that the minimum/maximum  

 

Mach number increases and reaches to a finite value (in fact, 
to the Maxwellian limit) as the spectral index  increases. 
This is in agreement with the result given in Ref. [37] for the 
case of an electron-positron-ion plasma.  

Until now, we remarked that only supersonic solitons 

with   M > 1  may propagate in the plasma for large values of 

  
Z

d
.  Now, let us consider a dusty plasma in which dust parti-

cles are fullerene ions with Z
d

= 1  [53].  In Fig. (3), we have 

plotted the contours of 
  

= 1 2( M 3
de

)2
 (solid 

curve), 
 

( ,M) = 0
 
(dotted, dashed, dot-dashed and long 

dashed curves for 
 

= 2, = 5, = 10  and  = 100,  respec-

tively) and 
 

( = 0) = 0  (dotted, dashed, dot-dashed and 

long dashed horizontal lines for 
 

= 2, = 5, = 10  and 

 = 100,  respectively) in the 
  
( , M ) plane. The other plasma 

parameters are 
  de

= 0.01,
pe

= 1,
ed

= 2.  We find that in 

the case of fullerene ions with 
  
Z

d
= 1,  only the subsonic 

negative solitons can propagate in the plasma, i.e., solitons 

with M< 1. In fact, there is a critical value for 
 
Z

d
 

above/below which the supersonic/subsonic solitons can 

propagate in the plasma. In order to show the effect of dust 

charge 
 
Z

d
 on the threshold Mach number  M , in Fig. (4), 

we have numerically plotted the contours of ( = 0) = 0  

 

Fig. (4). the contours of 
 

( = 0) = 0  in the 
 
Z

d
M  plane (doted, dashed, dot-dashed and solid curves for 

 
= 3, = 5, = 10  and 

 
= 100,  respectively) with 

  pe
= 1,

de
= 0.01,

ed
= 2 . Each curve indicates the threshold Mach number  M above which the solitons are 

allowed. 
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for some values of  in the 
 
Z

d
M  plane, with 

pe
= 1,

de
= 0.01,

ed
= 2 . It is pointed out that the condi-

tion 
 

( = 0) < 0  (threshold Mach number  M , above 

which the solitons can propagate) is satisfied only above the 

curves in Fig. (4). It is found that an increase in the dust 

charge 
 
Z

d
 increases the threshold Mach number M . In ad-

dition, Fig. (4) reveals that depend on the values of 
 
Z

d
 both 

of the subsonic and supersonic solitons are allowed in the 

plasma. Furthermore, we have plotted the threshold Mach 

number M versus the fractional density of electron to dust 

 ed
 in Fig. (5) for some values of 

 
Z

d
 and with 

  pe
= 1,

de
= 0.01, = 3 . We see that the threshold Mach 

number  M increases as the dust charge 
 
Z

d
 increases and it 

decreases with 
 ed

. 

It is to be mentioned that in ordinary plasmas, we usually 

consider a hydrogen plasma in which the ions are positively 

charged with 
  
Z

i
= 1 . In such systems the positive ions con-

stitute the background of the plasma, in which the ion-

acoustic solitons can propagate with a positive potential po-

larity, i.e., the compressive solitons. However, in this study 

we have considerd a quite different system comprising elec-

tron-positron pairs and negatively charged dust grains which  

 

 

are allowed to acquire a large negative charge with 
  
Z

d
1 . It 

is obvious that the features of the acoustic modes (here, the 

dust-acoustic solitons) should be modified in comparison 

with that of in ordinary plasmas. It is logical that in a nega-

tively charged background, via dust particles, the dust-

acoustic solitons propagate with a negative potential polarity, 

i.e., rarefactive solitons. Here, we have no dust-acoustic 

structure with positive potential (compressive solions). On 

the other hand, in such plasma systems in which the negative 

charge of dusts lies in a wide range ( Z
d

= 1  to e.g., Z
d

= 60 ), 

a typical nonlinear dust-acoustic wave may possess small or 

sufficiently large amplitudes. It is reminded that in the non-

linear theory of plasma waves the soliton speed is propor-

tional to the soliton amplitude. So, in such plasma systems 

the solitons are possible in a wide range of the Mach number 

from subsonic to supersonic. 

Here, it is found that the Mach number carries large 

magnitude (M> 1.6) for large values of the dust charge Zd. 

The Mach numbers larger than 1.6 have been reported in a 

plasma consisting of inertial dust particles and inertial-less 

ions by Shchekinov [54] and also in dusty plasmas with iner-

tial dust fluid and Boltzmann distributed electrons, positrons, 

and ions by Esfandyari-Kalejahi et al. [9]. However, the val-

ues of dust charge Zd may be very large in space plasmas 

[55] and consequently, the DASWs can be supersonic in 

these environments. 

 

 

 

Fig. (5). Variation of the threshold Mach number Mach Number  M  with ratio of density of electron to dust (
 ed

) for different values of 

dust charge (
 
Z

d
); the other plasma parameters are set to 

  pe
= 1,

de
= 0.01, = 3 . 
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Now, we shall numerically investigate the effect of vari-

ous parameters on the structure of potential well. It is re-

minded that in the pseudo-potential theory the shape of soli-

ton pulse can be predicted via the analysis of pseudo-

potential function. The root of the pseudo-potential function 

 (width of potential well) corresponds to the maximum 

pulse amplitude (
 m

), while the depth of the potential well 

is associated with the slope of soliton pulse 
 

( )  (see  

Eq. (16)). So a deeper and wider potential well implies a 

steeper (narrower) and higher soliton pulse, and vice versa. 

In Fig. (6a), we have depicted numerically the variation of 

the pseudo-potential  with respect to the dust charge 

d
Z . It is found that with increasing the dust charge 

 
Z

d
 the 

width and depth of potential well decrease, resulting in wider 

solitons (less steepness) with smaller amplitude. Fig. (1b) 

show the variation of the pseudo-potential  versus 

Mach number  M . This figure indicates that increasing the 

soliton speed cause the width and depth of potential well to 

increase. So, the amplitude and the steepness of soliton pro-

file increase with an increase in soliton speed. To show the 

effect of superthermality, in Fig. (6c) we have plotted varia-

tion of the pseudo-potential 
 

( )  with respect to the super-

thermality index . It is found that the width and depth of 

potential well increase monotonically as a result of an in-

crease in superthermality (i.e., a decrease in the value of ). 

So, the maximum amplitude of the DA solitons (
m

)  

 

increases and the soliton pulse becomes steeper for a greater 

excess of superthermal particles.  

The physical role played by the superthermal electrons 

and positrons may be explained as follows. Physically, in a 

superthermal plasma modeled by the Kappa-like distribution, 

the particles have distributed in a wider spectrum of the ve-

locities, in comparison with a Maxwellian plasma. In such a 

model the spectral index  determines the deviations from 

the the Maxwellian distribution. In fact, the low values of the 

spectral index  correspond to a large fraction of super-

thermal particle populations in the plasma. Numerically plot-

ting the velocity distribution function 
 
f v( )  shows that in 

the case of a Kappa distribution (small values of ), com-

paring with the Maxwellian one (sufficiently high values of 

, e.g.,  = 100 ), there are more superthermal particles, 

i.e., the particles with the velocity faster than the thermal 

speed v
th

= 2K
B
T m( )

1 2

 [56]. So, we expect that in the case 

of a plasma in which the distribution modelled by small val-

ues of , the dust-acoustic solitons have to be affected in-

creasingly by the superthermal electrons and positrons. Here, 

the diagrams in Fig. (6c) confirm that for smaller values of  

(more superthermality) the maximum amplitude has larger 

values relative to higher values of  (less superthermality). 

Another result is that double layers cannot exist in the 

desired plasma system. This is because d / d
=

m

 cannot  

  

 

Fig. (6a). Variation of pseudo-potential 
 

( ) versus potential  for different values of dust charge (
 
Z

d
). The other plasma parameters are 

set to 
  pe

= 1,
de

= 0.01,
ed

= 2, = 2 and   M = 2.3 . 
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Fig. (6b). Variation of pseudo-potential 
 

( ) versus potential  for different values of Mach number ( M ). The other plasma parameters 

are set to 
  pe

= 1,
de

= 0.01,
ed

= 2, = 2 and 
  
Z

d
= 15 . 

 

Fig. (6c). Variation of pseudo-potential 
 

( ) versus potential  for different values of spectral index ( ). The other plasma parameters 

are set to 
  
Z

d
= 10,

pe
= 1,

de
= 0.01,

ed
= 2 and M = 3.2 . 

 

be zero (the condition d / d
=

m

= 0  is necessary in order 

to formation the double layers). Physically, we may discuss 

the reasons that double layers do not exist. “A double layer is 

a structure in a plasma which consists of two parallel layers 

with opposite electrical charge. Generally, there are two dif-

ferent kinds of double layers, which are formed differently; 

current carrying double layers and current-free double layers. 

Current carrying double layers may arise in plasmas carrying 

a current. In this case, the necessary condition for the for-
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mation of double layers is that the electron drift velocity ex-

ceeds the electron thermal velocity, i.e., double layers are a 

result of the Buneman instability. On the other hand, current-

free double layers occur at the boundary between plasma 

regions with different plasma properties, where quasi-

neutrality is violated” [57-60]. In order to clarify the situa-

tion in which the current-free double layers may occur please 

note the following discussion. “Consider a plasma divided 

into two regions by a plane, which has a higher electron 

temperature on one side than on the other (the same analysis 

can also be done for different densities). This means that the 

electrons on one side of the interface have a greater thermal 

velocity. The electrons may stream freely in either direction, 

and the flux of electrons from the hot plasma to the cold 

plasma will be greater than the flux of the electrons from the 

cold plasma to the hot plasma, because the electrons from 

the hot side have a greater average speed. Because many 

more electrons enter the cold plasma than exit it, part of the 

cold region becomes negatively charged. The hot plasma, 

conversely, becomes positively charged. Therefore, an elec-

tric field builds up, which starts to accelerate electrons to-

wards the hot region, reducing the net flux. In the end, the 

electric field builds up until the fluxes of electrons in either 

direction are equal, and further charge build up in the two 

plasmas is prevented. The potential drop is in fact exactly 

equal to the difference in thermal energy between the two 

plasma regions in this typical case” [57-60]. Now, it is found 

that in this study in which there is no drift velocity and no 

current in the plasma, and also there are not two electron 

(positron) species with different temperatures, a potential 

drop could not be happened and double layers do not exist. 

CONCLUSION 

In this paper we have investigated the propagation of 

large amplitude DA solitary waves in a three-component 

plasma consisting of electrons, positrons and dust particu-

lates using the Sagdeev pseudo-potential method. In order to 

provide a better fit with the experimental observations, in 

particular for space plasmas, we have assumed that the elec-

trons and positrons are superthermal which modeled by a 

-like distribution rather than Maxwellian one. 

It is remarked that both the acceptable minimum and 

maximum Mach numbers increase as the dust charge Z
d

 

increases. Also, it is found that only negative potential struc-

tures can propagate and their amplitudes increase as Mach 

number  M increases. Moreover, we have numerically shown 

that there is a critical value for dust charge Z
d

 below/above 

which the subsonic/supersonic solitary waves can exist. Fur-

thermore, it has been seen that in the case in which the dust 

particles are negative fullerene ions, Z
d

= 1 , the subsonic 

dust acoustic solitons can also propagate in the plasma. An-

other result is that the double layers cannot occur in the 

plasma.  
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