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Abstract: Making decisions can be hard, but it can also be facilitated. Simple heuristics are fast and frugal but neverthe-

less fairly accurate decision rules that people can use to compensate for their limited computational capacity, time, and 

knowledge when making decisions. These heuristics are effective to the extent that they can exploit the structure of infor-

mation in the environment in which they operate. They require knowledge about the predictive value of probabilistic cues. 

However, it is often difficult to keep track of all the available cues in the environment and how they relate to any relevant 

criterion. We suggest that knowledge about the causal structure of the environment helps decision makers focus on a  

manageable subset of cues, thus effectively reducing the potential computational complexity inherent in even relatively 

simple decision-making tasks. Specifically, we claim that causal knowledge can act as a meta-cue for identifying highly 

valid cues and help to estimate cue-validities. Causal knowledge, however, can also bias people’s decisions. We review 

experimental evidence that tested these hypotheses.  
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INTRODUCTION 

 When people are faced with a decision, it is often impos-
sible to consider all of the available alternatives and to gather 

and process all of the information about those alternatives. 

For instance, to buy a laptop, most people would not con-
sider every model that exists on the market, but winnow 

down the set of options to inspect closer using features such 

as price and quality. They might not analyze all features of 
the remaining laptops either, but request only certain cues to 

decide which one to buy [1, 2]. Such decisions are fast be-

cause they do not involve much computation, and they are 
frugal because they only search for some of the available 

information in the environment [3]. 

 Previous research has shown that people—in particular in 
situations in which they are not able to process all available 
information in the environment [4, 5] —often use mental mod-
els about cause-effect relations when determining which cues 
to consider [6-10]. Consumers, for instance, often believe that 
high product quality is associated with high production costs, 
resulting in higher prices. Thus, a customer may believe that 
the price-level predicts the quality, exclusiveness, or abstract 
value of a purchased object due to its production expenses 
[11]. In this paper, we posit that such knowledge about the 
causal structure of the environment can help people to reach 
satisfying decisions. Specifically, we analyze the impact of 
causal knowledge in two-alternative forced choice tasks and  
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present, after a theoretical introduction, various findings and 
insights that are relevant to this topic.  

 In general, the decision making literature that focuses on 

the influence of causal beliefs suggests that such beliefs are 

like a double-edged sword: They can help or hinder. Some 

authors [11-13] conclude that prior beliefs boost peoples’ 

covariation assessment and may increase decision accuracy 

if the causal beliefs are used as hypotheses that are tested on 

data [7, 12, 14-17]. Specifically, assessments of relationships 

between events that are guided by causal beliefs, such as the 

relationship between price and quality, are more accurate 

than belief-free judgments about abstract stimuli, especially 

when the data are noisy [12, 13]. These findings suggest that 

causal beliefs can have beneficial effects.  

 Other findings, however, suggest that such beliefs can 

also have detrimental effects. For instance, it seems that ob-

jective correlations can only be assessed correctly when 
relevant prior beliefs are absent or congruent with the em-

pirical evidence [18-20]. Moreover, identical objective corre-

lations can be judged very differently depending on whether 
prior knowledge about the relationship between a cause and 

an effect conflicts with empirical evidence or not. For in-

stance, participants in a study by Evans, Clibbens, Cattani, 
Harris, and Dennis [21, 22] were provided with information 

compatible, incompatible, or neutral with their prior beliefs. 

The results showed that their beliefs only improved judg-
ments when the empirical evidence was compatible. An ex-

planation for this result may be that participants overvalued 

prior beliefs when assessing actual contingencies [23-25].  
In that way, only information confirming their prior beliefs 
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was taken into account, whereas conflicting information was 

ignored.  

 Various theoretical approaches have been used to shed 
more light on the relation between causal beliefs and  
covariation information [for overviews, see 26-29]. Two 
approaches are particularly worth mentioning. The first  
conceptualizes a causal relationship as a function of the asso-
ciative weights [30, 31] or the statistical relationship [32] 
between cues and outcomes acquired during previous  
training. This approach implies a bottom-up learning  
process. In contrast, the second approach presumes an  
abstract knowledge of causality, which allows individuals  
to assess a relation when presented with covariation data  
[33, 34].  

 There are also several theoretical attempts that integrate 
these two approaches – for instance, the belief revision model 
(BRM) [35, 36, see 24, 37 for other attempts]. In this model, 
previous knowledge about causation is not an absolute filter 
of the new covariation data. Instead, it represents an anchor 
adjusting the beliefs or classifying new evidence, similar to 
an earlier attempt on belief updating by Hogarth and Einhorn 
[38].  

 Finally, another approach addressing causal relations are 
causal Bayesian networks [39-41]. To apply such networks 
sufficient information about the environmental structures 
needs to be provided. These networks are displayed through 
directed acyclic graphs in which the nodes represent the 
variables (types of events or states of the world) and the 
edges (arrows) represent the direct causal relations or prob-
abilistic dependence between those variables (see also [10]). 
A problem with causal Bayesian networks is computational 
intractability: When fed with large scale data sets, including 
thousands of variables, it is essentially impossible for these 
networks to identify the causal structure underlying the data.  

THE FAST AND FRUGAL HEURISTICS APPROACH 
AND THE PROBLEM OF CUE SELECTION 

 A prominent approach in decision making is the fast and 
frugal heuristics research program proposed by Gigerenzer 
and the ABC Research Group [3, 42-46]. 

 One of the fast and frugal heuristics is take-the-best [45, 
46]. This heuristic is designed for two-alternative forced-
choice tasks and can be used to infer which of two alterna-
tives has a higher value on a quantitative criterion, such as 
which of two university professors earns more money. The 
alternatives are described on several dichotomous cues such 
as gender or whether the professor is on the faculty of a state 
or a private university. These cues allow making probabilis-
tic inferences about the criterion. Similar to other fast and 
frugal heuristics of this research program, take-the-best is 
constructed from building blocks (i.e., precise steps of in-
formation gathering and processing involved in making a 
decision). Specifically, this heuristic has a search rule, 
which defines the order of information search (take-the-best 
looks up cues in the order of their validity, i.e., the probabil-
ity that a cue will point to the correct decision given that it 
discriminates between the alternatives); a stopping rule, 
which specifies when to stop the search (take-the-best stops 
after the first discriminating cue); and a decision rule, which 
specifies how to use the gathered information when it comes 

to making a decision (take-the-best chooses the alternative 
favored by the first discriminating cue). 

 The take-the-best heuristic has been subjected to empiri-
cal tests in a number of studies [47-54]. There is accumulat-

ing experimental evidence for the use of this heuristic, espe-

cially under high information acquisition costs [50, 55], time 
pressure [54, 56], and when participants have previous 

knowledge and experience in the domain [57, 58]. Newell, 

Weston, and Shanks [59] tested to what extent participants’ 
behavior was consistent with take-the-best’s building blocks. 

Their results revealed that only 75% of participants followed 

take-the-best’s search rule (cues hierarchy established by 
validity) and its stopping and decision rules were obeyed in 

80% and 89% of the trials, respectively [see also 53].  

 However, these experimental results on the use of take-
the-best need to be qualified [see also 60]. In many of these 

studies, participants were encouraged to use cues in the order 

of their validity by being informed about cue validities or the 
validity order [48, 49, 59, 61]. When search by validity was 

tested against alternative search orders, validity was not the 

search criterion that predicted participants’ searches best 
[52]. Instead, it seemed to be the case that participants used 

simple rules for ordering cues based on trial-by-trial learning 

[62, 63]. The cue orderings established through such rules do 
not necessarily converge toward the cue ordering established 

by validity. Participants, therefore, might have had difficul-

ties computing cue validities and then searching for cues 
accordingly, even though relatively few cues (i.e., four to 

six) were available in those experiments. 

 The problem of searching for good cues seems to be even 
more severe when one considers that in most situations there 
are myriad potential cues that could be used to make a deci-
sion, and it is practically impossible to keep track of them all 
and to compute their validities for any potentially relevant 
criterion [64]. Cue selection is further complicated if poten-
tial combinations of cues (i.e., compound cues) are taken 
into account [47]. Yet sometimes an accurate decision re-
quires people to do so [65]. For example, some medications 
might have side effects, such as nausea, if ingested together 
with alcohol, whereas neither the drug nor the alcohol would 
cause any problems if ingested alone (of course, this would 
also depend on the amount of alcohol or drugs that is con-
sumed). As a consequence, a strategy that processes all pos-
sible cues would be computationally too demanding. It is 
also not plausible to assume that the brain comes “pre-
wired” to represent each of the possible cues to predict a 
criterion. 

 In line with other authors [7, 10, 60], we hypothesize that 
people do not process all possible cues in their natural envi-
ronments but rather use their causal knowledge—i.e., their 
knowledge about causal relationships between events in the 
environment—to focus on a small and manageable subset of 
relevant cues. We further expect that causal knowledge 
might also aid learning of cue validities. In sum, causal 
knowledge might allow decision makers to deal adaptively 
with the huge number of cues that appear in the environment 
and to select only those that are potentially relevant. In the 
remainder of this paper, we offer more precise predictions 
about how causal knowledge can influence decision-making 
processes and review experimental tests of these predictions. 
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THE ADAPTIVE VALUE OF KNOWLEDGE ABOUT 

THE CAUSAL TEXTURE OF THE ENVIRONMENT 

 When it comes to decision-making, we hypothesize that 
causal knowledge is advantageous for two reasons. First, 
causal knowledge might act as a meta-cue that enables peo-

ple to identify or to determine valid cues in the environment. 
Second, causal knowledge might help to specifically focus 
on certain cue-criterion correlations, which, in turn, facili-
tates learning of cue validities. In the following, we elaborate 

on these advantages in more detail.  

 Considering the first advantage, we estimate that cues 
that are causally linked to the criterion tend to be more  
valid than cues lacking such a connection to the criterion [7, 

10, 33, 66, 67]. For instance, lung cancer (here, an effect) is 
more likely to be predicted from a well-established smoking 
habit (i.e., a cause) than from yellowed fingers (i.e., a second 
effect of the common cause; see [68]). Furthermore, correla-

tions between events that are causally linked are likely to  
be more robust across environments (i.e., less sensitive to 
contextual changes) than those without such a connection 
[69, 70]. Following our example, the correlation between 

smoking and lung cancer would be more robust across  
different series of patients than the correlation between  
lung cancer and yellowed fingers would be. We could expect 
this to be the case even if we control for other alternative 

causes that could bring about yellowed fingers (e.g., being  
a painter) that might reduce their predictability for lung  
cancer. We hypothesize that this asymmetry between causal 
and non-causal cues that holds in the physical world would 

be reflected in human cognitive processes. We therefore  
expect decision makers to use their causal knowledge as a 
meta-cue for selecting highly valid and robust cues in the 
environment. 

 Secondly, causal knowledge might reduce the number of 

cue–criterion correlations to keep track of when computing 

cue validities [55]. This hypothesis is supported by research 
using multiple cue probability learning. In this paradigm, 

participants have to predict the criterion of a given object 

from multiple cues that are probabilistically related to this 
criterion. Previous empirical studies that use this paradigm 

(see [71] for a review) suggest that cues interfere with each 

other when participants try to learn their validities concur-
rently. For instance, the presentation of irrelevant cues in 

such a task reduces the utilization of valid cues and, conse-

quently, the accuracy of people’s judgments [72, 73]. An 
explanation for this finding, which can be observed even 

after a large number of learning trials, suggests that the ir-

relevant cues made it harder for participants to identify and 
focus on the valid cues. In contrast, when participants have 

the opportunity to learn cue–criterion relationships sequen-

tially (i.e., for one cue after another), their judgments corre-
spond more closely to the ecological correlations [74]. Based 

on these results, we suggest that in multiple-cue settings 

people with access to causal knowledge might be able to 
focus on certain (causal) cues, which in turn might facilitate 

cue validity learning.  

 Note, however, that causal knowledge about the cues in 
the environment also has to be learned [10]. Our argument, 
therefore, only holds if the acquisition of causal knowledge 
is simpler than cue validity learning. We think that this is in 

fact the case. Consider, for instance, learning of causal Baye-

sian nets. Such learning is certainly not necessarily simple, 
but it could be simplified if prior specific or abstract domain 
knowledge about the structure of the environment (e.g., 
causal directionality) constrains the number of potential 

causal relations that need to be considered [40, 75, 76].
1
 

 Similarly to other scholars [7, 16, 17], we hypothesize 
that causal knowledge might allow decision makers to con-

strain the countless number of cues that appear in a particular 

environment to a subset of cues that are more likely to have a 
high predictive value. In the following sections, we review 

some experiments that tested whether causal knowledge 

helps people to select a subset of reliable cues and whether it 
aids learning of cue validities. 

CAUSAL KNOWLEDGE AS AN AID IN CUE SELEC-
TION 

 Recent findings on causal knowledge in decision making 
stress the difference between observations and interventions [7, 
10, 77]. Garcia-Retamero, Wallin, and Dieckmann [66] offer 
another attempt to examine the impact of causal information 
about cue-criterion relationships on decision-making processes. 
Specifically, these authors analyzed whether causal knowledge 
about the cues in the environment had an effect on the selec-
tion of a subset of cues that were used to make decisions and 
whether it facilitates the computation of cue validities. 

 Based on the assumption that causal knowledge helps  
to identify highly valid cues in the environment, Garcia-  

Retamero, Wallin, and Dieckmann [66] hypothesized that  

participants would look up cues that were causally connected 
to the criterion (in short, causal cues) earlier than non-causal 

cues, even when these cues had the same validity. Partici-

pants were also expected to rely on causal cues to a greater 
extent than on non-causal cues in their decisions, and to be 

more confident and faster in their decisions when causal cues 

were available than when no causal cues were available. On 
the other hand, given that causal knowledge reduces the 

number of cue–criterion relationships to keep track of to 

compute validity, those authors hypothesized that partici-
pants would be more exact in their validity estimates for 

causal than for non-causal cues and, consequently, would 

also be more accurate in their inferences. 

 Two experiments test these hypotheses: The first tested 
the prediction that causal cues are preferred over non-causal 
cues, the second tested whether this was still the case if  
participants were allowed to learn cue validities after having 
been informed which cues were causally linked to the crite-
rion. The experiments were computer-based and used two-
alternative forced-choice tasks (see Fig. 1). On each trial, 
participants were presented with two alternatives (i.e., two 
species of insects) and had to decide which would show a 
higher criterion value (i.e., which would do more damage to 
a crop). To make this decision, they could look up informa-
tion on up to four cues (i.e., properties of the insects, such as 

                                                
1
Along these lines, research in the field of artificial intelligence has recently proposed a 

number of algorithms capable of easily inferring causal relations from covariation 

patterns (e.g., the TETRAD II program; [89, 90]). These algorithms use causal models 
to generate a certain pattern of statistical dependencies and then search for certain clues 

that reveal fragments of the underlying structure. These fragments are pieced together 
to form a coherent causal model. 
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the presence or absence of a particular metabolic factor), 
represented by small boxes on the screen that could be 
clicked to retrieve information (see also [48, 49, 55, 56], for 
similar experimental procedures).  

 Two of these cues had a high validity (.85) and the other 

two had a low validity (.65; see Table 1). Whether a specific 

cue had a high or a low validity was counterbalanced across 

participants. All four cues had a discrimination rate of .56.
2
 

Causal knowledge was manipulated between-subjects. In the 

causal group, participants were told that two of the cues were 

causally realted to the criterion (e.g., “the metabolic factor 

makes the insects hungry and aggressive”). These formula-

tions suggested an underlying causal mechanism that went 

beyond the possible covariation between the cue and the 

criterion. The remaining two cues were neutral and partici-

pants were informed that they were not causally linked to the 

criterion (e.g., “the metabolic factor leads to green and blue 

coloration of the insects’ body”). Which cues were causally 

linked to the criterion and which were neutral was counter-

balanced across participants. Moreover, the two experimen-

tal factors, cue validity and causal knowledge, were com-

pletely crossed within participants so that for each partici-

pant, one of the causal cues had a high validity and the other 

had a low validity, and one of the neutral cues had a high 

validity and the second one had a low validity (Table 1). In 

the control group, information about all four cues was neu-

tral. A pretest confirmed that the causal cues, but not the 

                                                
2
The discrimination rate of a cue is the proportion of paired comparisons in which the 

two decision alternatives have different value for that cue [45]. 

neutral cues, were indeed perceived as having a strong causal 
effect on the criterion. 

 In the first experiment, participants went through a deci-
sion phase in which the absence or presence of the cues (for 
each insect) was not automatically displayed, instead they 
had to actively access information for one cue after another. 
When a cue was accessed (at the cost of 1 Eurocent) the cue 
values (presence/absence) of both alternatives (insects) were 
shown. After having accessed at least one cue, participants 
were allowed to stop their cue search and decide for one of 
the alternatives (insects). Subsequently, feedback was pro-
vided whether their decision was correct (if so, they earned 7 
Eurocents). At the end of the experiment, participants esti-
mated the validity of each cue. In the second experiment, 
participants entered the decision phase only after they had 
gone through a learning phase in which the values of the four 
cues were provided automatically and in which participants 
could learn the validities of these cues. 

 In line with the authors’ hypothesis, participants in Ex-

periment 1 preferred to start searching for causal cues, re-

gardless of the cue validity. Altogether, that is, across all the 
cues they accessed, they also favored the causal cues more 

often than the neutral cues. Moreover, they were faster and 

more confident in their decisions when they could rely on 
causal cues as compared to trials in which only neutral cues 

discriminated. Finally, participants were better in estimating 

the validities of the causal cues than of the neutral cues. Note 
that participants showed a preference for causal over neutral 

cues although they could learn via feedback which cues were 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Screenshot of the experimental interface (translated from German). On this trial, the participant began by accessing whether the 

insects had a specific metabolic factor. This cue did not discriminate between the two insects—none of them showed the metabolic factor. 

The participant then accessed whether the insects had a long larval phase. This cue showed a positive value for insect 1 and a negative value 

for insect 2. The participant responded that insect 1 was more likely to do greater crop damage, which was a correct response. The participant 

earned 5 points (7  1  1) in total on this trial. 
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reliable predictors (i.e., had high validity) of the criterion 
throughout the decision-making phase. 

 When participants in Experiment 2 had the opportunity to 

learn about cue validities before the actual decision-making 
phase, their search processes were influenced by both causal 

information and validity. More precisely, participants who 

had access to causal information (the causal group) preferred 
to search for the causal high-validity cue over the rest of the 

cues. Furthermore, these participants became more accurate 

in their decisions and were also more accurate, across all 
cues, when estimating cue validities. Overall, the higher fru-

gality and accuracy in the causal group led to a higher final 

payoff than in the control group. 

In sum, the experimental results suggest that participants 

may use information about which cues are causally related 
with the criterion to zoom in on a manageable subset of cues 

and to learn their validities more accurately. 

THE FLEXIBILITY OF CAUSAL BELIEFS: WHEN 
PREVIOUS BELIEFS CONFLICT WITH EMPIRICAL 

EVIDENCE 

 Based on these results, Garcia-Retamero, Müller, Catena, 

and Maldonado [78] went one step further and investigated 
whether the relative impact of causal beliefs and empirical 

evidence on decision making can be altered by previous ex-

perience. Two experiments were set up as a series of two-
alternative forced-choice tasks, framed as medical diagnostic 

tasks. In each trial, participants were asked to decide which 

of two patients would show a higher degree of allergic der-
matitis. To make each decision, four cues were available that 

described both patients and participants had to search for this 

information. 

 The design and the procedure were similar to the experi-

ments mentioned above: To analyze the influence of causal 
beliefs, participants were instructed that two of the four  

presented cues were causally linked to the criterion (“causal 

cues”). Instructions for the remaining two cues did not  
provide any causal link to the criterion (“neutral cues”).  

For instance, a cue containing the information that the  

patients ingested a certain prescription drug (Rifastan pills) 
could either be causal (“an antibiotic, which could lead  

to skin swelling”) or neutral (“vitamin C tablets, which  

are crucial for sight”). A pretest confirmed that causal—but 
not neutral—cues were perceived to have a strong causal 

power.  

 The impact of the empirical evidence was examined by 
manipulating cue validities within-subjects: Two of the four 

available cues (one causal and one neutral cue) had high  

validity (i.e., 0.9 in both experiments); the remaining two 
cues had low validity (i.e., 0.6 in Experiment 1 and 0.1 in 

Experiment 2; see also Table 2). All four cues had a  

discrimination rate of .59
2
 and inter-cue correlations were 

close to zero.  

 At the beginning of the experiment, some of the partici-
pants underwent pre-training with either causal (pre-causal 
group) or neutral cues (pre-neutral group; see also Table 2). 
During the pre-training, the cue values for each patient were 
displayed automatically —no cue search was required. Both 
groups were asked to make 60 decisions and outcome  
feedback was provided. Members of the causal control group 
did not receive any pre-training. Thereafter, both groups  
of participants completed a decision phase similar to that 
described above.  

 The results of the experiments by Garcia-Retamero, 
Müller, Catena, and Maldonado [78] revealed that the impact 
of causal beliefs and empirical evidence depends on both the 
experienced pre-training and the cue validity. While partici-
pants without any pre-training relied mainly on their causal 
beliefs—favoring causal over neutral cues—pre-training 
with causal cues led to a clear preference for the causal high-
validity cues. Increasing the difference between the validities 
of the cues reduced the influence of the causal beliefs in both 
groups: This manipulation led first to decisions in favor of 
the causal high-validity cue, and secondly to decisions in 
favor of the neutral high-validity cue. Finally, when partici-
pants received pre-training with neutral cues (i.e., not caus-
ally linked to the criterion), their decisions were primarily 
based on the high-validity cues, regardless of their induced 
causal or neutral relation to the outcome. These results could 
be observed in both experiments and suggest—in line with 
other research [10, 16, 17, 77] —that it is necessary to  
consider the joint effects of causal beliefs and empirical  
evidence to explain the flexibility involved in human  
inferences. 

 We can conclude from these findings that participants 
rely on their causal beliefs by default especially when the 
validities of the cues that are supposed to be causally related 
to a criterion are high. In this case, participants did not take 
the cue validities of neutral cues into account. However, 
when participants received pre-training with neutral cues 
(i.e., not causally linked to the criterion), they became more 

Table 1. Design of Experiments 1 and 2 

Experimental Group Control Group 
 

Information about the cue-criterion relation 

 Causal Neutral Neutral 

High Cue validity Cue 1 Cue 2 Cue 1, Cue 2 

Low Cue validity Cue 3 Cue 4 Cue 3, Cue 4 

Note. In the experimental group, cue validity and information about the cue-criterion relation (causal knowledge) was manipulated within-participants. Which cue was assigned to 
which of the resulting four conditions was counterbalanced across participants. In the control group, no causal information was given, only cue validity was manipulated. 
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sensitive to the validity information (i.e., they were able to 
discriminate high-validity from low-validity cues) and addi-
tional information about causal mechanisms failed to have 
further relevance. The neutral pre-training could have 
evoked participants’ preference for the cue validities inde-
pendent of causal information. Interestingly, when high va-
lidity cues differed substantially from low validity cues (up 
to the point where some of the cues were almost not related 
to the criterion), decisions were mainly based on the high-
validity cues, especially the cue that was causally linked to 
the criterion. Taken together, for participants who received 
pre-training with neutral cues or cues that provided conflict-
ing information with previous causal beliefs, responses  
were mainly influenced by cue validities and to a lesser 
extent by causal beliefs.  

GENERAL CONCLUSIONS 

 The reviewed research confirms what we stated in the 
introduction: causal knowledge about the causal structure of 
the environment is like a double-edged sword—it can help or 
hinder. Causal knowledge helped people to focus on a small 
and manageable subset of cues. It strongly influenced which 
cues were looked up, in which order they were looked up, 
and which of them were used to make decisions. Causal 
knowledge also facilitated cue validity learning—not an easy 
task, as Juslin and Persson [64] pointed out. Taken together, 
these findings suggest that causal knowledge can effectively 
reduce the computational complexity inherent in decision-
making tasks. At the same time, it should be pointed out that 
participants who were equipped with causal knowledge and 
who did not have an opportunity to learn the cue’s validities 
before making decisions preferred causal, low-validity cues 
over neutral, high-validity cues, even though they received 
feedback after each decision.  

 Seen through the lens of the fast and frugal heuristics 
framework, causal knowledge helps people to select valid 
cues in the environment, which might be placed in a high 
position in the cue ordering, that is, in the hierarchy of cues 

that is accessed by the search process of a decision-making 
strategy (see also [60]). To the extent that the feedback about 
whether a decision was correct or incorrect leads to an updat-
ing of cue validities, the cue ordering might consequently be 
updated as well. In this sense, causal beliefs can be perceived 
as hypotheses to be tested and updated with empirical data 
(see also [79, 80]). Consequently, causal beliefs might act as 
hypotheses that constrain cue selection to make deci-
sions whether these beliefs are confirmed or disconfirmed 
depends on the experience with the selected cues in the envi-
ronment. In line with this result, Fugelsang, Stein, Green, 
and Dunbar [81] showed that even scientists are not immune 
against overvaluing their initial beliefs when testing their 
hypotheses on new data. Their results reveal that only great 
amounts of disconfirming evidence have the power to affect 
the original theory proposed by researchers. 

 Are our conclusions about the beneficial effect of causal 
knowledge restricted to the family of fast and frugal heuris-
tics? Our intuition is that the present approach might also be 
extended to other decision strategies. Causal knowledge pos-
sibly could also help to reduce the computational complexity 
inherent in more demanding strategies for making decisions 
such as the weighted additive model (WADD) a compen-
satory strategy that uses cue validities as weights [82]. How-
ever, contrary to fast and frugal heuristics, WADD and other 
compensatory strategies do not model the search process. 
That is, they strictly assume that all the relevant and neces-
sary information to make decisions is available to the deci-
sion maker. Yet, as we mentioned above, this is, in fact, of-
ten not the case and thus people would have to actively 
search for information. We find it difficult to see how people 
using such compensatory strategies could use their causal 
knowledge to select from the wide range of candidate cues in 
the environment those that are highly valid. If cue search and 
selection is no longer driven by the strategy that is used, how 
would causal knowledge aid learning of cue validities? 
Briefly, simplification is not an inherent feature of these de-
cision models. Consequently, in their present form, they 
could not benefit from the advantages of causal knowledge 

Table 2. Design of Experiments1 and 2  

Experimental Groups Instructions Cues Pre-Training Instructions Cues Decision Task 

Control Causal Group  --- Causal 

Causal high validity 

Causal low validity 

Neutral high validity 

Neutral low validity 

Pre-Causal Group Causal 
Causal high validity 

Causal low validity 
Causal 

Causal high validity 

Causal low validity 

Neutral high validity 

Neutral low validity 

Pre-Neutral Group Neutral 
Neutral high validity 

Neutral low validity 
Causal 

Causal high validity 

Causal low validity 

Neutral high validity 

Neutral low validity 
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we pointed out above. The belief revision model [35, 83],  
for instance, tries to integrate prior beliefs with empirical 
evidence: A prior belief serves as an equivalent to causal 
knowledge, whereas new empirical evidence stands for the 
presented covariation data. Increasing the initial prior be-
lief/causal knowledge and decreasing the reliability of the 
empirical evidence/covariation data can explain the strong 
impact of previous beliefs on causal decisions via simulation 
(see also [78]). The presence of causal knowledge is vital as 
it directs the search for information, facilitates the learning 
of cue validities, and improves decision accuracy. Not pro-
viding such knowledge in an experiment will make decision 
makers appear less competent than they would be in their 
natural environment in which such information is frequently 
available. 

 In fact, causal knowledge has a large impact on peoples’ 

daily decisions and behavior. Consider stereotypes, for ex-

ample. Stereotypes represent commonly shared causal 

knowledge about a certain social group that indicate their 

attributes, roles, and behaviors [84]. Once a stereotypic be-

lief is implemented in someone’s perception of the world, it 

is highly persistent to contradicting information or to break-

ing the “stereotypic habit” [85]. People stick to their initial 

beliefs for quite some time even if these are not supported by 

the environment. Extended practice in non-stereotypic re-

sponding, however, can lead to a decrease in the activation 

of stereotypes [85] which is similar to the pre-training in 
one of our studies.  

 Another example comes from marketing strategies: living 

in a consumer society, most people are overwhelmed by the 

amount of certain products offered (e.g., laptop computers). 

People might therefore search only for specific qualities of a 

product, and in this case advertisement starts to play a sig-

nificant role in “facilitating” peoples’ decision making proc-

esses [86]. Advertisements aim to provide customers with 

causal knowledge connecting a cue with a criterion (e.g., a 

brand with quality) and “help” them to find the right product 

out of the confusing market. Adopting a more general per-

spective, it becomes obvious that not only companies but 

also political parties or other organizations try to provide the 

public with causal information to influence decision making 

[87]. For instance, even though the power of propaganda has 

often been underestimated, it is frequently used as a tool for 

social control and political indoctrination [88]. Our research 

does not suggest that consumers and citizens should suppress 

their causal knowledge and become naïve scientists examin-

ing all empirical data in the environment. First, in light of the 

advantages of causal knowledge this would not be desirable, 

and second, in light of the empirical evidence reviewed 

above it would be naïve to believe that this was possible in 

the first place. However, people could benefit from being 

aware of the strong impact of their causal knowledge on de-

cisions and scrutinize their initial beliefs more of-

ten especially when judging others or making important 
life decisions.  

 In general, it should now be clear that decisions are not 

only based on what can be learned, following a bottomup  

approach, by inspecting the empirical evidence in the envi-

ronment. Rather, decisions are also influenced, in a top-down 

fashion, by causal knowledge. Therefore, any approach that 

tries to explain decision making should incorporate peoples’ 
capacity to learn about causal structures.  
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