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Abstract: An artificial neural network based model can effectively predict any functional relationship. In this paper, a 

neural network model is used to predict power coefficient and torque coefficient of a two bladed airfoil shaped H-rotor as 

function of different input parameters. The important input parameters considered are blade tip speed, free stream velocity 

with blockage and rotor inlet velocity. The values of all the process parameters are taken from the experimental work done 

on two-bladed airfoil shaped H-rotor. The rotor was earlier designed, fabricated, and tested in a subsonic wind tunnel 

available in the department. Since neural networks are good at interpolation, once the model is properly trained & tested, 

it has successfully interpolated the values of power and torque coefficients within an acceptable accuracy. Initially, the op-

timum no. of neurons in the hidden layer has been found out using hit and trial method by training the network using back 

propagation learning algorithm. The effect of increasing the size of training and testing data set is studied as well. It is 

found that only a single neuron has been able to predict both the coefficients successfully. A strategy has been developed 

to reduce both the training and testing errors. The root mean squared functional errors (rms error) of testing and training 

for power coefficient prediction are 0.0357 and 0.0387 respectively, while the corresponding values for torque coefficients 

are 0.0283 and 0.0449 respectively. The proposed methodology is fast and accurate. And testing error being less than the 

training error, makes the proposed algorithm a superior one. 

Keywords: Two-bladed airfoil shaped H-rotor, power coefficient, torque coefficient, functional rms error.

1. INTRODUCTION 

The performance of a neural network model is dependent 
on many parameters, like size of the training and testing 
data, number of neurons in the hidden layer, number of hid-
den layers, processing functions on the neurons, time re-
quired to determine the best architecture, and accuracy of 
prediction. The size of the data- set is decided by the per-
formance of the network, while optimum number of hidden 
neurons should be obtained from training the network.  
Otherwise, desired performance may not be obtained as too 
much increase of hidden neurons will unnecessarily reduce 
the testing error though training error may be improved [1]. 
The optimum number of hidden layer neurons is obtained by 
hit and trial method by running the code for number of times 
with different training and testing sets and checking the pre-
diction errors. The point, when the prediction error is 
dropped below an acceptable value, the run is stopped; and 
the number of hidden neurons of that particular network  
architecture is stored for further simulation. The target in 
designing the model is to reduce both the training and testing 
errors simultaneously. The network is termed to be a 
superior one if more testing dataset fit the network that pre-
dicts the functional relationship between input and output, 
and the testing error comes out to be less than the training  
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error. It is seen from the literature that the functional rela-
tionship between three inputs and single output system can 
be modeled using artificial neural network and that too, with 
minimum number of training and testing datasets [1]. Too 
many hidden layers prolong the computational time, though 
a single hidden layer can accurately predict for such system. 
As the cost involved in data generation is high, and also the 
time consumed for computer simulation is more, in this pa-
per it has been decided to develop a strategy to predict the 
outputs with minimum number of datasets. For this, the net-
work is fitted with a few initial values, and more data are 
added seeing the prediction error. The data for training and 
testing of the network are taken from the experimental re-
sults of the rotor, which was tested in an open circuit sub-
sonic wind tunnel in the department [2]. The strategy 
adopted here is to reduce both the training and testing errors. 
The smaller the testing error between target power coeffi-
cient (and also torque coefficient) and its predicted value, the 
more effective the neural network will become. In this paper, 
root mean squared functional error is considered to be the 
basis to evaluate effectiveness of the network. 

1.1. Scope of Neural Network Modeling in Renewable 
Energy Systems 

Generalized Artificial Neural Network (ANN) models for 
any physical system have the capability of processing  
parallel information fast and accurately. The Renewable en-
ergy systems like wind energy systems have many wind re-
lated information that flow into the system. There are impor-
tant wind properties such as wind speed at the rotor inlet, 
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free stream wind speed, blade tip speed etc. that directly con-
trol the performance coefficients of the wind turbine, i.e. 
power coefficient and torque coefficient. It is necessary to 
accurately predict the performance coefficients to maximize 
the effectiveness of the investments made on such system. 
Like many other disciplines, ANN can be used in wind based 
renewable systems because of its accuracy. There are com-
prehensive reviews of ANN modeling available for any gen-
eral energy systems [3] and also for renewable energy sys-
tems in particular [4]. Kalogirou [4] applied ANN to predict 
wind speed of a small wind generator; in addition to his 
works on other Renewable energy systems, e.g., solar steam 
generator, solar water heating systems, photovoltaic systems 
etc. Apart from this, ANN is also applied as a classification 
mechanism for determining average wind speed and power 
[5]. 

2. EXPERIMENTAL SET-UP FOR THE TWO BLADED 
AIRFOIL SHAPED H-ROTOR 

The data for training and testing of the network are taken 
from the experimental results of the rotor. For carrying out 
the experiments, an open circuit subsonic wind tunnel was 
utilized, available in the department. The schematic layout of 
the wind tunnel is shown in Fig. (1). The blower section con-
sists of one axial flow fan having variable pitch blades 
placed in cylindrical casing, which is driven by a three phase 
15 kW (20 hp) motor having rated 2890 rpm as shown in 
Fig. (2a). In the wind tunnel, the cross-section of the test 
section is 30 cm x 30 cm, and the length is 300 cm. The test 
section with the rotor inside is shown in Fig. (2b). The  
operating range of the wind tunnel is between 0 and 30 

m/sec. The turbulence intensity in the wind tunnel is ne-
glected since it is negligible for the present case. The details 
of the wind tunnel can be found in the literature [6]. The 
cross section of the blades of the two-bladed airfoil shaped 
H-rotor was built into airfoil shape. The height of the rotor 
was 20 cm and the blades were 5 cm wide as shown in Fig. 
(3). The material used for the blades was aluminum. The 
central shaft was made up of mild-steel of 16 mm diameter. 
The supports, i.e. the struts, for holding the blades in place 
were mild steel bolts of 5mm diameter and 15 cm length. 
The diameter of the rotor was changed by changing the posi-
tion of nuts on the bolts, while height of the rotor was kept 
fixed at 20cm. Eleven height-to-diameter ratios were created. 
The blade tip speeds and rotor inlet velocities for each of 

 

 

 

 

 

 

 

Fig. (1). Schematic layout of open circuit subsonic wind tunnel. 

 

   

(a)             (b)           (c) 

Fig. (2). (a). The centrifugal blower section. (b) The test section with the rotor. (c) The end valve. 

 

 

 

 

 

 

 

Fig. (3). Schematic view of two bladed airfoil shaped H-rotor. 
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those eleven height-to-diameter ratios were obtained by 
varying the position of the valve at the end of the tunnel (Fig. 
2c) five times, which was adjustable between 3 cm to 25 cm. 
The rotor rpm was measured using a digital tachometer hav-
ing a least count of 1 rpm, and the rotor inlet velocity was 
measured using Pitots static tube. The values of free stream 
velocity were obtained by the same procedure without plac-
ing the rotor model in the test section. A total of 55 datasets 
for the input and output parameters were obtained from the 
experiments [2]. 

3. METHODOLOGY IN THE PREDICTION OF 
POWER COEFFICIENTS & TORQUE COEFFI-

CIENTS 

A feed forward artificial neural network trained using 
back-propagation learning algorithm [3] is utilized. The 
Levenberg-Marquardt back propagation algorithm of Matlab 
has been used in the present case. The process parameters 
considered are blade tip speed, free stream velocity with 
blockage and rotor inlet velocity. Thus, the input layer of the 
neural network consists of three neurons, while the output 
layer consists of a single neuron that corresponds to power 
coefficient and torque coefficient at a time. A typical archi-
tecture with three neurons in input layer, two neurons in hid-
den layer, and one neuron in output layer is shown in the  
Fig. (4). The optimum number of neurons in the hidden layer 
is decided by hit and trial approach so that the error in pre-
diction is minimized.  

3.1. Normalization 

The numerical values of different process parameters lie 
in different ranges. The three input parameters i.e. blade tip 
speed, free stream velocity with blockage and rotor inlet ve-
locity are normalized such that their values lie between 0.1 
and 0.9. This is in accordance with the literature [1].  

3.2. Selection of the Number of Hidden Layers 

Earlier studies did not indicate any improvements of mul-
tiple hidden layers over single hidden layer systems. The 
theorem by white [7] states that one hidden layer is sufficient 
to map any non-linear functional relationship with a reason-
able level of accuracy. Moreover, too many hidden layers 
increase the computational time without increasing the accu-
racy much. So, only a single hidden layer is used. 

3.3. No of Neurons in Hidden Layer 

It is necessary to select optimum number of neurons in 
order that the effective error in both training and testing 
drops to an acceptable value. Lawrence and Petterson [8] 
provided a scheme to determine the number of neurons by 
the following expressions: 

Minimum number of training data = 2 x (input + hidden 
+ output) neurons                   (1) 

Maximum number of training data = 10 x (input + hidden 
+ output) neurons              (2) 

3.4. Selection of Processing or Transfer Functions 

There are many inbuilt processing functions (or transfer 
functions) of Matlab software, like logarithmic sigmoid 
function (logsig), tangential sigmoid function (tansig), pure 
linear function (purelin) etc. From the earlier works [9], it is 
observed that both logsig and tansig produce almost the same 
performance. Considering this, only logsig processing func-
tion has been used. 

3.5. Training and Testing Error 

The training or the testing error of an artificial neural 
network can be expressed in the form of functional root 
mean square (rms) error. These are given in eq

n
s 3 & 4. A 

neural network is said to be an effective one when both train-
ing and testing errors are minimized. 

RMSerror
training

 = 
(target trained)2

n * target 2
        (3) 

RMSerror
testing

 = 
(target predicted)2

n * target 2
       (4) 

Where, ‘n’ is the number of training / testing dataset. Target 
is the measured values of power coefficient and torque coef-
ficient whose sizes are different in their respective training 
and testing sets. 

3.6. Increase of the Size of Training and Testing Data Set 

If the desired accuracy, i.e. functional root mean squared 
(rms) error in training and testing have been minimized (be-
low an acceptable limit), is not attained, then the sizes of 
data sets are changed. The strategy is: transfer a test data 
showing maximum deviation to the training dataset for 
which the functional rms error is not acceptable. And in lieu 
of it, create two additional data sets in the testing set in a 
random manner. In that manner, the sizes of the training and 
testing data sets are increased. With the new data sets, the 
network is fitted again. The process is continued till the de-
sired accuracy is achieved. 

3.7. Selection of the Best Network Configuration 

The entire methodology followed to select the best net-
work topology is illustrated in the form of a flow chart as 
shown in Fig. (5). The proposed methodology is used to pre-
dict for power coefficient and torque coefficient of the rotor. 

 

 

 

 

Fig. (4). A typical neural network architecture. 
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All the data are normalized between 0.1 and 0.9 to produce 
uniformity in values. The initial size of the training detaset is 
taken to be 10; obtained from equation 1, by taking a single 
neuron in the hidden layer. Each dataset corresponds to a 
unique combination of blade tip speed, free stream velocity 
with blockage, rotor inlet velocity, power coefficient, and 
torque coefficient as obtained from the experiments. Half the 
size of training detaset is taken as the size of testing dataset, 
random wise, at the start. The dataset in the testing detaset 
are such that the network has never seen them while training. 
With this, in the first stage, the Matlab code is run for as 
many epochs for which the minimum gradient in the back 
propagation learning is reached. The inbuilt ‘trainlm’ back 
propagation learning function of Matlab is utilized for the 
purpose. The number of hidden layer neurons is increased 
from one to a maximum of six. For the selected seven net-
work topologies, at the end of their respective runs with the 
same training and testing datasets, the training and testing 
errors are compared. The number of hidden layer neurons of 
that network topology which has produced lowest training 
and testing errors compared to the rest are determined. If 
both the rms errors (eq

n
s 3 & 4) are minimized to the satis-

faction, and the rms error in testing is lower than that in test-
ing, then the best fitted network is obtained; else, a test data 
having maximum deviation is transferred to the training 
dataset, and two fresh datasets are created testing. In the sec-
ond stage with new training and testing datasets, again the 
best network topology is searched. This time, only three ar-

chitectures are searched: the network with the optimum 
number of neurons as obtained from the first stage, one less 
and one more neuron in the hidden layer. Again, best net-
work topology is selected out of the three, based on the low-
est errors. Again datasets are shifted and added. In this way, 
the sizes of training and testing datasets are increased until 
the desired accuracy is attained and all the data are fitted.  

4. RESULTS & DISCUSSION 

In the present work, the proposed algorithm is used to 
predict the power and torque coefficients of a two bladed 
airfoil shaped H-rotor based on the experimental values of 
the process parameters. Separate artificial neural networks 
are fitted for power coefficient and torque coefficient predic-
tions. From the results, it is observed that, in both the cases, 
the network configuration is the same, i.e., the number of 
neurons in the hidden layer is only one. A maximum of 5000 
epochs has been allowed in each run. The objective is to fit 
all the 55 data of each parameter. It has been decided that 
functional root mean squared error (rms error) in both train-
ing and testing should be within 5%. For the prediction of 
both the outputs, 35 data are used to train the network, and 
20 validation i.e. test data are used to asses the performance 
of the fitted networks. The training and testing data utilized 
in both the predictions are shown in Table A1-A4 (incorpo-
rated in Appendix A). The test data are selected in such a 
way that they have covered the whole range of the parame-
ters.  

Table 1. Effect of Training and Testing Dataset on Rms Functional Error for Power Coefficient Prediction 

Number of Dataset Functional Rms Error in Prediction 

Training Data Testing Data Training Error Testing Error 

10 5 0.0294 0.0589 

15 10 0.0045 0.0778 

20 13 0.0116 0.0534 

25 18 0.0269 0.0387 

35 20 0.0387 0.0357 

 

Table 2. Effect of Training and Testing Dataset on Functional rms Error for Torque Coefficient Prediction 

Number of Dataset Functional Rms Error in Prediction 

Training Data Testing Data Training Error Testing Error 

10 5 0.0019 0.0860 

15 10 0.0390 0.1101 

20 13 0.0360 0.1009 

25 18 0.0367 0.0599 

35 20 0.0449 0.0283 

 
Table 1 shows the result of neural network prediction for 

power coefficient for different size of the training and testing 

datasets, while Table 2 shows the result of neural network 

prediction for torque coefficient for different size of the 

training and testing datasets. Five sets of results are shown 

for power and torque coefficients respectively. The numbers 

of training and testing dataset are kept constant for both the 

cases. Initially, results are obtained for 10 training data and 5 

testing data. It shows high testing error, though the training 

error is less. In order to increase the prediction accuracy fur-

ther, dataset are transferred from the testing dataset to the 

training dataset, and fresh data replenishes the testing 

dataset. In that manner, the size of training and testing 

datasets are increased, as shown in the respective tables. The 
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training and testing error for the new network topologies are 

then compared, and the process continues till testing error is 

less than training error. The Table 1 and Table 2 show that, 

with 35 training data and 20 testing data, the desired goals 

are achieved. The rms error in prediction of power coeffi-

cient being slightly higher than that of torque coefficient 

indicates that there may have been more noise present in the 

data [9]. 

The effect of increasing hidden layer neurons on the 
functional rms errors of both training and testing for power 
coefficient prediction is shown in Fig. (6). Fig. (6) shows 
that with the increase in the number of hidden layer neurons, 
the rms error in training progressively decreases, while in 
testing, it increases. With the increase in neurons from 1 to 6, 
the training error decreases from 0.0387 to 0.0060, but the 
testing error increases from 0.0357 to a maximum of 0.1130. 
Fig. (7) shows the effect of increasing hidden layer neurons 

 

 

 

 

 

 

Fig. (6). The effect of hidden layer neurons on functional rms errors 
for power coefficient prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The flow chart of the methodology adopted. 
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on the functional rms errors of both training and testing for 
torque coefficient prediction. In this case also, with increase 
of hidden layer neurons, the training error decreases from 
0.0449 to 0.0036, and the testing error increases from 0.0283 
to a maximum of 0.0975.  

Fig. (8) shows the result of neural network predicted 
power coefficient versus target experimental power coeffi-
cient. A line inclined to 45° and passing through the origin is 

also drawn in the same figure. For perfect prediction, all 
points should lie on the 45° line. Here, it is seen that most of 
the points are close to this line. In order to get an idea about 
the percentage error in prediction, lines representing ± 5%, 
± 10% and ± 20% deviations are drawn. It is found from 
the Fig. (8) that out of 20 predictions, 7 predictions are 
within ± 5% accuracy, 14 predictions are within ± 10%, & 
all predictions are within ± 20% accuracy. The maximum 
absolute error in prediction of power coefficient is 0.1178. 
The rms errors in training and testing for prediction of power 
coefficient have turned out to be 0.0387 and 0.0357 respec-
tively. Fig. (9) shows the result of neural network predicted 
torque coefficient versus target experimental torque coeffi-
cient. In this case also, most of the points lie close to the 45° 
line for perfect prediction. It can be seen from Fig. (9) that 
out of 20 predictions, 7 predictions are within ± 5% accu-
racy, 11 predictions are within ± 10% and all predictions are 
within ± 20% accuracy. The maximum absolute error in 
prediction of torque coefficient is 0.1194. Some of the data 
points are bit scattered; this is for the reason that neural net-
work is statistical in nature. The rms errors in training and 
testing for prediction of torque coefficient have turned out to 
be 0.0449 and 0.0283 respectively. 

 

 

 

 

 

 

 

 

 

Fig. (8). Predicted power coefficient versus target power coefficient. 

 

 

 

 

 

 

 

 

 

Fig. (9). Predicted torque coefficient versus target torque coefficient. 

 

 

 

 

 

Fig. (7). The effect of hidden layer neurons on functional rms errors 

for torque coefficient prediction. 
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5. CONCLUSION 

In this paper, an attempt has been made to predict power 
coefficient and torque coefficient of a two bladed airfoil 
shaped H-rotor using ANN. A new methodology is pro-
posed. The proposed methodology considers the fact that the 
ANN model can be best applied for prediction of power co-
efficient and torque coefficient if its prediction accuracy is 
high, i.e. the functional rms error of prediction is not greater 
than 5% in general [1]. For this, the network is initially 
trained with minimum training data and then tested with few 
testing data. Observing the accuracy in prediction, more data 
have been added progressively. The process is continued till 
the time both training and testing errors are minimized, and 

both brought down below the acceptable accuracy limit of 
5%. Twenty validation data i.e., test data have been found 
suitable for predicting power coefficient and torque 
coefficient successfully within that limit. And only a single 
hidden layer neuron has been utilized for prediction of both 
the coefficients. The root mean squared functional errors in 
testing and training of power coefficient are 0.0357 and 
0.0387 respectively, and the corresponding errors of torque 
coefficient are 0.0283 and 0.0449 respectively. The proposed 
methodology is fast and accurate. And testing error being 
less than the training error, makes the proposed algorithm a 
superior one. Therefore, the proposed algorithm can be used 
for predictions of power coefficient and torque coefficient of 
H-rotor type of wind rotor. 

Appendix 

Table A-1. Training Data Set for Power Coefficient 

Blade Tip Speed 

(m/s) 

Free Stream Velocity With Blockage 

(m/s) 

Rotor Inlet Velocity 

(m/s) 

Power Coefficient 

(Cp) 

  

 3.8227 

 4.8440 

 4.8202 

 4.9549 

 4.9788 

 5.2424 

 6.3605 

 6.9756 

 7.2918 

 7.4996 

 8.3934 

 7.6159 

 7.6437 

 7.9704 

 7.6545 

 7.9922 

 8.0903 

 8.8677 

 8.2258 

 11.6298 

 12.1773 

 13.1427 

 10.8679 

 12.0030 

 8.9094 

 16.6099 

 12.1536 

 13.0374 

 15.6233 

 16.5733 

 17.8549 

 15.7973 

 11.6415 

 17.2222 

 15.3034 

  

 28.8510 

 33.6860 

 34.4790 

 34.5050 

 34.4790 

 34.5580 

 34.5840 

 33.2330 

 33.8210 

 35.8320 

 31.2720 

 36.2660 

 35.6350 

 34.6840 

 34.5420 

 34.1110 

 35.2980 

 31.6140 

 35.1530 

 31.7580 

 34.3410 

 34.1990 

 34.7550 

 33.6880 

 27.1050 

 34.3890 

 33.3340 

 32.6850 

 32.5960 

 33.0080 

 33.9770 

 26.9120 

 33.7730 

 33.7360 

33.4720  

 

 23.9630 

 30.7360 

 30.9360 

 31.4480 

 31.1930 

 32.9340 

 31.8250 

 27.3740 

 28.2520 

 29.4960 

 32.0430 

 29.6310 

 29.1550 

 28.9620 

 28.9630 

 29.2920 

 30.1650 

 30.5040 

 29.8190 

 27.1100 

 28.9620 

 28.9630 

 29.2360 

 28.8240 

 24.3140 

 28.5460 

 29.1010 

 29.0170 

 29.0170 

 28.8240 

 28.2640 

 24.3140 

 29.2920 

 28.2640 

 28.8240 

  

 0.0914 

 0.1219 

 0.1126 

 0.1193 

 0.1177 

 0.1378 

 0.1312 

 0.1424 

 0.1504 

 0.1418 

 0.2754 

 0.1435 

 0.1436 

 0.1602 

 0.1598 

 0.1729 

 0.1674 

 0.2552 

 0.1684 

 0.2669 

 0.2691 

 0.2646 

 0.2213 

 0.3380 

 0.2645 

 0.3777 

 0.2779 

 0.3828 

 0.3760 

 0.3328 

 0.3138 

 0.4428 

 0.4791 

 0.3800 

 0.3390 
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Table A-2. Testing Data Set for Power Coefficient 

Blade Tip Speed 

(m/s) 

Free Stream Velocity with Blockage 

(m/s) 

Rotor inlet Velocity 

(m/s) 

Power Coefficient 

(Cp) 

  

 6.5277 

 6.2684 

 7.2273 

 9.2658 

 5.2664 

 5.0838 

 4.4135 

 4.0536 

 3.6873 

 4.8213 

 4.9059 

 4.4465 

 16.8264 

 15.8837 

 10.7988 

 14.6629 

 12.6850 

 11.9706 

 12.7121 

 11.3849  

  

 30.1930 

 31.1860 

 31.6430 

 27.8085 

 30.8340 

 30.7180 

 31.2350 

 30.9200 

 24.6150 

 33.7630 

 33.7640 

 33.6860 

 31.8440 

 33.0980 

 33.2680 

 33.1440 

 33.6450 

 34.3390 

 33.4090 

 34.8590  

 

 27.4600 

 29.4340 

 29.1600 

 22.9620 

 28.2960 

 28.2970 

 30.4760 

 30.0800 

 23.8430 

 30.6770 

 32.4460 

 29.7530 

 25.5940 

 28.9620 

 28.8240 

 29.3730 

 29.1000 

 28.8240 

 29.3730 

 28.8240  

  

 0.1749 

 0.1747 

 0.1896 

 0.2319 

 0.1402 

 0.1405 

 0.1345 

 0.1240 

 0.1405 

 0.1179 

 0.1342 

 0.1029 

 0.4080 

 0.3674 

 0.2436 

 0.3475 

 0.2898 

 0.2556 

 0.2941 

 0.2272 

 

Table A-3. Training Data Set for Torque Coefficient 

Blade Tip Speed 

(m/s) 

Free Stream Velocity With Blockage 

(m/s) 

Rotor Inlet Velocity 

(m/s) 

Torque Coefficient 

 (Ct) 

  

 7.2918 

 7.4996 

 7.6159 

 6.9756 

 5.2664 

 5.0838 

 4.4135 

 4.0536 

 7.9922 

 4.9788 

 12.1536 

 11.6416 

 18.3657 

 13.0374 

 14.6629 

 4.4466 

 12.7121 

 17.8549 

 13.1427 

 4.9549 

 6.2684 

 3.6873 

 8.0903 

 4.8440 

 7.2273 

 8.9094 

 3.8228 

 11.3849 

 15.7973 

 11.6298 

 12.1773 

 8.8677 

 7.9704 

 6.5277 

 11.9706 

  

33.8210 

 35.8320 

 36.2660 

 33.2330 

 30.8340 

 30.7180 

 31.2350 

 30.9200 

 34.1110 

 34.4790 

 33.3340 

 33.7730 

 32.6850 

 33.6450 

 33.1440 

 33.6860 

 33.4090 

 33.9770 

 34.1990 

 34.5050 

 31.1860 

 24.6150 

 35.2980 

 33.6860 

 31.6430 

 27.1050 

 28.8510 

 34.8590 

 26.9120 

 31.7580 

 34.3410 

 31.6140 

 34.6840 

 30.1930 

 34.3390 

 

 28.2520 

 29.4960 

 29.6310 

 27.3740 

 28.2960 

 28.2970 

 30.4760 

 30.0800 

 29.2920 

 31.1930 

 29.1010 

 29.2920 

 29.0170 

 29.1000 

 29.3730 

 29.7530 

 29.3730 

 28.8240 

 28.9630 

 31.4480 

 29.4340 

 23.8430 

 30.1650 

 30.7360 

 29.1600 

 24.3140 

 23.9630 

 28.8240 

 24.3140 

 27.1100 

 28.9620 

 30.5040 

 28.9620 

 27.4600 

 28.8240 

  

 0.6978 

 0.6676 

 0.6776 

 0.6694 

 1.0000 

 0.9999 

 0.9999 

 0.9999 

 0.6973 

 0.8184 

 0.8047 

 0.9105 

 0.8162 

 0.7481 

 0.7854 

 0.7801 

 0.7046 

 0.6890 

 0.7587 

 0.8306 

 0.8004 

 0.9382 

 0.7303 

 0.8434 

 0.8298 

 0.7621 

 0.6898 

 0.6818 

 0.7882 

 0.7287 

 0.7650 

 0.9098 

 0.7374 

 0.8083 

 0.7730 
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Table A-4. Testing Data Set for Torque Coefficient 

Blade Tip Speed 

(m/s) 

Free Stream Velocity With Blockage 

(m/s) 

Rotor Inlet Velocity 

(m/s) 

Torque Coefficient 

 (Ct) 

  

 7.6437 

 8.2258 

 16.6099 

 15.3034 

 16.5733 

 4.8214 

 8.3934 

 7.6545 

 5.2424 

 9.2658 

 10.8679 

 4.8202 

 5.3605 

 4.9059 

 15.6233 

 17.2222 

 12.0030 

 15.3034 

 10.7988 

 15.8837 

 

  

 35.6350 

 35.1530 

 34.3890 

 33.4720 

 33.0080 

 33.7630 

 31.2720 

 34.5420 

 34.5580 

 27.8085 

 34.7550 

 34.4790 

 34.5840 

 33.7640 

 32.5960 

 33.7360 

 33.6880 

 33.4720 

 33.2680 

 33.0980 

  

 

 29.1550 

 29.8190 

 28.2640 

 28.5460 

 28.8240 

 30.6770 

 32.0430 

 28.9630 

 32.9340 

 22.9620 

 29.2360 

 30.9360 

 31.8250 

 32.4460 

 29.0170 

 28.2640 

 28.8240 

 28.8240 

 28.8240 

 28.9620 

 

  

 0.6787 

 0.7195 

 0.7000 

 0.7416 

 0.7626 

 0.8255 

 1.0000 

 0.7030 

 0.9082 

 0.7100 

 0.7077 

 0.8050 

 0.8468 

 0.9234 

 0.7925 

 0.7019 

 0.7321 

 0.7416 

 0.7507 

 0.7657 
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