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Abstract: Human type 1 diabetes mellitus occurs due to chronic inflammation with lymphocytic infiltration and (usually) 

the presence of antibodies against insulin and characteristic islet cell proteins (e.g., GAD). This autoimmune process 

destroys the islets of Langerhans (including the beta cells) leading to insulin insufficiency. In several studies to date 

diabetes in the non-obese diabetic (NOD) mouse model of human type 1 diabetes has either been prevented or reversed by 

allogeneic transplantation of stem cells derived from mouse bone marrow or spleen. Immunosuppressive regimens have 

been ablative in some studies, but non-ablative regimes have been used in others. With non-ablative regimens, recipient 

mice develop chimeric immune systems. In addition, two recent clinical trials using stem cells have shown similar benefit 

for human patients with type 1 diabetes.  

We investigated whether stem cells isolated from genetically identical, but non-diabetic neonatal mouse pups (i.e., the 

mouse equivalent of human cord blood stem cells) would reverse diabetes when transfused into NOD mouse recipients 

which have already developed hyperglycemia. It was observed that cord blood stem cell infusion after diabetic conversion 

resulted in reversal of hyperglycemia whether given with or without the immune ablative drug, cytoxan. However, 

cytoxan alone had no beneficial effect. Stem cell-treated mice also lived longer than untreated mice. In these studies it was 

not possible to demonstrate islet cell regeneration resulting from the infused stem cells. These experiments provide 

evidence that cord blood stem cells may be suitable for improving or eliminating the autoimmune process in human type 1 

diabetes patients, and thereby modulating their disease. However, additional studies are needed to clarify the mechanisms 

behind these observations. 
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INTRODUCTION 

 Type 1 Diabetes (T1D) is expected to affect 1 in every 
300 births in the United States. Approximately 5-10% of all 
diabetics will display the type 1 diabetic phenotype (i.e., 
immune mediated). That is, approximately 2-million 
individuals in the United States currently have type 1 
diabetes. Estimated annual costs related to of both types of 
diabetes mellitus (DM) and their complications in the U.S. is 
132 billion dollars (www.diabetes.org and www.jdrf.org ). 
Thus, the economic impact of type 1 DM can be estimated at 
16 billion dollars annually in the U.S. Type I diabetes results 
from destruction by the immune system of the beta cells in 
the pancreatic islets responsible for insulin production. The 
end result is uncontrolled blood glucose levels. Diabetic 
complications include renal failure, retinal hemorrhage and 
blindness, cataracts, cardiomyopathy, coronary artery 
disease, peripheral vascular disease and peripheral 
neuropathies.  

 The ideal treatment for type 1 DM would be the 
permanent restoration of functional islet cells, which secrete 
insulin in response to glucose (glucoregulate), in sufficient 
numbers to keep blood sugar within the physiologic range  
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(euglycemia). One strategy for T1D, which has shown 
promise, is immunosuppression targeted against the 
population(s) of T-cells that mediate islet cell destruction. 
Immunosuppressive drugs, such as cyclosporin have 
successfully prolonged the “honeymoon” phase of new-onset 
type 1 DM, during which no, or only low, doses of insulin 
may be required, but have been considered too toxic for 
general application [1]. Recently short-term treatment of 
new-onset type 1 DM patients ages 12-39 with an anti-
lymphocyte antibody targeted against specific T-cell surface 
receptors (CD3) has been reported to preserve C-peptide 
secretion and reduce insulin requirements for up to 18 
months [2]. However, long term immune compromise makes 
this approach potentially dangerous.  

 In an effort to treat type I diabetes, surgical procedures 
have been developed to transplant islets across 
histocompatability barriers with limited success due to 
immune rejection and the lack of cadaver donors. Even 
efficient usage of the US donor pool would provide, at most, 
a few thousand donor pancreata per year. However, annual 
incidence of type 1 DM is approximately 30,000. Thus, there 
is not enough donor material even to treat all the new 
patients, let alone the “backlog” of approximately 1.6 million 
established patients. Moreover, success of transplantation 
depends on a good match of donor and recipient HLA tissue 
compatibility antigens, which is difficult to achieve when 
prospective donors are genetically unrelated to recipients (as 
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cadaver donors nearly always are). Investigators have tried to 
address the issue of T1D through the use of stem cells and 
regenerative medicine [3]. Currently, autologous CB 
mononuclear (stem) cells are being evaluated in a clinical 
trial to treat type 1 diabetes in children [4]. To date, 23 
children have been treated, and the first child treated under 
the study protocol showed significant improvement in 
glucose control and was able to produce insulin much longer 
than children with a similar prognosis [5]. The protocol for 
the clinical trial was established in studies which showed 
that in animals with T1D, those treated with xenogeneic 
(human) CB stem cells had lower blood glucose levels, 
reduced insulitis, and increased lifespan compared to control 
diabetic animals [6-8]. Similar stem cell trials are being 
proposed at other centers as well [4]. Although the 
mechanism(s) of action behind CB stem cell therapy for T1D 
are not known, it is postulated that once in vivo the infused 
CB stem cells differentiate into new islet cells and mediate 
an immune tolerance to the new derived islet cells [5]. In 
fact, recent results have indicated that in vitro CB stem cells 
can indeed be driven to become insulin secreting islet cells 
as indicated by the production of C-peptide, an offshoot of 
the de novo secretion of insulin [9, 10]. In both instances, the 
islet cell differentiation was attributed to the presence of the 
ES-like stem cells found in cord blood. 

 Thus, the main obstacles to restoring and maintaining 
functional islet mass are the ongoing autoimmune reaction 

which destroys islets, probably due to the action of 
infiltrating T-lymphocytes and; the probability that, in long-
standing type 1 DM, the pancreatic stem/progenitor cell 
population has been depleted by a process of attrition. 
However, treatment of T1D patients shortly after 
diabetogenic conversion might be able to reverse the 
pathogenic process and preserve sufficient numbers of islet 
cells to mediate long term benefits. In the current study we 
utilized the non-obese, diabetic (NOD) mouse, a model of 
type 1 DM [11], to analyze the effects of cord blood stem 
cell infusion on T1D. The congenic but non-diabetic 
C57Bl/6 mouse strain was utilized as a normal control and as 
the cord blood stem cell donor. It was observed that cord 
blood stem cell infusion after diabetic conversion resulted in 
reversal of hyperglycemia whether given with or without the 
immune ablative drug, cytoxan. However, cytoxan alone had 
no long-term beneficial effect.  

MATERIALS AND METHODS 

Mice and Diabetes Screening 

 Pregnant C57BL/6xBalb.C (B6: H-2
bxd

) mice and 
congenic NOD (8-10 weeks old, females, H-2

g7
) mice were 

purchased from the Jackson Laboratory (Bar Harbor, ME). 
Mice were selected to be mismatched at CD45 for stem cell 
tracking and immune chimerism (CD45.1 vs. CD45.2 
alleles). NOD mice were monitored for hyperglycemia daily 

 

Fig. (1). Representative outcomes for diabetic therapies. 

Mice were treated as shown with combinations of cytoxan (CTX) or cord blood stem cells (CB) after onset of diabetes. Blood glucose was 

monitored weekly, except for the no treatment groups which was monitored daily. 
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by a urine “dip-stick” screening (Diastix, Bayer) and by 
weekly sampling of blood glucose by sub-mandibular 
venipuncture (Basic One Touch glucometer from LifeScan). 
The mice were monitored for up to 6 months for changes in 
blood or urine glucose levels. During this time 
approximately 60% of the mice converted to become 
hyperglycemic (i.e., diabetic), as measured by urine glucose 
level over 200 mg/dL for three consecutive days and 
confirmed by blood glucose over 200 mg/dL. After diabetic 
onset the mice were treated with daily insulin injections (1 
unit, s.c.) until therapy (Humalin, Eli Lilly).  

 The animal protocols used in these studies were approved 
by the IACUC committee of the University of Arizona. 
IACUC approval implies that in order for the project to be 
approved that the proposed research is based on sound 
scientific principles, that the minimum number of animals to 
complete the project has been requested, that the animal 
model proposed is appropriate for the work, that use of 
animals in the work is justified and necessary, that 
manipulations of the animals (e.g., anesthetics) is 
appropriate, that the research is not duplicative and 
unnecessary, and that the personnel involved on the project 
are trained and certified to perform such work. The 
University of Arizona is approved by AAALAC for research 
employing the use of animals.  

Stem Cells 

 Timed pregnant mice were sacrificed at d20 of gestation 
(1 day before parturition), pups were removed, and fetal 
blood obtained by exsanguination (heparinized), cells 
counted, immunophenotyped (CD3, CD34, Thy1, Sca1), and 
separated into mononuclear cells (MNC) by centrifugation 
over Lmypholyte-M (Cedarlane Labs, Burlington, NC). The 
MNC were utilized as the murine version of cord blood stem 
cells [12].  

Diabetes Treatment and Analyses 

 Four weeks after onset of hyperglycemia, mice were 
treated with a non-ablative immunosuppressive regimen. 
That is, 2 days prior to stem cell infusion, half of the mice 
received 200 mg/kg Cytoxan i.p. (CTX). Conditioned 
diabetic NOD mice received either 1.0x10

7
 neonatal 

mononuclear cells or the cell suspension medium as a 
control intravenously via a tail vein. Blood glucose and body 
weight were monitored weekly and mice from each group 
were sacrificed periodically after transplantation for analysis. 
Insulin was withheld for 36 hr before sacrifice. For each 
mouse blood glucose was measured and blood cells were 
subjected to FACS analysis to estimate degree of 
lymphocyte chimerism. Pancreata were analyzed by 
quantitative histologic and immuohistochemical analysis for 
islet inflammation, glomerular hypertrophy, tubular 
dilatation and numbers of insulin containing cells by the 
small animal pathology laboratory of the University of 
Arizona. The treatment groups were: (1) no cells, no CTX; 
(2) no cells, CTX alone; (3) stem cells, no CTX; or (4) stem 
cells and CTX.  

Data Analysis 

 Statistical methods used to validate the significance of 
the numeric data collected in each set of experiments 

included the Student’s t test and the unpaired Student’s t test 
(performed by Microsoft

®
 Excel), while the animal survival 

data was validated for significance using a Wilcoxon test. 
Significance was set at p<0.05.  

RESULTS 

Stem Cell Infusion Results in Reversal of Diabetic 

Hyperglycemia 

 Diabetic mice were treated as described in Materials and 
Methods with combinations of cord blood stem cells and 
cytoxan. As shown in Fig. (1), treatment with cytoxan alone 
resulted in temporary reductions in blood glucose but no 
long term remissions of hyperglycemia. However, mice 
treated with a combination of CTX and cord blood stem cells 
became euglycemic within 4-6 weeks of therapy. 
Interestingly, mice infused with cord blood stem cells alone 
also rapidly displayed normal blood glucose levels after 
therapy. No untreated NOD mice survived long enough for 
complete analysis.  

 All diabetic NOD mice were monitored before and after 
therapy for blood glucose levels. As shown in Table 1, 
untreated NOD mice rapidly became hyperglycemic and died 
within 2 weeks. Only one mouse of 10 survived long enough 
to obtain multiple glucose measures. No spontaneous cures 
were observed. Mice treated with cytoxan alone to ablate the 
peripheral immune system displayed elevated blood glucose 
levels that persisted in the hyperglycemic range. One mouse 
(of five) however, did display some long term benefit 
(decrease in blood glucose levels from 590 mg/dL to 350 
mg/dL) from the therapy. The overall blood glucose levels 
for the group averaged 690 mg/dL. However, all mice treated 
with a combination of cytoxan plus an infusion of cord blood 
stem cells after diabetic conversion either remained constant 
in their glucose levels or exhibited reduced blood glucose 
measurements. Seven of 15 animals significantly benefited 
from the therapy in terms of reduced blood glucose levels of 
50% or more. One of 15 mice (#2) appeared to be “cured” of 
diabetes, although overall blood glucose levels for the group 
averaged 598 mg/dL. This treatment group was the largest in 
number of animals in that it was the treatment group 
expected to show the most benefit based on published 
literature (see below). Interestingly, mice treated solely with 
cord blood stem cell infusions seemed to benefit similarly, 
with all mice showing reduced blood glucose levels and all 
mice appearing to benefit from the therapy. The overall 
blood glucose levels for this group averaged 290 mg/dL 
although no single mouse appeared to be cured of diabetes 
(as evidenced by blood glucose levels of 100 mg/dl or 
below). It should be noted that almost one-third of the 
animals in this group displayed no overall change in blood 
glucose levels (from their highest levels before treatment to 
their final measures before sacrifice), although day to day 
and even week to week variations were seen. The reason(s) 
for this observations is unknown. 

Mechanisms of Stem Cell Therapy 

 Efforts were made to ascertain possible mechanisms of 
the beneficial effects of the stem cell therapies. Mice were 
sacrificed at various time points and harvested for blood, 
spleen, thymus, bone marrow and pancreas. Tissues were 
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measured for donor cell engraftment and restored insulin 
producing capacity by flow cytometry and immunohisto-
chemistry. At various time points mice in each group were 
sacrificed and analyzed for indications of islet regeneration 
and stem cell engraftment (Table 2). It was not possible to 
determine if any chimerism had occurred based on CD45 
allele expression and no significant islet regeneration from 
donor stem cells could be determined. Islets were maintained 
in the stem cell treated groups but it was not possible to 
measure increased C-peptide production due to assay 
sensitivity. Anti-insulin IHC staining of pancreas tissue was 
performed for several mice in each group. No significant 

differences were detected in the treated groups. Although it 
did not appear that many, if any, of the treated mice were 
cured of their diabetes (i.e., blood glucose levels below 300 
mg/dL) the type of treatment received did impact overall 
survival (see Fig. (2)). That is, stem cell treated mice (CTX 
plus stem cells or stem cells alone) survived significantly 
longer (median survival of 50 and 80 days, respectively) than 
untreated animals (27 days). As animals treated with cytoxan 
alone had not shown benefit in earlier experiments (see Fig. 
(1) and (Table 1)), this group was not examined in the 
survival experiment presented in Fig. (2). 

 

Table 1. Summary of the Effects of Therapy on Diabetes 

 

Therapy Mouse (N) Low Blood Glucose High Final Avg Number that Benefited 

None 1 150 500 500 500 0/1 

1 100 600 600   

2 80 580 500   

3 50 1000 1000 690 1/5 

4 50 2000 1000   

Cytoxan 

5* 50 590 350   

1* 100 520 220   

2* 100 600 80   

3 100 600 450   

4 100 340 350   

5* 220 500 220   

6 420 550 600   

7 50 2000 1000   

8* 50 2000 500 598 7/15 

9 50 2000 2000   

10 50 1000 1000   

11 50 500 500   

12 200 1000 1000   

13* 380 600 380   

14* 360 600 400   

CB + Ctx 

15* 280 520 270   

1* 100 600 380   

2* 50 1000 210 290 4/4 

3* 80 400 190   

CB 

4* 250 600 380   

NOD mice were allowed to develop diabetes and then treated as described in Materials and Methods. Urine glucose readings were used to follow mice until a level of 300 mg/dL was 
attained, after which blood glucose levels were measured. Mice were followed until the time of death or sacrifice. Data is shown as the lowest blood glucose reading prior to diabetic 

conversion and therapy, the highest blood glucose reading after diabetic conversion, and the final blood glucose reading after conversion and therapy (where appropriate). (*) 
indicates mice achieving a statistically significant therapeutic benefit from their therapy (i.e., significantly lowered blood glucose levels). All surviving mice were sacrificed at the 

same time point (d60). 
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DISCUSSION 

 Diabetes mellitus is defined as an insufficiency of insulin 
action, leading to an inability to metabolize glucose, and 
hence hyperglycemia (high blood sugar) and the 
complications thereof. Type 1 DM, which usually appears in 
childhood or adolescence, is caused by autoimmune 
destruction of islet cells. It is characterized by infiltration of 
the islets with lymphocytes and most patients have serum 
autoantibodies against insulin and other islet cell proteins 
[13]. Blood levels of insulin and C-peptide are extremely 
low or undetectable in untreated type 1 DM, although a few 
patients with established Type 1 DM maintain residual islet 
cell function [14]. Type 1 DM can only be treated 
successfully with exogenous insulin. Blood glucose levels in 
insulin-dependent diabetics tend to be labile and 
unpredictable, despite best efforts at control, and patients 
with frequent hypoglycemic reactions and hyperglycemia, in 
the short term may experience life-threatening ketoacidosis 
and in the long term experience renal failure, blindness, 
painful neuropathy, and premature death. DM is also 
associated with accelerated atherosclerosis and both 
coronary disease and peripheral circulatory insufficiency 
leading to amputations. Experimental evidence suggests that 
“tight control” of blood glucose, as indicated by low 
circulating levels (<7.0 mg/dl) of hemoglobin A1c 
(glycohemoglobin) can reduce the incidence of both 
microvascular [15, 16] and macrovascular [17] complica-
tions. 

 Successful treatment of type 1 DM has been achieved by 
transplantation of whole pancreas [18] and more recently by 
transplanting isolated islets from human cadaver donors. 
However, transplantation is limited by the availability of 
suitable donors [19-21]. This lack of available islets for 
transplantation has led investigators to experiment with in 
vitro production of glucoregulating, insulin-secreting cells 
[22-29], with limited success. Stem cell therapy provides a 
potential solution to the afore-described problems. That is, 
appropriate stem cell infusions might provide a source of 
pancreatic islet beta cell replacement via regenerative 
medicine. For example, although bone marrow stem cells are 
recruited to sites of pancreatic beta cell injury [30] evidence 
is mixed as to whether the cells differentiate into functional 
islets [31-35].  

 In the last few years, blood drained from the placenta 
after delivery of an infant has been found to be a rich source 

of pluripotent stem cells [36-39] that could be used for 
regenerative medicine. In one study [40] multiple markers 
for islet cell differentiation were expressed in cultured 
human cord blood mononuclear cells. In another experiment, 
intravenous human umbilical cord blood administration to 
prediabetic nonobese diabetic (NOD) mice significantly 
reduced blood glucose levels and insulitis and increased 
lifespan, compared with untreated mice. Prolonged lifespan 
appeared to be related to better control of blood glucose 
levels [41]. In this same model cord blood transfusion also 
normalized renal glomerular hypertrophy and tubular 
dilatation [42]. These results resemble the reported “cures” 
of diabetes in NOD mice achieved with mouse bone marrow 
cells and splenic lymphocytes. Finally, in another study, 2 
months after T cell-depleted mononuclear cells from human 
cord blood were given intravenously to NOD, 
immunodeficient, beta2-microglobulin null mice, pancreata 
were positive for human insulin by immunofluorescence 
staining and PCR analysis. In situ hybridization analysis 
indicated that human insulin-producing cells were present at 
a frequency of 0.65 %, with about half the insulin-positive 
cells showing evidence of fusion [43]. The authors 
concluded that human cord blood progenitor cells can 
generate insulin-producing cells in recipient pancreas in vivo 
by fusion-dependent and fusion-independent mechanisms. 

 Three recent reports demonstrate “cure” of diabetes in 
the NOD mouse model of autoimmune diabetes using stem 
cell transplantation. The first study employed a combination 
of whole body irradiation and bone marrow cells [44]; in the 
second study [45] mice received donor splenocytes partially 
matched for major histocompatibility complex (MHC) class 
I antigens and Freund’s adjuvant without immuno-
suppression. In both studies, mice became euglycemic 
without exogenous insulin, and evidence of endogenous 
insulin secretion was found. In the most recent such report 
[46] in spontaneously diabetic NOD mice, nonmyeloablative 
conditioning followed by bone marrow stem cell 
transplantation achieved mixed hematopoietic chimerism 
across MHC barriers. This regimen preserved both 
alloreactive and autoreactive diabetogenic host NOD T-cells, 
but, when mixed chimerism was established, diabetic NOD 
mice accepted donor-type allogeneic islet grafts and were 
cured of diabetes, demonstrating reversal of autoimmunity, 
despite continued presence of significant numbers of 
recipient T-cells. However, the mechanism(s) behind these 

Table 2.  Other Data 

Islets 

No consistent or significant islet regeneration was observed in any group although analyses were performed late in the time course. 

C-peptide 

ELISA measurements of mouse C-peptide did not detect differences between groups, but sensitivity of the assay was low. 

Chimerism 

No significant chimerism was detected by FACS at the time of autopsy/death. 

Survival 

The untreated group died quickest; while the stem cell treated groups lived longest 
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observations have been difficult to ascertain and the findings 
difficult to reproduce. 

 Interestingly, a recent clinical trial using bone marrow-
derived stem cells has produced similar findings in newly 
diagnosed juvenile diabetic patients [47]. A total of 15 
patients received cytoxan-mobilized stem cells intravenously 
with cytoxan pre-conditioning. Significantly, 14 of the 
patients became insulin-free after treatment for periods of 
time ranging from 1 to 35 months. Further, it appeared that 
insulin production was either maintained or increased as 
measured by C-peptide production indicative of maintained 
or regained islet function. Thus, high dose 
immunosuppression in combination with autologous stem 
cell infusions appeared to be beneficial in most of the 
subjects in terms of either prolonging islet function or 
regenerating islet mass. A caveat is the potential toxicity that 
can be associated with the high dose immunosuppression 
(200 mg/kg cyclophosphamide and ATG), albeit not 
myeloablative. Our study produced similar findings in the 
diabetic NOD mice. 

 Also consistent with this hypothesis are the initial results 
obtained in a clinical trial utilizing autologous cord blood 
stem cells to treat newly diagnosed type I diabetics. In 
contrast to the above trial, no immunosuppression was used 
[5]. A total of 15 patients have been studied and a total of 23 
patients are scheduled to be treated. It appeared that simple 
cord blood stem cell infusion (similar to our own 
observations in the study) was sufficient to prolong islet 
function in the patients, possibly via the generation of 
immune regulatory cells and/or regeneration of islet mass.  

 Our study was designed to simulate the above clinical 
trials with the hope of elucidating the mechanisms of any 
beneficial effects. We found that treatment of diabetic mice 
with stem cells shortly after diabetic conversion resulted in 
an overall reduction in blood glucose levels and a 
prolongation of overall survival. Approximately half of all 
mice treated with a combination of CTX and stem cells 
appeared to show benefit from the therapy, while all mice 
treated with stem cells alone displayed significant benefit. 

The reason for this difference could not be ascertained. Mice 
treated with CTX alone showed little long term benefit, 
although there were temporary reductions in blood glucose. 
Untreated mice rapidly succumbed to hyperglycemia. It is 
not clear whether the therapy resulted in any true cures. That 
is, stem cell infusions did not appear to result in chimerism 
or any significant islet cell regeneration of donor origin as 
assessed by IHC or C-peptide production. However, it did 
appear that stem cell infusions resulted in lowered blood 
glucose levels and a longer “honeymoon” period in the 
treated mice. Whether multiple stem cell infusions and/or 
larger stem cell doses would be more beneficial are topics 
that should be investigated further. 
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