OR-20

A new Fistularin-3 Derivative from an Australian Sponge Pseudoceratina sp.

Pinus Jumaryatno^{1,4}, Tina Skinner-Adams^{2,3}, Katherine T. Andrews^{2,3}, Rohan A. Davis², Joanne T. Blanchfield⁴ and Mary J. Garson^{4,*}

¹Pharmacy Department, Faculty of Mathematic and Natural Sciences, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia; ²Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia; ³Queensland Institute of Medical Research, Locked Bag 2000, Herston 4029, Australia; ⁴School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; E-mail: m.garson@uq.edu.au

Chemical investigation of an Australian marine sponge, Pseudoceratina sp., collected from Mooloolaba South-East Queensland has provided a series of bromotyrosine metabolites from a simple modified tyrosine to more elaborate linear compounds. Six known compounds, (+)-aeroplysinin-1 (1), a mixture of 19-deoxyfistularin-3 (2) and 11-deoxyfistularin-3 (3), 11,19dideoxyfistularin-3 (4), aerothionin (5) and homoaerothionin (6) have been isolated together with a new fistularin-3 derivative, 11-deoxy-19-ketofistularin-3 (7). The structures of all compounds were characterised using 1D and 2D NMR techniques, MS and by comparison with literature data. Two selected fistularin-3 derivative metabolites 4 and 7 were screened for in vitro activity against chloroquine-sensitive (3D7) P. falciparum malaria parasites and showed antimalarial activity with IC50 values of 5.4 and 2.8 µM, respectively.

Keywords: *Pseudoceratina* sp., bromotyrosine, fistularin-3, antimalarial.