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Abstract: The energy hypothesis predicts that, in regions of roughly equal area, energy flux per unit of area should be the 

prime determinant of species richness. In the case of plants, primary production represents realized energy capture. Poten-

tial evapotranspiration is a measure of community energy use and it is related to terrestrial primary productivity. The best 

correlate of the latter on regional scale is the Advanced Very High Resolution Radiometer (AVHRR) derived Normalized 

Difference Vegetation Index (NDVI). I examined the relationship between bird species richness and measures of available 

environmental energy (interannual maximum average NDVI and mean annual potential evapotranspiration) at a quarter 

degree scale (55 x 55 km). Statistical analyses revealed higher interannual maximum average NDVI results in higher bird 

species richness, whereas mean annual potential evapotranspiration correlated negatively with species richness. Under-

standing these relationships can help in estimating changes in bird species richness in response to global climatic change. 

INTRODUCTION 

 The most striking feature of the Earth is the existence of 
life, and the most striking feature of life is its diversity. This 
biological diversity has long been a source of wonderment 
and scientific curiosity, but is increasingly a source of con-
cern. Humankind domination of Earth’s ecosystems is mark-
edly reducing the diversity of species within many habitats 
worldwide, and is accelerating extinction [1]. One factor 
thought to be important in modulating any effect on the 
physical structure of the Earth in determining species diver-
sity is the relationship between the number of species in an 
area and ambient available ('usable') environmental energy. 
This energy is usually estimated from models or indirectly 
from other variables and often used interchangeably with 'net 
primary productivity' [2]. The form and cause of diversity-
productivity relations are hotly debated in the study of pat-
terns of species diversity, with many fundamental issues as 
yet unresolved. Much of the discussion centers on the influ-
ence of spatial scale on diversity-productivity relationship 
[2]. At a relatively local scale, there is a marked tendency for 
general hump-shaped relationship between species richness 
and productivity, with species richness increasing from low 
to moderate levels of productivity and then declining again 
towards high levels of productivity when a sufficient range 
of productivity values is sampled [3, 4]. By contrast, at geo-
graphical scales diversity generally increases with productiv-
ity [5, 6]. 

 Net primary productivity (NPP) is a difficult variable to 
measure directly, especially at regional scales. Consequently, 
in regional biodiversity studies, NPP is typically derived 
from climatic data collected at scattered (and often biased) 
sampling points—these points are extrapolated in order to  
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characterize productivity over a large region [5, 7]. Such 
climate-based models assume that the vegetation cover is 
'natural', and ipso facto is under the control of climate [8]. 
However, at regional scales, vegetation productivity is also 
influenced by non-climatic factors including soil nutrient and 
structure, topography, disturbance and land use. Thus, the 
Advanced Very High Resolution Radiometer (AVHRR)-
Normalized Difference Vegetation Index (NDVI) provides a 
more accurate index of net primary productivity compared 
with climate-based models, by virtue of being spatially ex-
plicit [4, 8]. Another factor that has been established to in-
fluence species diversity at geographical scales is potential 
evapotranspiration [6, 9]. It may be interpreted as a measure 
of integrated, crude, ambient energy. Potential evapotranspi-
ration is estimated from air temperature and solar radiation, 
and represents the maximum amount of water that would be 
lost by evaporation from surfaces and transpiration of plant 
leaves when evapotranspiration is not limited by water avail-
ability [10]. It is highly correlated with terrestrial primary 
productivity and is thus a measure of community energy use 
[5]. 

 This study investigated the relationship between bird 
species richness and measures of available environmental 
energy (mean annual potential evapotranspiration and inter-
annual maximum average NDVI) at regional scale. The 
study was performed at a quarter degree scale (55  55 km) 
that matches the scale of the distribution maps in the Bird's 
Atlas of Kenya [11]. 

MATERIAL AND METHODS 

The Study Area 

 Kenya is situated between latitudes 5
o
 40' north and 4

o
 4' 

south and between longitudes 33
o
 50' and 41

o
 45' east. Alti-

tude exerts the greatest influence on temperature in Kenya. 
There is a wide range between the maximum and minimum 
temperatures from below freezing point on the snow-capped 
Mount Kenya to over 40

o
C in some parts of the north and 
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northeastern parts of the country. Generally, the low-lying 
northern plains are the hottest areas with maximum tempera-
tures commonly exceeding 35

o
C. Annual rainfall follows 

strong seasonal variations, which are most pronounced in the 
dry lowlands and the north as well as east, but weakest in the 
humid highlands of the Central and Rift areas. There are 
three main regions of heavy rainfall: a relatively wet belt 
extending along the Indian Ocean coast; western Kenya just 
east of Lake Victoria and main mountain ranges. The wide 
range of habitats in Kenya is a reflection of the great altitu-
dinal range and distinct regional patterns of rainfall. The 
diverse community assemblages range from montane forest 
habitats in the central west to semi-arid scrub in the north 
and mangrove forests in the southeast. Consequently, most 
bird species have well-defined distributions [11]. The Ken-
yan avifauna is one of the richest in Africa [12]. The impor-
tance of conserving Kenyan birds is emphasized by the fact 
that bird watching is an important component of African 
tourism [13]. 

Bird Species Data 

 The Bird Atlas of Kenya [11] mapped the distribution of 
871 species in Kenya. However, at the time of publication of 
this atlas, it was estimated that only 40% of the possible re-
cords, which vary considerably depending on the block 
(quarters of degree squares) had been obtained. Since then, 
additional records [14] have increased this to about 42% 
[15]. The atlas maps [11] use symbols to indicate the nine 
categories of records. Since it was not possible to get the 
data for total number of bird species (1065 species) in Kenya 
[11], only a sample of 871 species recorded in the Bird Atlas 
of Kenya since 1970 were included in this analysis. Vagrant 
species and those represented only by anecdotal records were 
excluded. The distribution maps [11] for 871 of the species 
of Kenyan birds were photocopied and scanned in 256 gray 
scales and then saved as Tagged image file format (Tiff). An 
algorithm was developed for extracting the mapping symbols 
(Fig. 1) for the following status of birds from the scanned tiff 
maps: (1) confirmed breeding after 1/1/1970; (2) present and 
probable breeding after 1/1/1970; and (3) records after 
1/1/1970 (but no confirmation of breeding). The algorithm 
rectified the images to obtain standard northing by identify-
ing the location of two pixel patterns that appear in all im-
ages, and from their positions computed the orientation of 
the map. Finally, the algorithm translated and rotated the 
image to obtain a rectified image. For each status, the maps 
use a specific pattern. After rectification, the position of each 
block (55  55 km) was approximately known. For each 
block position, the algorithm computed a slightly wider 
buffer and then tried to find the best match for all three pat-
terns. For some block positions, I found that lake and coun-
try boundaries obscured the recognition of patterns. I cor-
rected for this at specific block positions by cross-checking 
the pattern against the original map in the bird atlas. In addi-
tion, I looked at trends in histograms per pattern that helped 
to identify problems where the algorithm erroneously identi-
fied patterns. Thus, all errors caused by translating the ana-
logue database to a digital database were removed by the 
operator intervention [9, 16]. 

 

 

NDVI Time Series Data 

 The Normalized Difference Vegetation Index (NDVI) is 
a measure of vegetation vigor. The magnitude of NDVI is 
related to the level of photosynthetic activity in the observed 
vegetation [17]. In general, higher values of NDVI indicate 
vigor and quantity of vegetation [18]. The NDVI data were 
obtained from the data collected by the National Oceanic and 
Atmospheric Administration (NOAA) satellites, and proc-
essed by the Global Inventory Monitoring and Modeling 
Studies (GIMMS) at the National Aeronautics and Space 
Administration (NASA). The GIMMS group at NASA God-
dard Space Flight Center developed the GIMMS NDVI first 
generation dataset [19]. 

 

Fig. (1). A sample species distribution map showing the distribution 

of Ostrich (Struthio camelus) in Kenya used in our study. (a) Va-

grant species and those represented only by anecdotal records, (b) 

Species present and probable breeding after 1/1/1970, (c) Records 

after 1/1/1970 (but no confirmation of species breeding), (d) Con-

firmed species breeding after 1/1/1970. 

 The processing chain of the GIMMS mapping system 
begins with stratification by continent in order to reduce the 
amount of data that must be processed. Suspect data are 
eliminated by discarding the 45 outer pixels on either side of 
a scan to reduce the variation in NDVI as a result of viewing 
geometry. The threshold of 45 pixels corresponds to a scan 
angle of approximately 42 degrees off-nadir [20]. In addi-
tion, data with a channel 5 brightness temperature below 288 
K is assumed to be clouds and are eliminated. This cloud 
screening technique does not discriminate between warm 
clouds or partially cloud covered or "mixed" pixels [21]. 
Digital counts of channels 1 and 2 are then converted to ra-
diances, and then normalized for incoming solar radiation 
with the preflight calibration coefficient from NOAA [22]. 
NDVI is computed as the normalized ratio of the difference  
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between near-infrared and red reflectance measurements by 
their sum [23]: 

NDVI = (NIR - R) / (NIR + R)          (1) 

where NIR = near-infrared measurements and R = visible red 
measurements. Normalization reduces differences due to 
overall brightness of sunlight or of surfaces (e.g., shadows) 
that can strongly influence the image. High positive values 
of NDVI correspond to dense vegetation cover, whereas 
negative values are usually associated with bare soil, snow, 
clouds or non-vegetated surfaces. 

 Global Area Coverage NDVI data are mapped to the 
Hammer-Aitoff projection and resampled to 7.638 km in 
order to display the Africa continent on a 1024 by 1280 
screen. In cases where pixels overlap, the value of the pixel 
with the highest NDVI is used [20]. Geo-registration is ac-
complished using the orbital parameters provided by NOAA. 
When a mismatch between features is found, the entire im-
age is shifted over a whole number of pixels, which reduces 
the registration error to approximately 4 - 8 km [20]. 

 The daily images show large areas of missing data, re-
sulting from gaps between mapped orbits. The effects of 
clouds, atmosphere, viewing and illumination geometry fur-
ther reduce the utility of the data. 

 

Fig. (2). Spatial distribution of interannually integrated maximum 

average NDVI in Kenya. 

 To obtain complete cover of the land surface and to re-
duce the impact of these effects, a 10-day maximum value 
composite is obtained from the daily images by selecting the 
maximum NDVI value for each pixel. The 10-day maximum 
value composite procedure selects the 'greenest' value, which 
generally represents the least cloud contaminated pixel for 
each dekad period [19]. Compositing does not account for 
changes in NDVI as a result of sensor degradation, solar 
zenith angle and/or soil background. 

 

Analysis of Data 

 The calculation of species richness was based on combi-
nation of the status of birds recorded since 1970, namely, 
confirmed breeding after 1/1/1970, present and probable 
breeding after 1/1/1970 and records after 1/1/1970 (but no 
confirmation of breeding). In each grid cell (55  55 km), the 
number of species present was counted to give a value for 
total species richness. The mean annual potential evapotran-
spiration (mm) was estimated by averaging the means of 
mean annual potential evapotranspiration recorded within the 
55  55 km grid cells [9] in the agro-climatic zone map of 
Kenya 1980 [24]. 

 The study aims at measuring ecological variations within 
pixels in such a way that regions affected by occasional 
droughts or erratic changes in the timing and strength of 
rains, could be separated from those where the impact of 
such anomalies is slight. This was done by aggregating 
dekads to their appropriate months, calculating maximum 
NDVI for each month over the 11 year period, and then av-
eraged maximum NDVI for all 12 monthly NDVI values 
over the 11 year period. Thus, the variability over an 11-year 
period (1982 to 1993) of monthly NDVI values represents 
temporal variation of productivity. The historical image 
products of Kenya comprising 396 dekads of maximum 
NDVI were downloaded from the website [18]. These his-
torical NDVI products were statistical summaries (i.e., aver-
age or maximum NDVI) for the historical time period (1982-
1993) and hence there was no significant influence from 
cloud contamination. Since dekads span from the 1st to the 
10th, the 11th to the 20th, and the 21st to month end, a year 
has 36 dekads (i.e., 3 dekads multiplied by 12 months). 
Hence, 396 dekads (i.e., 36 dekads multiplied by 11 years) 
correspond to an 11-year time period. This implies that each 
month over an 11-year period has 33 dekads (i.e., 3 dekads 
multiplied by 11 years). By using Windisp 3.5 time series 
data processor [25], maximum average NDVI (VI) was com-
puted for each of the 12 months over 11-year period as: 

VI = 1/n  (pv) (2) 

where p is the individual pixel values (i.e., for all 33 dekads 
maximum NDVI images) and n is the number of dekads. 
Estimating the average NDVI for all 12 monthly values over 
11-year period produced the interannual maximum average 
NDVI image (Fig. 2). 

 The coordinates of the grid cells (55  55 km) containing 
bird species were then conformed to the same geographic 
coordinate system as the NDVI image as well as mean an-
nual potential evapotranspiration. Since the spatial resolution 
of the species data was different from NDVI data (7.6  7.6 
km), the sample points representing species data were over-
laid on NDVI image. For every sample unit the mean values 
of maximum average NDVI were computed. The maximum 
average NDVI values were extracted using lower left corner 
coordinates of the grid cell [16]. Thus, each grid cell finally 
contained independent variables (interannual maximum av-
erage NDVI and mean annual potential evapotranspiration) 
and bird species richness. The Pearson correlation between 
bird species richness and independent variables were calcu-
lated. In addition, regression lines between the dependent 
variable (bird species richness) and the independent variables 
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(interannual maximum average NDVI and mean annual po-
tential evapotranspiration) were calculated. 

RESULTS 

 The interannual maximum average NDVI, which repre-
sents net primary productivity [8, 16] shows readily distinct 
patterns in Kenya (Fig. 2). Predictably, the semi- humid to 
humid zones such as the lake Victoria region, central high-
lands and the coastal strip have the highest maximum aver-
age NDVI (net primary productivity). Since the higher the 
value of NDVI, the more photosynthetically active the cover 
type [22], low average NDVI values indicate that these areas 
have less photosynthetically active cover types. Fig. (3a) 
shows that the net primary productivity estimated by inter-
annual maximum average NDVI has a significant positive 
relationship with bird species richness, which account for 35 
percent (r

2
=0.354) of the observed variation in Kenyan bird 

species richness. 

(a) 

 

(b) 

 

Fig. (3). Scatterplots of bird species richness versus (a) productivity 

(interannual maximum average NDVI), r = 0.595, n = 212 and (b) 

mean annual potential evapotranspiration, r =-0.680, n = 212. 

(a) 

 

(b) 

 

Fig. (4). (a) Scatterplots of productivity (interannual maximum 

average NDVI) versus mean annual potential evapotranspiration 

(r=-0.800, n=212). (b) Three-dimension relationships among bird 

species richness versus mean annual potential evapotranspiration 

versus productivity (interannual maximum average NDVI). 

 Conversely, mean annual potential evapotranspiration 
has a significant negative relationship with bird species rich-
ness, which accounts for 46 percent (r

2
=0.463) of the vari-

ability of species richness. The least squares fit for the rela-
tionship between bird species richness and mean annual po-
tential evapotranspiration (Fig. 3b) shows that higher mean 
annual potential evapotranspiration depresses bird species 
richness [9]. Fig. (4a) shows that mean annual potential 
evapotranspiration is highly correlated (r

2
=0.641) with net 

primary productivity [5]. The three-dimensional plot (Fig. 
4b) demonstrates that bird species richness is higher at high 
levels of net primary productivity but low at high levels of 
mean annual potential evapotranspiration. 
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DISCUSSION 

 Net primary productivity is the rate at which energy 
flows through an ecosystem [3]. Ecologists normally use an 
index of productivity rather than measuring it directly. It has 
been shown that normalized difference vegetation index 
(NDVI) is closely related to net primary productivity and 
actual evapotranspiration for many vegetation types [8]. 
Hence, the interannual maximum average NDVI (1982-
1993) was integrated as an index for net primary productiv-
ity. The integrated vegetation index is representative of rate 
of photosynthetic plant activity, its integration over time 
should tell us more about the productive history of the 
plants, and by inference about production [26]. The interan-
nual maximum average NDVI has been shown to be posi-
tively correlated with the climatic variables, mean annual 
rainfall and moisture availability [9, 16]. This indicates that 
interannual maximum average NDVI is closely related with 
plant growth and production. Consequently, higher interan-
nual maximum average NDVI represents higher net primary 
productivity. 

 The relationship between interannual maximum average 
NDVI and bird species richness is positive and moderately 
strong (r = 0.595). This implies that higher net primary pro-
ductivity results in higher bird species richness. Why does 
high net primary productivity tend to increase species rich-
ness of birds? Apparently, in natural habitats bird popula-
tions are positively correlated with the amount of woody 
vegetation [15]. Since there is increased production of 
woody species in highly productive ecosystems [27], bird 
species richness too increases with woody vegetation [15]. 
Moreover, many species of landbirds use trees as a source of 
food, or for nesting or as a perch and even many waterbirds 
nest or perch in trees. In non-forested areas too, the number 
of bird species increases in proportion to the amount of 
woody vegetation, that is, trees and shrubs. However, by far 
the greatest bulk of woody vegetation is to be found in for-
ests, which in the tropics are extraordinarily rich in insect 
species. These in turn support a rich diversity of birds, al-
most all of them breeding in the forest [11]. On the contrary, 
whilst semiarid woodlands may support as many species of 
birds as a forest, far fewer of them breed in any particular 
woodland so the overall diversity of species is lower in Sa-
vannah woodland [12]. 

 By contrast, higher mean annual potential evapotranspi-
ration results in lower bird species richness. Why does high 
potential evapotranspiration tend to decrease species richness 
of birds? One possible explanation could be that there is of-
ten a striking decrease in net primary productivity with mean 
annual potential evapotranspiration (Fig. 4a). Thus regions 
receiving low rainfall with high potential evapotranspiration 
due to high temperatures have drier soil conditions, which 
minimize potential for growth of woody vegetation. Since 
bird species diversity is correlated with the amount of woody 
vegetation in natural habitats [15], the scarcity of woody 
species reduces bird species richness. Other factors induce 
variability around the limits determined by energy: for ex-
ample, physically complex environments, like mountains, 
may favour more equal energy partitioning among species, 
and thus permit relatively more species to occur together [5]. 
Thus, for a given level of mean annual potential evapotran-
spiration in Kenya, bird species richness is greater in moist 

mountainous areas that can support the growth of trees 
thereby providing nesting habitat and food for bird popula-
tions. 

 The authenticity of the regional data layers needs to be 
confirmed. The high correlations (Fig. 4a) between mean 
annual potential evapotranspiration and net primary produc-
tivity (r = -0.800) is in agreement with other studies [5] that 
potential evapotranspiration is highly correlated with terres-
trial primary productivity. However, predicting bird species 
richness requires precise environmental data. Thus, the re-
gional perspective requires the sacrifice of ecological preci-
sion for the sake of the generality, as well as the provision of 
more data thereby allowing statistical predictions. Species-
energy relationships, documented by regression statistics, 
can be used to identify areas more likely characterized by 
high bird species diversity. These areas will be recognizable 
only on the regional scale, and field observations will be 
required for precise boundary determination [28]. 

CONCLUSION 

 The study demonstrated that bird species richness in-
creases with net primary productivity (i.e. realized energy 
captured in plants) and decreases with mean annual potential 
evapotranspiration (i.e. community energy used). Thus, the 
most productive regions in Kenya such as central and west-
ern highlands support the highest bird species richness [9]. 
However, most Kenya's agriculture and populace are also 
concentrated in most productive regions, and most of the 
existing protected areas are small. The small size of these 
protected areas, their scattered location, their progressive 
isolation through the loss of connecting habitat and increas-
ing edge to area ratios, are cause for concern [13]. Therefore, 
management plans are needed to prevent a confrontation 
between conservation and human interests [9]. Whereas the 
less productive areas with more protected areas for conserva-
tion of biodiversity support less bird species richness due to 
high potential evapotranspiration. Planning of conservation 
priorities does not only require the knowledge of species-
energy relationships but also an understanding of interaction 
between historical and ecological processes [29]. The results 
obtained from this study are applicable to Kenya and cannot 
necessarily be extended beyond Kenya. 
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