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Abstract: REDD (Reduced Emissions from Deforestation and forest Degradation) constitutes a set of financial incentives 
designed to reduce CO2 emissions from forest degradation and deforestation. REDD success depends on measuring forest 
biomass as a proxy for CO2 stocks. We tested the efficacy of airborne X- and P-band interferometry as a remote-sensing 
method to quantify forest biomass and detect changes in forest structure in the Paragominas region, eastern Amazon. With 
field-classified regions of interest (ROI) and radar imagery, we classified an area of 1479.66 km2 into four forest classes. 
Radar backscatter and interferometric variables of each forest class were statistically examined. We obtained the 
interferometric height, Hint, by subtracting digital elevation models resulting from X and P band interferometry for the 
study area. Inventory-measured biomass were obtained for 42 plots nested within these forest classes, and used as ground 
truth for subsequent analyses. Using these field plots as experimental units, a functional relationship between radar 
variables and above-ground biomass (AGB) was obtained by fitting a linear model relating inventory-measured AGB and 
radar-derived variables. A map of AGB was created. Combining backscatter variables and Hint effectively classified the 
forest. AGB can be predicted for the Paragominas landscape with Hint and the P-band polarizations pHV and pVV 

(R2=0.82, normalized RMSE=13.7%). X- and P-band airborne radars can be used to estimate forest AGB of large 
continuous areas as well as detecting forest exploration and degradation, events REDD intends to prevent. 
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INTRODUCTION 

REDD (Reduction of Emissions from Deforestation and 
Degradation) is a mechanism designed to prevent CO2 
emissions by which legal holders of forested areas are paid 
to avoid forest degradation and deforestation (REDD; 
http://unfccc.int/methods_science/redd/items/4531.php, http:// 
www.un-redd.org/ ). REDD has become a critical issue in 
international discussions about post-Kyoto protocol 
compliance mechanisms, and is becoming very relevant in 
tropical countries where forests abound [1], and where 
deforestation causes substantial CO2 emissions [2]. Similar 
to the CDM (Clean Development Mechanism, 
http://cdm.unfccc.int/), the concept of REDD has a focus on 
projects whose activities are expected to reduce CO2 
emissions within project limits given a deforestation 
baseline. In addition, leakage [3, 4] – i.e., deforestation off 
project limits resulting from REDD project activities – is a 
major concern that project proponents need to address before 
a project is approved as a REDD project. Guaranteeing that 
projects will reduce emissions and leakage will not take 
place are conditions for REDD to be successful. Thus, 
employing accurate, cost-effective, and robust wall-to-wall 
methods – i.e., methods capable of surveying an entire target 
area, and not relying on samples taken to represent that area 
– to quantify and detect changes in forest carbon stocks has 
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become quite important to attend demands from REDD 
implementation [5-7]. Since forests store CO2 in their 
biomass, measuring the forest biomass is the most 
straightforward method to quantify changes in carbon stocks 
in forests, and several methods to measure forest biomass are 
either available or under development [5, 6].  

Performing forest inventories in sample plots within the 
project area is a consolidated method of forest biomass 
estimation [8-11]. However, its extremely complicated 
logistics and high costs prevent the widespread use of forest 
inventories for the wall-to-wall monitoring of carbon stocks 
in large and continuous areas. Forest biomass (carbon 
stocks) can also be evaluated using remote sensing 
instruments on airborne or satellite platforms, but substantial 
refinements are needed before routine assessments can be 
made at national or regional scales [12].  

Satellite imagery has been used to assess historical 
deforestation rates in the Brazilian Amazonia through 
satellite images provided by INPE (the Brazilian National 
Institute for Space Research) using optical data (projects 
Prodes and Deter [13]), which is an analysis somewhat 
limited by cloud cover in the tropics [14]. This is a 
qualitative analysis that only indicates the presence or 
absence of forests in the landscape. More quantitative 
analyses to estimate forest carbon stocks indirectly by 
developing statistical relationships between ground-based 
measurements and satellite-observed vegetation indexes have 
been attempted [15]. However, the current suite of optical 
satellite sensors, such as Landsat, AVHRR and MODIS, 
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cannot yet be used to estimate carbon stocks of tropical 
forests with certainty [16]. 

LiDAR is a remote sensing technology able to measure 
the distance to a target by illuminating this target with pulses 
of laser. LiDAR can use the laser beam reflection time from 
a source (such as an airplane) to a target (such as a tree) to 
create a tri-dimensional model of a forest. Although, LiDAR 
remote sensing can potentially exceed the capabilities of 
radar and optical sensors to accurately estimate carbon 
stocks for all forest types [14, 17-21], LiDAR presents some 
limitations that may restrict its broad application. Cloud 
cover or the presence of dense canopies, for example, also 
limit the gathering of LiDAR data, which can become a 
problem in tropical rainforest regions.  

Radars constitute a remote sensing alternative that can 
provide topological information about forest features through 
the analysis of microwave backscattering even in the 
presence of cloud cover. Quantifying carbon stock-related 
forest features in relatively homogeneous or young forests 
has been attempted with synthetic aperture radar (SAR) 
sensors on board of several satellites (e.g., ALOS/PALSAR 
[22], Envisat [23], RADARSAT-2 [24], TerraSAR [25]). 
However, the radar signal tends to saturate when forest 

biomass exceeds 50 – 300 Ton/ha, depending on study 
conditions [26-34], which are lower values than those often 
observed in mature Amazon forests [35-39]. Because 
different radar bands (e.g. X-, C-, L-, P-bands) provide 
different information about forest features, they can be 
wisely combined to overcome such limitations. The 
combination of different radar bands to perform the 
interferometric analysis of forest biomass will be optimal if 
it provides information of biological relevance, such as 
allometry-related parameters (e.g., forest height). With that 
in mind, X- and P-bands offer several advantages for forest 
interferometry.  Airborne X- and P-band interferometry has 
been extensively employed in Brazil for mapping purposes 
(http://www.dsg.eb.mil.br/index.php/projetos-e-convenios/em- 
andamento/radiografia-da-amazonia?start=2), and some 
attempts have been conducted to use such systems to 
estimate forest biomass [40, 41]. As opposed to L- and C-
bands that penetrate forests in different degrees, which 
makes the interpretation of interferometric data problematic, 
X-band waves reflect from the vegetation canopy or bare 
ground and can be used to generate Digital Surface Models 
(DSM) through interferometry (Figs. 1 and 2), and P-band 
waves can fully penetrate the forest canopy, reflecting from 
the forest floor and tree trunks by the effect of double 

 

Fig. (1). Schematic view of the airborne radar data acquisition. P-band and the DTM, X-band and the DSM, and DSM-DTM obtaining the 
interferometric height, Hint. 

 

Fig. (2). Example of a DSM (with the landscape partially covered with forests) and a DTM (bare landscape) obtained in the region of 
Paragominas.  
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bounce (Fig. 3). This is an effect that depends on the 
presence of vegetation to occur. Without vegetation, P-band 
waves reflect away from the radar source and no radar signal 

can be recorded [42]. In the presence of vegetation, P-band 
waves reflect back to the radar source by encountering, for 
example, a tree trunk barrier, and producing radar 
backscatter. P-band interferometry is used to determine the 
Digital Terrain Model (DTM) (Figs. 1 and 2). As a result, the 
forest height can be obtained by analyzing the difference 
between DSM and DTM, the interferometric height 
difference (Hint) (Fig. 1). 

Since the variation in P-band backscatter intensity 
constitutes additional information about forest structure and 
biomass, the joint analysis of forest canopy height data 
obtained with radar interferometry together with backscatter-
related variables has been shown to substantially improve the 
prediction of forest biomass and forest structure from radar 
data (see [31, 40, 41, 43-45]). For example, areas cleared 
recently should show a shorter interferometric height than 
mature and dense rainforests due to their shorter forest 
canopies. In another instance, one expects that an explored 
forest will present a smaller P-band backscatter than a non-
explored forest due to the removal of large trees because, 
without the barrier formed by tree trunks in an explored 
forest, a greater proportion of P-band waves will reflect 
away from the radar source [42]. 

Here we evaluate the performance of X- and P-band 
airborne InSAR – Interferometric Synthetic Aperture Radar 
– with lateral view (Fig. 1) in estimating forest biomass and 
detecting changes in forest structure in forests of eastern 
Amazon. In this study, we explored a data set obtained in the 
municipality of Paragominas, state of Pará, Brazil. This data 
set comprises field classified samples, field inventories, and 
radar data for the entire study region. The objectives were: 1) 
To study the individual contributions of radar X- and P-band 
variables for forest classification. 2) Determine which tree-
height stratum best predicts Hint in Paragominas forests. And, 
3) statistically define an optimal functional relationship 
between radar-derived variables and field inventory-

Table 1. Acronyms and Symbols That Appear in the Text 

Emission Reduction 

Mechanisms  

REDD 
Reduced Emissions from Deforestation and 

forest Degradation 

CDM UN Clean Development Mechanism 

Forestry  

AGB Above Ground Biomass 

  Wood Density 

DBH Diameter at Breast Height 

H Tree Height 

hdom Dominant Height 

hsub Submergent Height 

Remote Sensing 

SAR Synthetic Aperture Radar 

InSAR Interferometric Synthetic Aperture Radar 

LiDAR Light Detection And Ranging 

DSM Digital Surface Model 

DTM Digital Terrain Model 

Hint Interferometric Height 

pHH P-band Polarization, Horizontal – Horizontal 

pHV P-band Polarization, Horizontal – Vertical 

pVV P-band Polarization, Vertical – Vertical 

xHH X-band Polarization, Horizontal – Horizontal 

CHV C-band Polarization, Horizontal - Vertical 

LHH L-band Polarization, Horizontal - Horizontal 

LHV L-band Polarization, Horizontal – Vertical 

LVV L-band Polarization, Vertical – Vertical 

Classification 

FD Dense Forest 

FE Explored Dense Forest 

FS Secondary Forest 

SS Secondary Succession 

ROI Region of Interest 

J-M distance Jeffries-Matusita Distance 

Statistics 

RMSE Root Mean Square Error 

R2 Coefficient of Determination  

SD Standard Deviation 

AIC Alkaike Information Criterion 

BIC Bayesian Information Criterion 

 Linear Model Error 

 and n Linear Model Parameters 

 

 

Fig. (3). Schematic view of the P-band double bounce effect. Due 
to double reflection A and B, the real reflection point is C, at the 
base of the trunk, which represents terrain altitude  
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estimated forest biomass (used as ground truth) for eastern 
Amazon. To help interpretation, Table 1 shows acronyms 
and symbols appearing in the text. 

MATERIALS AND METHODOLOGY 

Study Area 

This study was conducted in an area of 1479.66 km2 in 
the Paragominas region, state of Pará, Brazil, between 2o 45' 
S and 3o 00' S, and 47o 15' W and 47o 30' W (Fig. 4). The 
climate in this region is equatorial humid with a drier season 
between June and November, and a rainy season between 
December and May. Annual temperatures average 26º C, 
relative humidity 81%, and annual precipitation is 
approximately 1800 mm [46]. The region's original 
vegetation is typically Amazonian lowland rainforest. Today, 
the Paragominas landscape consists in a mosaic of this 
original forest interspersed with patches of explored forests 
in variable degrees, agricultural land, and pastures. 

Airborne Radar Data Acquisition 

The radar OrbiSAR-1 (OrbiSat) was installed in a 
Rockwell Turbo Commander 690 B aircraft. By flying 
overlapping tracks above the study area, this system is 
capable of acquiring complex images from X- and P-bands, 
including phase difference values related to the terrain and 
surface. For this study, we used X-band single pass 
interferometry with three antennas installed in the aircraft, 
and a multipol single antenna for P-band that requires repeat 
pass to perform P-band interferometry. Flight parameters can 
be seen in Table 2.  

After the processing of interferometric radar raw data, an 
X-band mosaic, including X-band orthoimages and Digital 
Surface Model (DSM), and a P-band mosaic, including 
multipolarimetric P-band orthoimages and Digital Terrain 
Model (DTM) were generated. For each image pixel, the 
difference between the values of DTM and DSM represents 
the vegetation interferometric height (Hint) [40, 41].  

Supervised Landscape Classification with Airborne SAR 
Imagery 

[47] Provides a general guideline for landscape classi-
fication via remote sensing techniques used in this work. For 
the present study, a random sample of 630 points for ground 
truth was taken in the 1479.66 km2 of the study area in the 
Paragominas region. This sampling aimed at representing all 
land use/land cover types found in the entire study area. The 
field crew classified the vegetation around each sampled 
point, and indicated ROIs (Regions of Interest) where the 
surrounding area was large enough to represent the classified 
vegetation in the available radar images. The coordinates of 
these ROIs were recorded. Flights to collect radar data were 
performed between April 23rd and May 1st of 2005. Multi-
polarimetric P-band orthoimages, X-band orthoimages, 
coherence images, and digital terrain and surface models of 
the landscape (Digital Terrain Model from P-band, DTM and 
Digital Surface Model from X-band, DSM) for the entire 
study area were generated as described above. 

An initial classification considered each ROI as a class. 
A distance matrix using the Jeffries-Matusita (J-M) distance 
was constructed and used to condense ROI classes into 
classes with the same quantitative behavior. The J-M 
distance varies from 0 to 2, measures the degree of 
dissimilarity between classes [48, 49], and is widely used in 
the quantitative classification of the vegetation of 
heterogeneous landscapes using remote sensing tools (e.g., 
[50, 51]). The mean of the J-M distance within a class, and 
with respect to all other classes were taken as a reference to 

 

Fig. (4). Map of Brazil with the municipality of Paragominas 
within the Legal Amazon. 

Table 2. Flight Parameters for Radar Data Acquisition 

Flight Parameter Value 

Baseline for X-band interferometry equals to 
the distance between the two antennas 

2.77 m 

Baseline for P-band interferometry 40 m 

Flight altitude 12000 feet 

East-West flight track 7 km 

North-South flight track 2 km 

Flight overlap 66.00% 

Resolution of the DSM 1.0 m x 1.0 m 

DSM pixel size 0.5 m x 0.5 m 

Resolution of the ORI X-band 0.5 m x 0.5 m 

ORI X-band pixel size 0.5 m x 0.5 m 

Resolution of the DTM: 1.0 m x 1.0 w/o 
vegetation, 5.0 m x 5.0 m with vegetation 

1.0 m x 1.0 w/o 
vegetation, 5.0 m x 5.0 m 

with vegetation 

DTM pixel size 2.5 m x 2.5 m 

Resolution of the ORI P-band: 2.5 m x 2.5 m 2.5 m x 2.5 m 

ORI P-band pixel size 2.5 m x 2.5 m 
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decide whether or not ROIs should be eliminated from the 
analysis. Two ROIs were considered suspicious and subject 
to a more careful scrutiny when the J-M distance between 
them was consistently too high with respect to the mean of 
the class they were assigned to. Some ROIs were eliminated 
from the analysis if the Hint was clearly not consistent with 
the expectations. For example, one of the eliminated exposed 
soil ROIs showed a large Hint (expected to be zero), and its J-
M distance to other ROIs of that class was consistently 
higher than the mean distance between other pairs of 
exposed soil ROIs. Pairs of ROIs were considered to be 
unequivocally separable when J-M>1.4 (see [47]). After 
applying this algorithm, ROI classes were condensed into 
only eight land use/land cover classes. Non-forest classes 
included: exposed soil, abandoned (dirty or invaded by non-
grass species) pastures, clean pastures, water bodies or wet 
areas. Forests were classified into four broad classes: 1) 
Dense forest (FD), with the dominance of large individuals 
representing the original vegetation. 2) Explored Dense 
Forest (FE), a forest type resulting from a recent selective 
harvesting. Here, the label Explored Forest (FE) does not 
mean sustainable explored forest; a visual assessment of this 
vegetation class suggests that these FEs were rather heavily 
explored. 3) Secondary Forest (FS), resulting from the 
natural forest regeneration after clearing for shift-cultivation 
and/or pastures. And, 4) Secondary Succession (SS), a forest 
in early/intermediate successional stages resulting from the 
replacement of natural vegetation re-growth, and where 
grasses, ferns, and pioneer species are dominant.  

To quantify the classification accuracy, a confusion 
matrix using a subset of samples of these eight classes used 
for classification was constructed and the Kappa coefficient, 
which varies from 0-1 and measures the degree of 
coincidence when the same object (sample) is assessed in 
two different ways (classification algorithm and ground 
truth), was calculated.  

With these pre-defined classes, the classification training 
was performed with an image classification algorithm. The 
trained algorithm was used for a supervised land use/land 
cover classification of the entire landscape based on how the 
airborne InSAR imagery was associated with the field 
classified samples using the maximum likelihood classifier 
[52-54]. The maximum likelihood classification assumes that 
the statistics for each class are normally distributed and uses 
this property to calculate the probability that a given pixel 
belongs to a specific class. A pixel is assigned to the highest 
probability class (ENVI Tutorial: Classification). These 
analyses were performed with the software ENVI (ITT). 

Field Inventories 

An imaginary circle with a diameter of 24 km 
encompassing all four forest classes limited the area sampled 
to allocate forest inventories; i.e., approximately 452 km2. 
Forest inventories were conducted between November and 
December of 2008.  

Inventories were performed in a total of 8.6 ha divided 
into 42 plots randomly assigned and nested within these four 
different forest classes defined based on the classification 
described above: FD, 12 plots; FE, 12 plots; FS, 8 plots; and 
SS, 10 plots. The dendrometric parameters of FE and FD 
were obtained from the conglomerates with 4 rectangles of 

2500 m2 (20m x 125m) in each plot. Plots of this size 
arranged in conglomerates are known to capture the 
environmental variation satisfactorily [55]. FS plots were 
rectangles of 2000 m2 (20 x 100 m). SS plots were rectangles 
of 1000 m2 (20 x 50m). In contrast to FD and FE (using 
conglomerates), all FS and SS plots were randomly assigned 
within their respective forest class regions. Plot size was 
proportional to the degree of structural feature variation in 
the vegetation. For example, the number of new species 
stabilized after sampling five SS plots (data not shown). By 
designing smaller plots for more homogeneous vegetation, 
we were able to increase the number of plots of this forest 
class. Sample plots with these areas (and even smaller) have 
been used in field inventories to study forest attributes 
(including biomass) in the tropics [41, 56-59]. Importantly, 
note that we did not use these plots to infer the biomass of a 
given region. These plots were used here to establish a 
statistical relationship between radar variables and field-
estimated biomass.  

We measured DBH (tree diameter at 130 cm above forest 
floor) for each tree within these plots, but recorded only the 
diameter of trees with DBH >10 cm in FD, FE, and FS plots, 
and DBH > 5 cm in SS plots. A laser distance meter device 
(Bosch DLE-50) was employed to measure total tree height 
for every tree whose DBH was recorded. There were 
difficulties to visualize the laser beam on the top of some 
trees. Trees that could be measured unequivocally were used 
to help reducing uncertainties when measuring those more 
difficult trees [60].  

GPS coordinates were difficult to obtain in closed forests 
with the available technology at the time of data acquisition. 
A position within each plot was identified where coordinates 
were possible to be obtained with a GPS Garmin (Etrex). 
From these coordinates, the rectangle corners were 
determined geometrically. Plot corner coordinates were 
determined with ArcMap. A shape file was created. 

With a shape file containing the coordinates of each 
field-inventoried plot, we obtained the statistics (i.e., mean 
and SD) for each radar image (backscatter) and the Hint per 
plot. Each plot was characterized by the across-pixel average 
of Hint in meters, and of the P-band backscatter values for the 
polarizations – i.e., the orientation of the electric and 
magnetic fields of the microwave – pHH, pVV, and pHV, as 
well as the X-band backscatter value xHH, all of them 
expressed in decibels. 

Exploratory Data Analysis on Radar Variable 
Contribution to Landscape Classification  

Since forest classification used field-classified samples to 
train a maximum likelihood classification algorithm to 
classify the entire landscape based solely on radar data, 
which radar variables or combination of variables were 
employed by this algorithm to perform such classification 
are unknown a priori. To understand the role played by the 
different radar variables in the classification process, and 
their ability to detect differences in forest structure, we 
created boxplots for each radar variable per forest class – i.e., 
FD, FE, FS, or SS – including per plot mean interferometric 
height (Hint), pHH, pVV, pHV, and xHH. Note that, although 
plot area varied from class to class, the mean of all pixels in 
a plot covered with a particular forest class is a quantity 
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independent of its area. Differences in plot area will only 
affect the number of pixels employed to obtain the mean.  

Allometric Corrections for Estimation of Aboveground 
Forest Biomass 

Because the flight to obtain radar data took place three 
years before the forest inventory, the inventory data had to 
be corrected to account for forest growth along these three 
years. 

This correction was performed using an empirical 
approach described in [61], who developed equations to 
estimate secondary forest growth. Since FD is an older 
forest, it was assumed that FD growth was negligible along 
these three years, and corrections were only applied to the 
SS, FS, and FE classes. Whether or not correcting the 
explored forest biomass FE was subject to some 
uncertainties; the intensity of forest exploration, for example, 
is unknown. This information about forest exploration has a 
large impact on whether the remaining forest is closer to a 
dense forest (FD) or, alternatively, to a secondary forest 
(FS). Thus, a preliminary analysis was performed with and 
without correcting the explored forest (FE) biomass. After 
comparing the boxplot of interferometric height by forest 
class with the boxplot of Above Ground Biomass by forest 
class (see Results section), we decided that the explored 
forest should be treated as a secondary forest, and the 
statistical analysis was carried out with the FE data corrected 
for growth during the three years elapsed between flight and 
forest inventory.  

The correction for forest growth between flight and field 
inventories was applied as follows: 1) Using the equation (6) 
in [61], tree age was estimated using the tree height. 2) With 
equations (9, 12, 17 and 6) in [61], each tree height and DBH 
were re-estimated using the estimated age minus three years 
(the gap between flights and field survey). 3) Each tree was 
taxonomically identified and, using a public data base [62, 
63], its wood density  in g/cm3 was obtained. Including 
wood density can significantly improve the allometric 
estimation of the forest biomass [10, 11]. When the species 
was not listed in the data base, the average wood density of 
other species in the genus available in the data base was 
used. For the three species without any register at the genus 
level, the average wood density of all species (0.558) was 
used. 4) Tree above-ground biomass was estimated as in [11] 
using the formula for moist forest: 

Tree Above-Ground Biomass AGB (Ton) = EXP[-2.977 
+ ln (  * DBH

2 * 
H) ] [11]         (1) 

where  

H = tree height (m) 

DBH = diameter breast height (cm) 

and   = wood density (g/cm3) 

Tree biomass after correction that reached a value close 
to zero was considered negligible and the tree was discarded 
from the analysis. Biomass per plot was estimated by adding 
the biomass of all trees in the plot. Because plots had 
different areas (1000, 2000, and 2500 m2), a standardized 
biomass in Tons per hectare was calculated for each plot.  

Table 3. Total Number of Polygons, Area in km
2
 and % of 

the Classified Area Per Land Cover/Land Use Class 

Class Polygons Area (km
2
) % 

Exposed soil 9426 90.65 6.13 

Abandoned (dirty) Pasture 6109 249.17 16.84 

Clean Pasture 3532 35.51 2.4 

FE 20646 293.46 19.83 

SS 12763 478.47 32.34 

FD 17866 188.39 12.73 

FS 20776 139.93 9.46 

Water bodies – Wet areas 1323 4.08 0.28 

Total Classified Area 92441 1479.66 100 

Statistical Relationship Between Forest Above-Ground 

Biomass (AGB) and Radar Variables 

Assessing the Impact of Different Tree Strata on the 

Interferometric Height (Hint) 

Although Hint is highly correlated with canopy height, not 
all trees determine the canopy height. It has been 
demonstrated [41] that, while canopies of dense Amazon 
forest in the Tapajós region are predominately formed by the 
top 20% highest trees – the dominant height (hdom) –, forests 
at early successional stages have canopies formed by the 
shortest 20% trees - the submergent height (hsub). From this 
analysis, it has been concluded [41] that Hint is estimated 
based on a different subset of trees depending on the forest 
successional stage. To examine these patterns in forests of 
the Paragominas region, we have performed two linear 
regressions: 1) regression of Hint on the subset of trees 
representing the tree height upper 10% percentile, and 2) 
regression of Hint on the subset of trees representing the tree 
height lower 20% percentile. By finding which tree subset 
best predicts Hint – i.e., better matches Hint – one can obtain 
an indication of which tree stratum most contributes to Hint. 
If, for example, the mean tree height of a tree stratum (say 
the shortest 20% of all trees) in a given area is 10 m, but Hint 
is 20 m in the same area, there is a clear disconnection 
between this tree stratum and Hint. If another tree stratum 
(say the tallest 10% of all trees) in that same area shows a 
mean height closer to 20 m, one can conclude that this tree 
stratum contributes more than the shorter stratum to forming 
the forest canopy and, consequently to Hint.  

Forest Aboveground Biomass (AGB) 

Dimensional reasoning [64] suggests that above ground 
biomass (AGB) should scale as a power of Hint. For a single 
tree, this scaling is usually accomplished through the 
equation 

AGB = a (tree height)b  (2) 

(e.g., [65, 66]), which can be linearized for analytical 
purposes as log10AGB = log(a)+ b log10(tree height), and 
whose parameters a and b can be estimated statistically. 
Based on this concept, we used a similar scaling to relate Hint 

and AGB: log10AGB = log(a)+ b log10Hint. All subsequent 
statistical analyzes were conducted in this linear form. 
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Fitting statistical linear models was employed to 
determine which combination of radar attributes can best 
explain forest biomass. We initially tested a model with the 
log10AGB as the response variable and log10Hint, pHH, pVV, 
pHV, and xHH as independent variables. Stepwise model 
selection algorithms (function stepwise of R) were applied to 
select the optimal linear model [67] to estimate AGB using 
radar variables. The normality of residuals of all models was 
tested with the Shapiro-Wilk normality test (function 
shapiro.test in R). And, diagnostic plots were obtained for all 
models to verify whether model assumptions have been 
attended. A k-fold (k=10) cross-validation algorithm 
(function CVlm in R) was used to verify how robust was the 
selected model in testing data sets. The overall mean square 
of the k-fold analyses (in a log scale) was estimated. The 
RMSE of the model using the entire data set was estimated. 
All statistical analyzes were carried out with the software R 
[68]. 

Map of the Forest Aboveground Biomass 

An area of 197 km2 covered with forest in the 
Paragominas region was selected. The per-pixel biomass was 

calculated with the formula derived from the statistical 
model obtained with the statistical analyses. The geo-
referenced image was generated showing the biomass 
classification. The image was created with pixels 
representing a biomass in Ton/ha. The map includes the 
calculation of the biomass of a selected rectangle of 853 ha 
(with ENVI) by adding up the absolute biomass in Tons 
(corrected for the pixel area of 6.25 m2) estimated for each 
pixel within the area.  

RESULTS 

Radar Attributes in Forest Classification 

Table 3 shows the classified land use/land cover classes, 
the number of polygons, area and % of each class. The 
trained classification algorithm was able to confidently 
separate four forest classes: FD (Dense Forest), FE 
(Explored Dense Forest), FS (Secondary Forest) and SS 
(Secondary Succession) (Fig. 5). The Kappa coefficient 
associated with the confusion matrix (APPENDIX 1) 
constructed with these eight classes was 0.9026, close to one, 
indicating a good agreement between radar and field data.  

 

Fig. (5). Distribution of forest classes in the Paragominas landscape from classified images obtained with the Orbisar-1 sensor. 

 

Fig. (6). Boxplots of backscatter variables - xHH, pHH, pHV, and pVV - by forest class - FD, FE, FS, and SS. Backscatter unit is in decibells 
and is proportional to the area of obstacles encountered by P- and X-band microwaves. 
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When employed by the trained classification algorithm to 
classify the entire landscape, radar variables contributed 
differently to distinguishing plots representing these forest 
classes. The boxplots of pVV and pHV by forest class 
showed that these radar variables were not different across 
forest classes (Fig. 6). The variable xHH showed increasing 
values as forest classes move from FD to SS, and sets SS 
apart from FE and FD (Fig. 6). The variable pHH was not 
different when one compares FS, SS and FD, but clearly 
shows a smaller mean and seemingly a smaller variation in 
FE when compared to the other classes (Fig. 6). 

Fig. (7) displays three boxplots: (a) Hint by forest class, 
forest biomass by forest class with (b) and without (c) FE 
biomass correction for forest growth between flight and field 
inventories, as described in the Methods section – Allometric 
corrections for estimation of aboveground forest biomass. 
Correcting for forest biomass growth produced a large 
impact on the FE biomass. Without such correction, FE 
biomass is intermediate between FD and FS. With the 
correction, FE biomass is, on average, very close to the FS 
biomass. By comparing these boxplots, one can notice that 
the biomass boxplot with corrected FE (b) is very similar to 
the boxplot depicting Hint per forest class (a); Hint parallels 
forest biomass in this case. Several studies involving forest 

biomass estimation with InSAR showed that Hint is the most 
important variable in the forest biomass estimation [40, 41]. 
This and the visual evidence that FE has been rather heavily 
explored (data not shown) suggest that FE is more similar to 
FS than it is to FD, and that correcting FE biomass is 
adequate.  

Interferometric Height (Hint) Versus Tree Height Strata 

Because Hint reflects the height of the forest canopy, the 
tree stratum – whether the tallest or shortest trees (or both) – 
that best predicts Hint will show a mean height closer to Hint. 
Fig. (8) shows two regression lines. The regression line of 
Hint on tree height of the tallest 10% trees shows that tree 
height in this tree stratum matches much better Hint than the 
tree height of the shortest 20% trees (regression line 
represented by the broken line in Fig. 8). Thus, in general, 
the tallest 10% trees better predict Hint than the shortest 20% 
trees. Note that we tested a regression of Hint on the tallest 
20% trees (data not shown), but opted to perform the 
regression on the tallest 10% trees because this tree subset 
presented an even closer match with Hint values than the 
subset of tallest 20% trees. Nonetheless, this better 
prediction is not constant as we move from shorter 
(corresponding to SS plots) to taller (corresponding to FD 

 

Fig. (8). Scatterplot of Hint by the per-plot average of the tallest 
10% trees per plot with a fitted continuous line representing the 
regression of Hint on this tree subset. The broken line represents the 
regression of Hint on the per-plot average of the shortest 20% trees. 

 

Fig. (9). Scatterplot of the forest AGB per plot in Ton/ha estimated 
via forest inventories and the Hint in meters obtained via radar 
interferometry using X- and P-band.  

 

Fig. (7). Comparison between (a) boxplot of Hint , (b) log10AGB with FE biomass corrected to account for the growth during the three year gap 
between flight and inventory, and (c) log10AGB without such FE biomass correction by forest class. 

●

FD FE FS SS

5
10

15
20

Forest Class

H
in

t (
m

et
er

s)

(a)

FD FE FS SS

−
1

0
1

2

Forest Class

lo
g 

A
G

B
 (

To
n/

ha
)

(b)

FD FE FS SS

−
1

0
1

2

Forest Class

lo
g 

A
G

B
 (

To
n/

ha
)

(c)

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

5 10 15 20 25

5
10

15
20

Mean tree height (meters)

H
in

t (
m

et
er

s)

Tallest 10%

Shortest 20% ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●● ●
●● ●

● ●●

●

●

●

●
● ●

●● ● ● ●●●● ●●

5 10 15 20

0
10

0
20

0
30

0
40

0

Hint (meters)

A
G

B
(T

on
/h

a)



InSAR Assessment of Amazon Forest Biomass The Open Remote Sensing Journal, 2012, Volume 5    29 

plots) canopies. Because lines diverge from model intercepts 
(slopes = 5.88 and 8.97) – intercepts which are not 
significantly different from each other (intercept standard 
errors overlap) –, the contribution of both smaller and taller 
trees to predicting Hint (i.e., forming the forest canopy) are 
similar and equally important in early succession forests 
(SS), but the contribution of shorter tree strata to Hint 
decreases continuously as forests become taller and older 
(FD).  

Statistical Model Relating AGB and Radar Variables 

The statistical models relating AGB and radar variables 
were derived from field plots taken from several forest 
classes whose inventoried biomass range from 0.042 (SS) to 
385.077 (FD) Ton/ha after applying the appropriate 
corrections described above. A scatterplot of biomass in 
Ton/ha per Hint in meters was created (Fig. 9).  

The initial statistical model was fitted using the following 
equation based on the linearized allometric equation 
described for a single tree height (equation 2) plus radar 
backscatter variables: 

log10AGB(Ton/ha) = log( )+ 0 log10Hint + 1 pHH + 2 pVV 
+ 3 pHV + 4 xHH +  (3) 

In this linear model, log( ) is the model intercept. Had 
Hint been the only variable in the model, ( ) would represent 
the parameter (a), and 0 the parameter (b) of the allometric 
equation AGB = a Hint

b.  is the error. The initial statistical 
model including all radar attributes was highly significant 
(p<0.0001) with an adjusted R2= 0.80.  

The resulting model was considered optimal to estimate 
forest biomass using radar parameters. After applying the 
model selection algorithm (using both AIC and BIC), the 
resulting simplified model was still highly significant (p < 
0.0001) with an adjusted R2 = 0.81. Normality of residuals 

was confirmed for both models (p=0.76 and p=0.56 
respectively). Diagnostic plots were obtained to verify 
whether model assumptions have been attended 
(APPENDIX 2). In this new model, (Table 4) Hint, pVV and 
pHV are the only variables required to estimate forest 
biomass: 

log10AGB (Ton/ha) = -6.54 + 6.94 (log10 Hint ) + 0.03 pHV – 
0.03 pVV (4) 

Standard deviation of model parameters (+ 2.26),  
(+ 0.54) , (+ 0.02), (+ 0.01) respectively  

This model can be algebraically re-arranged as: 

log10AGB (Ton/ha) = -6.54 + 6.94 (log10Hint ) + 0.03 (pHV – 

pVV) (5) 

Table 4. Statistical Models with their Coefficients, Coefficient Standard Errors (SE), the p-Value Associated with these Estimates, 

Model Multiple and Adjusted R
2
, Model Residual Standard Error (RSE), and Model p-Value 

Model 1 – log10AGB =log ( ) + 0 log10Hint + 2 pVV + 3 pHV 

 Intercept (Log ( )) 0 2 3 

Coef. -6.54 6.94 -0.03 0.03 

SE (p-value) 2.26 (0.0063) 0.54 (<0.0001) 0.02 (0.0481) 0.01 (0.0057) 

 Multiple R2 = 0.83 Adjusted R2 = 0.81  AIC = 74.95 

 RSE: 0.551 on 38 degrees of freedom Model p-value<0.0001  

 

 
Model 2 – log10AGB =log ( ) + 0 log10Hint + 5 ( pHV - pVV) 

 Intercept (Log ( ) 0 5 

Coef. -6.68 6.94 -0.03 

SE (p-value) 0.60 (<0.0001) 0.53 (<0.0001) 0.01 (0.0033) 

 Multiple R2 = 0.83 Adjusted R2 = 0.82  AIC=72.95 

 RSE: 0.544 on 40 degrees of freedom Model p-value<0.0001  

 

 
Fig. (10). 3D scatterplot of the log10AGB as a function of log10Hint 

and the compounded variable (pHV-pVV) with a fitted plane 
representing the linear model described by the equation 6. 
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The reanalysis of this model using (pHV – pVV) as a 
compounded variable produces the following model  
(Table 4, Fig. 10): 

log10AGB (Ton/ha) = -6.68 + 6.94 (log10 Hint ) + 0.03 (pHV – 
pVV) (6) 

with standard deviation of model parameters (+ 0.60),  
(+ 0.53), and (+ 0.01) respectively. 

This new model is still highly significant (p < 0.0001) 
with an adjusted R2 = 0.82, and RMSE=0.544. The 
normalized RMSE with respect to the log10AGB maximum 
(2.5855) and minimum (-1.3743) data points is 13.7%. 

There is no need to force the intercept through zero 
because the intercept value is already very close to zero. 
Residuals were normal (Shapiro Wilks test p=0.70). 
Diagnostic plots to verify whether model assumptions have 
been attended can be seen in APPENDIX 3. The difference 
between pHV and pVV showed a minor but significant 
influence on forest biomass (R2 of models with and without 
(pHV – pVV) are respectively 0.82 and 0.78). This indicates 
that Hint explains most of the variation in forest biomass. 

The k-fold (k=10) cross-validation algorithm applied to 
the final model estimated an overall mean square of 0.335, 
with a root overall mean square=0.579. The similarity 
between this estimate and the model's RMSE estimate 
suggests that the cross-validation analysis estimates models 
very similar to the model containing the entire data set. Fig. 
(11) shows a plot of the 10-fold fit obtained from the cross-
validation analysis. The AIC values for models using pHV 
and pVV independently and (pHV – pVV) are respectively 
74.95 and 72.95. Comparing both models with the function 
anova of R did not result in a significant difference. 
Although the gain in fit when using the compounded 
variable (pHV – pVV) is small and non-significant, reducing 
the number of parameters in a model represents, in our view, 

an improvement for interpretation. Thus, this model with 
fewer parameters was chosen for discussion. The statistical 
model indicates that pHH has no statistical influence on the 
log10AGB. This result contrasts somewhat with Fig. (6), 
which shows that values of the parameter pHH are lower and 
less variable in the class FE than the other classes, indicating 
that variation in pHH is associated with variation in some 
forest features, such as forest exploration in this case.  

Map of the Forest Above-Ground Biomass 

Hint and (pHV – pVV) are the variables used to estimate 
the per-pixel biomass according to the linear model fitted to 
data. For the chosen area, the distribution of each variable 
was obtained with ENVI. These distributions showed some 
pixels that considerably exceeded expectations. For example, 
few pixel values for Hint were greater than 40 meters, which 
represents forest heights much greater than the average 
Amazon Forest [69]. Several factors (e.g., data gathering or 
processing errors, the presence of rare and very large trees, 
and other unknown factors) may have caused such 
unexpected large values. If some of these larger values are 
caused by errors, forest biomass can be potentially 
overestimated. Since, at this point, we can only speculate 
which are such causal factors, we have decided to use the 
following algorithm to avoid forest biomass overestimation: 
1) Using the per pixel biomass distribution, we have 
identified the values above which lies 5% of the distribution. 
5% is conventionally used as an acceptable cutoff value for 
type I error, i.e., the probability of rejecting a true 
hypothesis. By using this criterion, the upper 5% of the 
distribution corresponds to: Hint >20.5m and (pHV – pVV) > 
49. 2) Pixels greater than these cutoff values were taken to 
be equal to the corresponding cutoff values. As such, the 
greatest Hint was 20.5 m and (pHV – pVV) was 49. Recent 
studies [69] estimated average forest heights in most of the 
Amazon region, including the Paragominas region, shorter 
than the upper limit of 20.5m set here. The vegetation 
biomass map is shown in Fig. (12). The average vegetation 
biomass was 73 Ton/ha, ranging from pixels with zero 
biomass in non-forested areas, and pixels with biomass 
greater than 600 Ton/ha observed in regions of dense forest. 
The forest biomass of the selected area within the red 
rectangle (853 ha) was estimated in 115,595 Tons, with an 
average of 135 Ton/ha (Fig. 12).  

DISCUSSION 

Our results suggest two features that make this dual-band 
InSAR methodology adequate to estimate forest biomass and 
detect forest degradation: 1) the ability to detect forest 
exploration and degradation by combining estimates of the 
interferometric height Hint with the backscatter polarization 
pHH, and 2) the possibility of measuring forest biomass 
through a reliable relationship with the interferometric height 
Hint and the compounded variable (pHV – pVV). 

Backscatter - Forest Exploration and Degradation 

Several attempts have been made to take advantage of 
airborne radar information in forest monitoring [21, 31, 32, 
40, 41, 45, 70-72]. Forest structure – i.e., tree number, size 
and spatial distribution – has the potential to change how P-
band microwaves are scattered [42, 73]. In addition, different 
patterns of X-band reflection could be explained by how 

 

Fig. (11). Cross validation k-fold (k=10) fits of the linear model 
log10AGB =log  + b log10Hint + 5 (pHV - pVV). 
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forest canopies modify X-band backscatter. Thus, it is 
theoretically possible to classify an entire landscape based 
solely on how radar attributes interact with different land 
use/land cover classes. 

The classification algorithm seems to have been trained 
to classify the vegetation from FD to SS based on, among 
other factors, increasing values of the variable xHH, which 
measures the X-band backscatter (Fig. 6). From this, we can 
hypothesize that denser forests present either: 1) smoother 
canopies than early succession vegetation (SS), reflecting a 
greater proportion of X-bands away from the source 
airplane; 2) more absorbing canopies than early succession 
vegetation (SS), retaining an increasing proportion of 
arriving X-bands; or 3) canopies that are much more 
heterogeneous than early succession vegetation (SS), causing 
multiple X-band scattering at the canopy level and 
preventing reflected X-bands from returning to the source 
airplane. 

Forest exploration can be quite destructive due to the 
impact of falling trees in the vegetation as well as the effect 
of creating dragging tracks to remove these trees from the 
area [74, 75]. Even when sustainable management is 
employed, forest exploration can cause substantial damage 
[74, 75]. Thus, dense forest exploration likely reduces the 
size and density of trees from which P-band microwaves 
reflect, thereby reducing backscatter levels. Based on the 
information provided by the field crew, the classification 
algorithm interpreted lower pHH backscatter levels as an 
indication that a given area has been explored. These 
features likely result from a lower complexity in the forest 
structure found in FE plots caused by the above-described 

exploration process. Our results suggest that the radar 
variable pHH, despite presenting limitations to estimate 
tropical forest biomass (see below), may in fact be an 
excellent indicator of forest exploration and degradation [26, 
44, 45] that end up reducing large tree density in an area, 
resulting in a less effective double bounce process [42].  

Above Ground Biomass (AGB) Estimation 

Our results confirm that, among all InSAR radar 
variables, Hint was the most relevant radar-derived variable 
explaining forest biomass, usually accounting for more than 
80% of the variance in forest biomass [31, 40, 41], likely a 
consequence of the close relationship between Hint and tree 
height, which is a variable commonly used in allometric 
models to predict tree biomass [8-10, 74, 76]. Thus, a close 
relationship between forest interferometric height and forest 
biomass is not surprising.  

The slight, but significant, improvement in predicting 
forest biomass with the inclusion of backscatter variables in 
the statistical model merits some considerations. Although, 
radar backscatter correlates with forest biomass until it 
saturates [26, 31, 44, 45], forest biomass affects radar 
polarizations differently. Some studies report that in the P-
band case, pHV and pHH better correlates with forest 
biomass components – e.g., DBH, tree height, or basal area – 
than pVV [26, 33, 34, 77]. In a study using several L-band 
polarizations, the LHV polarization was shown to better 
estimate forest biomass in the Colombian Amazon than 
alternative L-band polarizations [58]. In addition, because 
different bands [29] and different polarizations of a band [34, 
73] interact differently with different forest strata – e.g., P-

 

Fig. (12). Map of the forest biomass of an area of 197 km2 in Paragominas. Darker areas correspond to a greater biomass. The estimated 
biomass for the sampled area (limited by the rectangle) is 115,595 Tons, with an average of 135 Ton/ha. A closer analysis of this map can be 
used to understand details of the deforestation process, such as the areas where forest disturbance predominately occurs. 
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bands penetrate the forest completely, X-band cannot 
penetrate the forest, and C- and L-bands penetrate the forest 
in different degrees, – compounded variables such as the 
ratios pHV/CHV and LHV/CHV [29], LHH/LVV and 
pHH/pVV and pHV/pHH ratios [78], the L phase difference 
HH–VV [79], and the combination of LHH and the ratio 
pHH/pVV [26] showed some slight improvement in forest 
biomass estimation over single radar variables. The model 
obtained here indicates that the forest biomass also depends 
on the compounded variable (pHV – pVV). Everything else 
equal, increasing pHV results in a greater AGB. And, 
everything else equal, decreasing pVV results in a greater 
AGB. Larger forests seemingly increase the rate of cross 
polarization (producing a greater pHV) possibly due to micro 
interactions with larger tree trunks and branches, while 
decrease (with respect to pHV) the vertical P-band 
backscatter.  

Our model contrasts somewhat with previous radar-based 
models where pHH showed a minor but significant 
importance in predicting forest biomass [40, 41]; here pHH 
does not contribute to predicting forest biomass. The reason 
for this behavior likely has multiple causes. Studies that 
obtained such significant influence of pHH on forest biomass 
either included cleared land plots, such as pastures [41], or 
eucalyptus plantations [40], which cause a substantial 
reduction in the P-band backscatter when compared to dense 
tropical forests. We neither used cleared land plots nor 
commercial forests and, thus, the differences between forest 
classes with respect to pHH were not large. The only 
exception was FE. FE and FS showed similar Hint, but FE 
presented a significant lower pHH than all other forest 
classes. In addition, Hint of SS was much smaller than that of 
FE, but the value of pHH in FE was still smaller than that of 
SS. This causes a disconnection between forest biomass, Hint, 

and pHH. Only if pHH and Hint were well correlated could 
one expect a larger contribution from pHH to forest biomass 
than observed here. 

With the clues obtained in this analysis in light of the 
results already available in the literature, we have reached a 
point where manipulative experiments are becoming 
increasingly necessary to quantitatively disentangle the 
effects of forest structure on backscatter parameters. For 
example, the canopy of some forest plots could be partially 
removed in different degrees, and then P-band polarizations 
could be compared among experimental plots. Nonetheless, 
our results confirm that a great deal of information about 
forest biomass and structure can be obtained by combining 
different radar attributes. 

The statistical model derived from this experiment 
contrasts quite a lot with the model described in [41]. This 
contrast mainly results from the model in [41] being a linear 
model with biomass in a non-transformed scale, while 
biomass in our model follows the general allometric equation 
AGB = a Hint

b . Part of this between-model contrast may also 
be the result of a smaller sample size (n=19) in [41] than 
used here (n=42), making it harder to detect non-linearities 
in the data. However, differences in forest physiognomies – 
the study in [41] was conducted in the Tapajós region - may 
have added to the differences in model fitting. By comparing 
both models, strong differences in biomass estimates of early 

successional forests can be observed: [41] estimates a much 
greater biomass in younger/smaller forests than estimated by 
our model, even if (pHV – pVV) < 0 (in our model) and 
considering pHH=0 (in [41]'s model) (Table 5). The DTM 
and DSM vertical imprecision of the present data set can be 
up to + 1.5m (1 σ). Thus, estimating the vegetation biomass 
becomes relatively more imprecise in shorter vegetation. 
This may constitute an additional contribution to reduce the 
biomass estimates of early successional/short vegetation in 
our model. However, because forest biomass estimation is 
also modulated by both pHH in [41] and (pHV – pVV) here, 
model comparison (Table 5) must be interpreted with 
caution. 

The total forest biomass of an area is the sum of each 
individual plant size/biomass found in this area. However, 
tree sizes become increasingly heterogeneous as forests 
grow; fewer larger trees contribute disproportionately to the 
total biomass, just like they contribute disproportionately to 
Hint estimation. This is consistent with current expectations 
of plant populations and communities predicting the 
development of plant size hierarchies as plant competition 
for light increases [80], which is the case in mature forests 
when compared to earlier succession forests. The allometric 
model underlying our analysis is based on the equation 
AGB= a Hint 

b, which was borrowed from a single-tree 
biomass equation. As a result, the model implicitly assumes 
that, as forests grow, a homogeneous tree stand forms the 
forest canopy and determines Hint, which is not the case, as 
our data clearly demonstrates (Fig. 8). This can potentially 
overestimate the biomass of forests taller than the forests 
assessed in this study, where size hierarchies might be even 
more pronounced – i.e., the forest canopy being formed by 
fewer larger trees. The analysis of data that include forests 
taller than those found in Paragominas is necessary to obtain 
more general statistical models suitable to confidently 
estimate the biomass in a broader range of forest 
physiognomies. 

A potential caveat of our AGB analysis relates to the al-
lometric corrections applied to account for the forest growth 
between flight and forest inventories. Unfortunately, tempo-
ral gaps in datasets, such as the one in this study are common 
(e.g., [41]). Secondary forests and secondary succession ve-
getation grow quite rapidly in the tropics. Forests grow non-
linearly and growth tends to behave asymptotically after 40-
50 years of age, and so, relative growth rates of early succes-
sion forests are much higher than those observed in mature 
forests. [61]. Therefore, not accounting for growth along the 
three years elapsed between flight and forest inventories 
would result in an overestimation of plot biomass in FE, FS 
and SS with respect to FD, producing systematic errors in 
the statistical model. The main question is whether the grow-
th model used for such adjustment/correction in size and 
biomass is adequate. To date, the model described in [61] is 
the most comprehensive growth model for secondary forest 
growth in the Amazon region, for it addresses all forest pa-
rameters, commonly incorporated in quantitative descripti-
ons of forest growth [61]. Having in mind that flight and 
field data taken within a short timeframe would be ideal for 
analysis, applying such corrections is a valid strategy to re-
duce potential biases in the available dataset.  

Conservative approaches are recommended to estimate 
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the forest biomass for REDD projects (http://www.v-c-
s.org/methodology_rmm.html). The chosen algorithm for 
limiting the upper value of variables to the 5% cutoff 
constitutes a conservative approach in that it avoids biomass 
overestimation when outliers result from data problems 
instead of true large trees, something we cannot differentiate 
at this point. This is particularly relevant when working in a 
log scale, where one unit in a log scale roughly corresponds 
to one order of magnitude in biomass. 

CONCLUSION 

Several remote sensing technologies are being developed 
to provide accurate estimates of forest biomass to guarantee 
that REDD can effectively reduce carbon emissions from 
deforestation and forest degradation. X/P-band InSAR 
combines the potential for wall-to-wall data acquisition in 
very large areas and estimation of forest biomass in 
conditions - such as with the presence of cloud cover, and 
dense vegetation – that other remote sensing technologies 
face difficulties to deliver. We confirmed the results of 
previous studies [31, 40, 41] demonstrating that, when Hint is 
available, forest biomass estimation is improved 
substantially. This can overcome the known limitation of 
using P-band backscatter alone for biomass estimation, i.e., 
signal saturation above a certain biomass threshold. We also 
showed that the P-band backscatter alone can be used to 
obtain important information about changes in forest 
structure, such as those resulting from forest exploration. 
This can become quite desirable for REDD projects 
themselves as well as for countries and states or provinces 
establishing country-wide monitoring systems as part of their 
readiness [81] activities to receive REDD projects. To date, 
only few studies using X- and P-band InSAR have been 
conducted in the Amazonian rainforest. It has been shown 
that forests across the globe can possess different allometric 
relationships [56, 82], which might prevent the application of 
a single functional relationship between radar attributes and 
forest biomass across the entire Amazon region. We, thus, 
propose that the development of a more general protocol by 
which forest biomass can be estimated for contrasting forest 
physiognomies and ecosystems of the Amazon and other 

tropical regions of the world using airborne InSAR data is a 
research priority. 
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APPENDIX 1 

Confusion Matrix – Ground Truth x Radar Classified 

 

Table 5. Comparison between the forest biomass estimated with the equation developed here, and the linear equation obtained in 

[41] as a function of Hint in meters. Simulations include estimates with (pHV – pVV)=0, (pHV – pVV)=10, and (pHV – 

pVV)=-10. Note that, for this comparison, the backscatter parameter in [41] equation was taken to be zero. Since this is a 

positive parameter, and that it adds to the Hint term in the biomass estimate, the biomass estimate with zero backscatter is 

an underestimate. Nonetheless, the table clearly shows the differences in model behavior.  

Hint (m) Biomass (Ton/ha)  

Model with  

(pHV – pVV)=0 

Biomass (Ton/ha)  

Model with  

(pHV – pVV)=10 

Biomass (Ton/ha)  

Model with  

(pHV – pVV)=-10 

Biomass (Ton/ha)  

[41] model with zero backscatter 

1 ~0 ~0 ~0 58.83 

5 0.02 0.04 0.01 114.27 

10 0.39 4.9 1.23 183.57 

15 40.77 81.34 20.43 252.87 

20 299.32 597.23 150.02 322.17 

21 419.74 837.49 210.36 336.03 

22 579.41 1156 290.39 349.89 
 

   
Overall Accuracy = (36561/39855)  91.7350%   
Kappa Coefficient = 0.9026   
   
                  Ground Truth (Pixels)   
    Class          Exposed soil  Abandoned Past.  FE      Clean Past.       SS   
  Unclassified           0            0            0            0            0   
  Exposed soil        2902            0            0            0            0   
 Abandoned Past.      1109         3769            0           39            0   
     FE          0            0         2676            0            0   
    Clean Past.         73           25            0         3165            0   
        SS        200            0            0            0         8470   
       FD          0            0            0            0            0   
             FS          0            0            0            0            0   
      Water-Wet          0            0            0            0            0   
          Total       4284         3794         2676         3204         8470   
   
   
                  Ground Truth (Pixels)   
         Class          FD           FS     Water-Wet        Total   
  Unclassified           0            0            0            0   
  Exposed soil           0            0            0         2902   
Abandoned Past.          0            0            0         4917   
   FE         885          758            0         4319   
    Clean Past.          0            0            0         3263   
       SS           0           12            0         8682   
      FD        8435            4            0         8439   
       FS         189         4833            0         5022   
     Water-Wet           0            0         2311         2311   
        Total         9509         5607         2311        39855   
   
   
                 Ground Truth (Percent)   
    Class         Exposed soil  Abandoned Past.   FE      Clean Past.      SS   
 
  Unclassified        0.00         0.00         0.00         0.00         0.00   
  Exposed soil       67.74         0.00         0.00         0.00         0.00   
Abandoned Past.      25.89        99.34         0.00         1.22         0.00   
    FE        0.00         0.00       100.00         0.00         0.00   
    Clean Past.       1.70         0.66         0.00        98.78         0.00   
       SS        4.67         0.00         0.00         0.00       100.00   
      FD        0.00         0.00         0.00         0.00         0.00   
       FS        0.00         0.00         0.00         0.00         0.00   
     Water-Wet        0.00         0.00         0.00         0.00         0.00   
        Total       100.00       100.00       100.00       100.00       100.00   
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Appendix 1. Contd…. 

 
Most classification inacuracies are concentrated in mis-

classifying exposed soil as pastures. Such inacuracies are not 
relevant for this work, as we did not use these classes in our 
analyses.  

APPENDIX 2 

Diagnostic plots of Model 1 –  

log10AGB =log ( ) + 0 log10Hint + 2  pVV + 3 pHV 

 

APPENDIX 3 

Diagnostic plots of Model 2 

LOG10AGB =LOG ( ) + 0 LOG10HINT + 5 ( PHV -  PVV) 
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