A New Strategy for the Synthesis of Nucleosides: One-Pot Enzymatic Transformation of D-Pentoses into Nucleosides

Anatoly I. Mirosnikov1, Roman S. Esipov1, Tat’yana I. Muravyova1, Irina D. Konstantinova1, Ilja V. Fateev2 and Igor A. Mikhailopulo*,2

1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow B-437, Russian Federation,
2Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus

Abstract: A possibility of the one-pot synthesis of purine and pyrimidine nucleosides employing pure recombinant ribokinase, phosphopentomutase and nucleoside phosphorylases in a cascade transformation of D-pentoses into nucleosides is demonstrated. Preliminary results of this study point to reliability to develop practical methods for the preparation of a number of biologically important nucleosides.

Keywords: Nucleosides, one-pot transformation of pentoses into nucleosides.

INTRODUCTION

During recent years, a chemo-enzymatic approach to the synthesis of nucleosides attracts continuously growing interest (for recent reviews, see [1]). There are three lines of investigation in this field of research, viz., (i) transglycosylation reaction consisting of the transfer of a pentofuranosyl moiety of commercially available nucleosides or prepared by chemical methods to purine or pyrimidine bases catalyzed by nucleoside phosphorylases (NP’s) or N-deoxyriboosyltransferases (DRT’s) [1, 2]; (ii) biochemical (microbial, enzymatic) retro-synthesis of 2’-deoxyribonucleosides [3], and (iii) chemical or chemo-enzymatic synthesis of α-D-pentofuranose 1-phosphates (PF-α1P) followed by the enzymatic condensation with heterocyclic bases [4]. Transglycosylation reaction was demonstrated to be a very efficient methodology for the synthesis of plenty of analogues of natural nucleosides of biological and medicinal importance; however, some limitations are well documented too [1, 2, 5]. The retro-synthesis can be employed only for the preparation of 2’-deoxy-β-D-nucleosides of natural or modified heterobases. Chemical [4a-d] and chemo-enzymatic syntheses [4e] of PF-α1P has attracted much attention during recent years; however, the laborious preparation of PF-α1P is a serious bottleneck to the synthesis of nucleosides.

Recently, we have suggested a new strategy for the synthesis of nucleosides [5]. In the present communication, we report on the preparation of the recombinant E. coli ribokinase (RK) [D-pentose → pentose-5-phosphates (D-PF-5P)], phosphopentomutase (PPM) [D-PF-5P + α-D-pentofuranose 1-phosphates (α-D-PF-1P)], and nucleoside phosphorylases (NP’s) (α-D-PF-1P + heterobase → β-D-nucleosides) coupled with the appropriate pyrimidine or purine heterobases (Scheme 1). The preparation of pure recombinant RK as well as uridine (UP), thymidine (TP) and purine nucleoside (PNP) phosphorylases was described by us earlier [5, 6].

We have earlier prepared recombinant E. coli RK and investigated its properties [5]. It is noteworthy that the chemical [7a-9] and chemo-enzymatic [4e, 7] transformations of pentoses into 5-phosphates are rather laborious and low yielding. Ribokinase from E. coli was employed for the transformation of D-ribose into D-ribofuranose 5-phosphate in the chemical and enzymatic synthetic routes. Nucleosides synthesis of nucleoside-5′-triphosphates with deuterium labels on the 3′, 4′, and 5′ carbons through intermediate formation of 5-phospho-D-ribosyl α-1-pyrophosphate (PRPP) [7b]. We have found that under optimum conditions RK catalyzes the phosphorylation of the primary hydroxyl group not only of D-ribose and 2-deoxy-D-ribose, but also of D-arabinose and D-xylose [5]. These data prompted us to consider this reaction as the first stage in a cascade transformation of pentoses into nucleosides.

RESULTS AND DISCUSSION

The stereospecific C5 → C1 translocation of phosphate catalyzed by PPM [3b, 10, 11] is a reliable bridge within the strategy under investigation. With this aim in view, we have prepared recombinant PPM and studied its properties. In brief, the PPM gene DeoB from E. coli was amplified by PCR with synthetic primers Deo-1b and Deo-2. The primers contained restriction sites NcoI (5′-end of the gene) and EcoRI (3′-end), respectively. PCR products were analyzed by agarose gel electrophoresis. Then, the amplified fragment was digested by restrictases NcoI and EcoRI and cloned into the corresponding sites of plasmid vector pET-23d.
Scheme 1. One-pot transformation of D-pentoses into β-D-nucleosides through intermediate formation of respective α-D-pentofuranose 1-phosphates (α-D-PF-1P).

The PPM activity was measured spectrophotometrically by monitoring the formation of uridine resulting from the PPM catalyzed transformation of D-ribose 5-phosphate into α-D-ribofuranose 1-phosphate followed by the condensation of the latter with uracil catalyzing by uridine phosphorylase (UP) ([6]) (cf. [12]). The increase of molar absorptivity at 275 nm by going from the starting uracil to the formed uridine was found to be \(\Delta e = 1800 \text{ M}^{-1}\text{cm}^{-1} \). One unit of PPM activity is defined as the amount of enzyme that transformed 1 μmol uracil into uridine per minute at 23°C in the reaction mixture containing 0.1 M Tris–HCl, 0.1 M MnCl₂, 0.05 mM glucose 1,6-diphosphate, 7 mM uracil, 10 mM D-ribofuranose 5-phosphate, and an excess of uridine phosphorylase (UP) (3-5 units) ([6]) (pH 7.5); the reaction was initiated by addition of PPM.

Finally, one-pot enzymatic transformation of D-ribose or 2-deoxy-D-ribose into the pyrimidine and purine nucleosides was studied (Scheme (2)).

First of all, to assess the efficacy of PPM, we have tested the synthesis of inosine (rI) and 1-(β-D-ribofuranosyl) thymine (rT) using D-ribose 5-phosphate and the respective heterobases, hypoxanthine or thymine, as substrates and PPM and the relevant enzymes, PPM/PNP or PPM/TP, as biocatalysts. Based on the literature data [10], the following reaction conditions have been employed in these experiments after a number of preliminary tests: the molar ratio of D-ribose 5-phosphate and base was 1:1; 3 mM MnCl₂, 10 mM Tris, pH 7.5, all experiments have been performed at 20°C.

The formation of inosine or rT was analyzed by HPLC after 1 and 24 h. It was found that 35% of hypoxanthine is transformed into inosine after 1 h and its quantity only slightly enhanced after 24 h (39%); under similar time intervals, the yield of rT was 8.5 and 16.9%, respectively.

Upon moving to the one-pot synthesis of nucleosides, we noted rather essential differences between that the optimal reaction conditions for RK, PPM and recombinant nucleoside phosphorylases prepared by us earlier [6]. Bearing this in mind, we have optimized the one-pot reaction conditions aiming at the finding out a compromised...
The composition of the components allowing satisfactory function of the enzymes under investigation. We have previously shown that magnesium and manganese ions render rather similar effect on the recombinant RK activity and in the present study the latter was employed for the activation of RK and PPM. The data on the concerted action of the aforementioned enzymes in one-pot transformation of D-ribose and 2-deoxy-D-ribose into pyrimidine and purine nucleosides are shown in Table 1.

It is remarkable that (i) the formation of inosine proceeds faster than that of 2'-deoxyinosine and reached maximum yield after 30 min (Table 1; Fig. 1), and (ii) the synthesis of 2'-deoxyribonucleosides of purines by the transglycosylation reaction proceeds with higher efficiency compared to that of ribonucleosides [13].

The formation of thymidine proceeds with higher efficacy and gives rise to the higher final yield of thymidine than that of rT (Table 1; Fig. 2). The observed differences in the formation of thymidine and rT may be explained by the lower substrate activity of α-D-ribofuranose 1-phosphate vs its 2-deoxy-counterpart for thymidine phosphorylase (TP). In harmony with this suggestion is the formation of thymidine and thymine.

Table 1. Progress of Nucleoside Syntheses in the Cascade One-Pot Enzymatic Reactions at 20°C [Content of the Corresponding Nucleoside (%) in the Reaction Mixture vs Time of Reaction]

<table>
<thead>
<tr>
<th>Time of Reaction, h</th>
<th>Inosine (rI)</th>
<th>2'-Deoxyinosine (dI)</th>
<th>Thymidine (dT)/2'-Deoxyuridine (dU)</th>
<th>1-(β-D-Ribofuranosyl)-thymine (rT)/Uridine(rU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>45.9</td>
<td>18.8</td>
<td>14.5/0.9</td>
<td>4.7/27.6</td>
</tr>
<tr>
<td>1</td>
<td>46.1</td>
<td>27.3</td>
<td>17.6/1.1</td>
<td>8.5/26.6</td>
</tr>
<tr>
<td>24</td>
<td>38.4</td>
<td>38.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>-</td>
<td>34.7/33.2</td>
<td>19.9/17.5</td>
</tr>
<tr>
<td>96</td>
<td>29.4</td>
<td>34.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

All the reactions have been run under standard conditions. Standard Reaction Conditions: total volume of the reaction mixture 2 mL; 2 mM ATP, 50 mM KCl, 3 mM MnCl₂, 20 mM Tris·HCl (pH 7.5), 2 mM penrose, 2 mM heterobase; run at 20°C; enzymes (respective units): ribokinase 7.65; phosphopentomutase 3.9; thymidine phosphorylase 4.5; uridine phosphorylase 5.4; purine nucleoside phosphorylase 4.68. HPLC Analyses: Breeze chromatograph (Waters, USA); column: Nova-Pak C18, 4 mm, 4.6 × 150 mm; isocratic elution with 1.4% acetonitrile and 0.1% TFA at a flow rate of 1 mL/min, run time 15 min; UV-detector, eluates were monitored at 254 nm; retention times, R (min): hypoxanthine – 2.7; inosine – 5.4; 2'-deoxyinosine – 6.5; thymine – 3.7; thymidine – 8.3; 1-(β-D-ribofuranosyl)thymine – 5.4; uracil – 2.3; uridine – 3.1; 2'-deoxyuridine – 4.2. All the reference nucleosides have been prepared earlier or from commercial sources. Thymidine (TP) and uridine (UP) phosphorylases have been employed for the synthesis of thymine and uracil nucleosides, respectively.
corresponding uracil nucleosides catalyzed by uridine phosphorylase (UP). Indeed, as might be expected, °-D-ribofuranose 1-phosphate manifests much higher substrate activity towards UP vs 2-deoxy-°-D-ribofuranose 1-phosphate. However, the final concentration of uridine is ca. half of that of 2'-deoxyuridine. Interplay of a number of factors contributing to the reaction pathway may be responsible for this result.

In conclusion, a possibility of the one-pot synthesis of pyrimidine nucleosides employing pure recombinant ribokinase, phosphopentomutase and nucleoside phosphorylases in a cascade transformation of D-pentoses into nucleosides was demonstrated. Taking into account the functional peculiarities of the enzymes under consideration, a careful optimization of the reaction conditions is necessary to achieve high yield of the desired nucleosides. Note that all the reactions of the present study have been run at an 1:1 molar ratio of pentose and heterobase and at 20°C. The studies directed towards assessment of the scope and limitations of this strategy are now in progress. Preliminary results of this study point to reliability to develop practical methods for the preparation of a number of biologically important nucleosides.

ACKNOWLEDGEMENTS

Financial support by the International Science and Technology Centre (project #B-1640) and Foundations for basic research of Russia and Belarus is gratefully acknowledged. IAM is thankful to the Alexander von Humboldt-Stiftung (Bonn – Bad-Godesberg, Germany) for partial financial support of this study.

REFERENCES

Received: January 23, 2010 Revised: July 22, 2010 Accepted: July 23, 2010

© Miroshnikov et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.